The Potential of Cannabidiol in the Management of Oral Infections
Abstract
1. Introduction
1.1. Oral Infections
1.2. Management of Oral Infections
2. Chemical and Pharmacological Aspects of Cannabidiol
3. Overview of Pharmacokinetics Relevant to Oral Tissues
4. Antimicrobial Properties of Cannabidiol
4.1. In Vitro Evidence
4.2. Anti-Inflammatory Effects in Oral Infection Models
4.3. Preclinical and Clinical Studies
5. CBD Delivery Methods for Oral Infections: Current Strategies and Therapeutic Potential
5.1. Topical Delivery Systems
5.1.1. Mucoadhesive Gels and Ointments
5.1.2. Mouth Rinses
5.1.3. Buccal Films and Patches
5.2. Systemic Delivery Approaches
5.2.1. Oral Capsules and Edibles
5.2.2. Sublingual Oils and Tinctures
5.3. Localized Drug Delivery Systems
5.3.1. Nanoparticle-Based Delivery
5.3.2. Hydrogels and Injectable Systems
5.3.3. Biodegradable Inserts
6. Limitations of Current Studies
7. Challenges and Future Perspectives
8. Conclusions
Funding
Conflicts of Interest
References
- Fan, Y.F.; Chen, X.; Shan, T.T.; Wang, N.X.; Han, Q.; Ren, B.; Cheng, L. Polymicrobial interactions of Helicobacter pylori and its role in the process of oral diseases. J. Oral. Microbiol. 2025, 17, 2469896. [Google Scholar] [CrossRef] [PubMed]
- Senel, S.; Ozdogan, A.I.; Akca, G. Current status and future of delivery systems for prevention and treatment of infections in the oral cavity. Drug Deliv. Transl. Res. 2021, 11, 1703–1734. [Google Scholar] [CrossRef]
- Spatafora, G.; Li, Y.; He, X.; Cowan, A.; Tanner, A.C.R. The Evolving Microbiome of Dental Caries. Microorganisms 2024, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Laranjeira, M.S.; Carvalho, A.; Pelaez-Vargas, A.; Hansford, D.; Ferraz, M.P.; Coimbra, S.; Costa, E.; Santos-Silva, A.; Fernandes, M.H.; Monteiro, F.J. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications. Sci. Technol. Adv. Mat. 2014, 15, 025001. [Google Scholar] [CrossRef]
- Bhuyan, R.; Bhuyan, S.K.; Mohanty, J.N.; Das, S.; Juliana, N.; Juliana, I.F. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022, 10, 2659. [Google Scholar] [CrossRef]
- Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A Disease of Opportunity. J. Fungi 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Santosh, A.B.R.; Muddana, K. Viral infections of oral cavity. J. Fam. Med. Prim. Care 2020, 9, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.E.; Sufiawati, I. Case Series of HIV-Associated Oral Lesions Among Antiretroviral-Naive Patients During the COVID-19 Pandemic. Int. Med. Case Rep. J. 2023, 16, 73–82. [Google Scholar] [CrossRef]
- Roi, C.I.; Roi, A.; Nicoară, A.; Nica, D.; Rusu, L.C.; Soancă, A.; Motofelea, A.C.; Riviș, M. Impact of Treatment on Systemic Immune-Inflammatory Index and Other Inflammatory Markers in Odontogenic Cervicofacial Phlegmon Cases: A Retrospective Study. Biomedicines 2023, 11, 1710. [Google Scholar] [CrossRef]
- Ferraz, M.P. Antimicrobial Resistance: The Impact from and on Society According to One Health Approach. Societies 2024, 14, 187. [Google Scholar] [CrossRef]
- Grenho, L.; Monteiro, F.J.; Pia Ferraz, M. In vitro analysis of the antibacterial effect of nanohydroxyapatite-ZnO composites. J. Biomed. Mater. Res. A 2014, 102, 3726–3733. [Google Scholar] [CrossRef]
- Kulik, E.M.; Thurnheer, T.; Karygianni, L.; Walter, C.; Sculean, A.; Eick, S. Antibiotic Susceptibility Patterns of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis Strains from Different Decades. Antibiotics 2019, 8, 253. [Google Scholar] [CrossRef]
- Bessa, L.J.; Botelho, J.; Machado, V.; Alves, R.; Mendes, J.J. Managing Oral Health in the Context of Antimicrobial Resistance. Int. J. Environ. Res. Public Health 2022, 19, 16448. [Google Scholar] [CrossRef]
- Rams, T.E.; Sautter, J.D.; van Winkelhoff, A.J. Emergence of Antibiotic-Resistant Porphyromonas gingivalis in United States Periodontitis Patients. Antibiotics 2023, 12, 1584. [Google Scholar] [CrossRef]
- Barros, J.; Monteiro, F.J.; Ferraz, M.P. Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int. J. Mol. Sci. 2022, 23, 11658. [Google Scholar] [CrossRef]
- Swanson, B.A.; Carson, M.D.; Hathaway-Schrader, J.D.; Warner, A.J.; Kirkpatrick, J.E.; Corker, A.; Alekseyenko, A.V.; Westwater, C.; Aguirre, J.I.; Novince, C.M. Antimicrobial-induced oral dysbiosis exacerbates naturally occurring alveolar bone loss. FASEB J. 2021, 35, e22015. [Google Scholar] [CrossRef]
- Bellocchio, L.; Patano, A.; Inchingolo, A.D.; Inchingolo, F.; Dipalma, G.; Isacco, C.G.; de Ruvo, E.; Rapone, B.; Mancini, A.; Lorusso, F.; et al. Cannabidiol for Oral Health: A New Promising Therapeutical Tool in Dentistry. Int. J. Mol. Sci. 2023, 24, 9693. [Google Scholar] [CrossRef]
- Singh, K.; Bhushan, B.; Chanchal, D.K.; Sharma, S.K.; Rani, K.; Yadav, M.K.; Porwal, P.; Kumar, S.; Sharma, A.; Virmani, T.; et al. Emerging Therapeutic Potential of Cannabidiol (CBD) in Neurological Disorders: A Comprehensive Review. Behav. Neurol. 2023, 2023, 8825358. [Google Scholar] [CrossRef]
- Coelho, M.J.; Araujo, M.D.; Carvalho, M.; Cardoso, I.L.; Manso, M.C.; Pina, C. Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years. Microorganisms 2025, 13, 325. [Google Scholar] [CrossRef]
- Barak, T.; Sharon, E.; Steinberg, D.; Feldman, M.; Sionov, R.V.; Shalish, M. Anti-Bacterial Effect of Cannabidiol against the Cariogenic Streptococcus mutans Bacterium: An In Vitro Study. Int. J. Mol. Sci. 2022, 23, 15878. [Google Scholar] [CrossRef]
- Avraham, M.; Steinberg, D.; Barak, T.; Shalish, M.; Feldman, M.; Sionov, R.V. Improved Anti-Biofilm Effect against the Oral Cariogenic by Combined Triclosan/CBD Treatment. Biomedicines 2023, 11, 521. [Google Scholar] [CrossRef]
- Torabi, J.; Luis, H.; Hurlbutt, M. Anticaries and Antigingivitis Properties of Cannabinoid-Containing Oral Health Products: A Review. Cannabis Cannabinoid Res. 2024, 9, e1377–e1384. [Google Scholar] [CrossRef]
- Abichabki, N.; Zacharias, L.V.; Moreira, N.C.; Bellissimo-Rodrigues, F.; Moreira, F.L.; Benzi, J.R.L.; Ogasawara, T.M.C.; Ferreira, J.C.; Ribeiro, C.M.; Pavan, F.R.; et al. Potential cannabidiol (CBD) repurposing as antibacterial and promising therapy of CBD plus polymyxin B (PB) against PB-resistant gram-negative bacilli. Sci. Rep. 2022, 12, 6454. [Google Scholar] [CrossRef]
- Bahraminia, M.; Cui, S.; Zhang, Z.; Semlali, A.; Le Roux, E.; Giroux, K.A.; Lajoie, C.; Beland, F.; Rouabhia, M. Effect of cannabidiol (CBD), a cannabis plant derivative, against Candida albicans growth and biofilm formation. Can. J. Microbiol. 2025, 71, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.; Qv, W.; Ma, Y.C.; Zhang, Y.Y.; Ding, C.; Chu, M.; Chen, F. The interplay between oral microbes and immune responses. Front. Microbiol. 2022, 13, 1009018. [Google Scholar] [CrossRef]
- Mulla, S.A.; Patil, A.; Mali, S.; Jain, A.K.; Jaiswal, H.; Sawant, H.R.; Arvind, R.; Singh, S. Unleashing the therapeutic role of cannabidiol in dentistry. J. Oral Biol. Craniofacial Res. 2024, 14, 649–654. [Google Scholar] [CrossRef]
- Martinez Naya, N.; Kelly, J.; Corna, G.; Golino, M.; Polizio, A.H.; Abbate, A.; Toldo, S.; Mezzaroma, E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024, 29, 473. [Google Scholar] [CrossRef]
- Luz-Veiga, M.; Amorim, M.; Pinto-Ribeiro, I.; Oliveira, A.L.S.; Silva, S.; Pimentel, L.L.; Rodriguez-Alcala, L.M.; Madureira, R.; Pintado, M.; Azevedo-Silva, J.; et al. Cannabidiol and Cannabigerol Exert Antimicrobial Activity without Compromising Skin Microbiota. Int. J. Mol. Sci. 2023, 24, 2389. [Google Scholar] [CrossRef]
- Hong, H.; Sloan, L.; Saxena, D.; Scott, D.A. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022, 10, 1959. [Google Scholar] [CrossRef]
- Ribeiro, A.; Alsayyed, R.; Oliveira, D.; Loureiro, R.; Cabral-Marques, H. Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens. Future Pharmacol. 2024, 4, 590–625. [Google Scholar] [CrossRef]
- Marquez, A.B.; Vicente, J.; Castro, E.; Vota, D.; Rodriguez-Varela, M.S.; Lanza Castronuovo, P.A.; Fuentes, G.M.; Parise, A.R.; Romorini, L.; Alvarez, D.E.; et al. Broad-Spectrum Antiviral Effect of Cannabidiol Against Enveloped and Nonenveloped Viruses. Cannabis Cannabinoid Res. 2024, 9, 751–765. [Google Scholar] [CrossRef]
- Martini, S.; Gemma, A.; Ferrari, M.; Cosentino, M.; Marino, F. Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int. J. Mol. Sci. 2023, 24, 3125. [Google Scholar] [CrossRef]
- Zaiachuk, M.; Suryavanshi, S.V.; Pryimak, N.; Kovalchuk, I.; Kovalchuk, O. The Anti-Inflammatory Effects of Cannabis sativa Extracts on LPS-Induced Cytokines Release in Human Macrophages. Molecules 2023, 28, 4991. [Google Scholar] [CrossRef]
- Dumbraveanu, C.; Strommer, K.; Wonnemann, M.; Choconta, J.L.; Neumann, A.; Kress, M.; Kalpachidou, T.; Kummer, K.K. Pharmacokinetics of Orally Applied Cannabinoids and Medical Marijuana Extracts in Mouse Nervous Tissue and Plasma: Relevance for Pain Treatment. Pharmaceutics 2023, 15, 853. [Google Scholar] [CrossRef]
- Zhang, Q.; Melchert, P.W.; Markowitz, J.S. Pharmacokinetic Variability of Oral Cannabidiol and Its Major Metabolites after Short-Term High-Dose Exposure in Healthy Subjects. Med. Cannabis Cannabinoids 2024, 7, 1–9. [Google Scholar] [CrossRef]
- Stella, B.; Baratta, F.; Della Pepa, C.; Arpicco, S.; Gastaldi, D.; Dosio, F. Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain. Drugs 2021, 81, 1513–1557. [Google Scholar] [CrossRef]
- Hossain, K.R.; Alghalayini, A.; Valenzuela, S.M. Current Challenges and Opportunities for Improved Cannabidiol Solubility. Int. J. Mol. Sci. 2023, 24, 14514. [Google Scholar] [CrossRef]
- Hu, Z.H.; Qin, Z.S.; Xie, J.H.; Qu, Y.; Yin, L.H. Cannabidiol and its application in the treatment of oral diseases: Therapeutic potentials, routes of administration and prospects. Biomed. Pharmacother. 2024, 176, 116271. [Google Scholar] [CrossRef]
- Tabboon, P.; Pongjanyakul, T.; Limpongsa, E.; Jaipakdee, N. Mucosal Delivery of Cannabidiol: Influence of Vehicles and Enhancers. Pharmaceutics 2022, 14, 1687. [Google Scholar] [CrossRef]
- Chesney, E.; Mazibuko, N.; Oliver, D.; Minichino, A.; Lamper, A.D.; Chester, L.; Reilly, T.J.; Lloyd, M.; Krakstrom, M.; Dickens, A.M.; et al. Novel Lipid Formulation Increases Absorption of Oral Cannabidiol (CBD). Pharmaceutics 2024, 16, 1537. [Google Scholar] [CrossRef]
- Beers, J.L.; Fu, D.; Jackson, K.D. Cytochrome P450-Catalyzed Metabolism of Cannabidiol to the Active Metabolite 7-Hydroxy-Cannabidiol. Drug Metab. Dispos. 2021, 49, 882–891. [Google Scholar] [CrossRef]
- Aqawi, M.; Sionov, R.V.; Gallily, R.; Friedman, M.; Steinberg, D. Anti-Biofilm Activity of Cannabigerol against Streptococcus mutans. Microorganisms 2021, 9, 2031. [Google Scholar] [CrossRef]
- Garzon, H.S.; Loaiza-Oliva, M.; Martinez-Pabon, M.C.; Puerta-Suarez, J.; Tellez Corral, M.A.; Bueno-Silva, B.; Suarez, D.R.; Diaz-Baez, D.; Suarez, L.J. Antibiofilm and Immune-Modulatory Activity of Cannabidiol and Cannabigerol in Oral Environments-In Vitro Study. Antibiotics 2024, 13, 342. [Google Scholar] [CrossRef]
- Santos, A.L.O.; Santiago, M.B.; Silva, N.B.S.; Souza, S.L.; Almeida, J.M.D.; Martins, C.H.G. The antibacterial and antibiofilm role of cannabidiol against periodontopathogenic bacteria. J. Appl. Microbiol. 2025, 136, lxae316. [Google Scholar] [CrossRef]
- Vasudevan, K.; Stahl, V. Cannabinoids infused mouthwash products are as effective as chlorhexidine on inhibition of total-culturable bacterial content in dental plaque samples. J. Cannabis Res. 2020, 2, 20. [Google Scholar] [CrossRef]
- Kornsuthisopon, C.; Chansaenroj, A.; Suwittayarak, R.; Phothichailert, S.; Usarprom, K.; Srikacha, A.; Vimolmangkang, S.; Phrueksotsai, C.; Samaranayake, L.P.; Osathanon, T. Cannabidiol alleviates LPS-inhibited odonto/osteogenic differentiation in human dental pulp stem cells in vitro. Int. Endod. J. 2025, 58, 449–466. [Google Scholar] [CrossRef]
- Stasilowicz-Krzemien, A.; Szymanowska, D.; Szulc, P.; Cielecka-Piontek, J. Antimicrobial, Probiotic, and Immunomodulatory Potential of Extract and Delivery Systems. Antibiotics 2024, 13, 369. [Google Scholar] [CrossRef]
- Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-Biofilm Activity of Cannabidiol against Candida albicans. Microorganisms 2021, 9, 441. [Google Scholar] [CrossRef]
- Niyangoda, D.; Aung, M.L.; Qader, M.; Tesfaye, W.; Bushell, M.; Chiong, F.; Tsai, D.; Ahmad, D.; Samarawickrema, I.; Sinnollareddy, M.; et al. Cannabinoids as Antibacterial Agents: A Systematic and Critical Review of In Vitro Efficacy Against Streptococcus and Staphylococcus. Antibiotics 2024, 13, 1023. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef]
- Campana, M.D.; de Paolis, G.; Sammartino, G.; Bucci, P.; Aliberti, A.; Gasparro, R. Cannabinoids: Therapeutic Perspectives for Management of Orofacial Pain, Oral Inflammation and Bone Healing—A Systematic Review. Int. J. Mol. Sci. 2025, 26, 3766. [Google Scholar] [CrossRef] [PubMed]
- Carmona Rendon, Y.; Garzon, H.S.; Bueno-Silva, B.; Arce, R.M.; Suarez, L.J. Cannabinoids in Periodontology: Where Are We Now? Antibiotics 2023, 12, 1687. [Google Scholar] [CrossRef]
- Suryavanshi, S.V.; Zaiachuk, M.; Pryimak, N.; Kovalchuk, I.; Kovalchuk, O. Cannabinoids Alleviate the LPS-Induced Cytokine Storm via Attenuating NLRP3 Inflammasome Signaling and TYK2-Mediated STAT3 Signaling Pathways In Vitro. Cells 2022, 11, 1391. [Google Scholar] [CrossRef]
- Pereira, S.R.; Hackett, B.; O’Driscoll, D.N.; Sun, M.C.; Downer, E.J. Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal. 2021, 5, NS20200080. [Google Scholar] [CrossRef]
- Martinez Naya, N.; Kelly, J.; Corna, G.; Golino, M.; Abbate, A.; Toldo, S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023, 28, 5980. [Google Scholar] [CrossRef] [PubMed]
- Napimoga, M.H.; Benatti, B.B.; Lima, F.O.; Alves, P.M.; Campos, A.C.; Pena-dos-Santos, D.R.; Severino, F.P.; Cunha, F.Q.; Guimaraes, F.S. Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int. Immunopharmacol. 2009, 9, 216–222. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Yu, S.; Li, C.; Gao, B.; Zhou, X. Cannabidiol attenuates periodontal inflammation through inhibiting TLR4/NF-kappaB pathway. J. Periodontal Res. 2023, 58, 697–707. [Google Scholar] [CrossRef]
- Umpreecha, C.; Bhalang, K.; Charnvanich, D.; Luckanagul, J. Efficacy and safety of topical 0.1% cannabidiol for managing recurrent aphthous ulcers: A randomized controlled trial. BMC Complement. Med. Ther. 2023, 23, 57. [Google Scholar] [CrossRef]
- Kielbratowski, M.; Kuska-Kielbratowska, A.; Mertas, A.; Bobela, E.; Wiench, R.; Kepa, M.; Trzcionka, A.; Korkosz, R.; Tanasiewicz, M. Evaluation of the Effectiveness of a Mouthwash Containing Spilanthol and Cannabidiol on Improving Oral Health in Patients with Gingivitis-Clinical Trial. J. Clin. Med. 2025, 14, 1641. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K. Cannabidiol (CBD) in Cancer Management. Cancers 2022, 14, 885. [Google Scholar] [CrossRef]
- Hosking, R.D.; Zajicek, J.P. Therapeutic potential of cannabis in pain medicine. Brit. J. Anaesth. 2008, 101, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.D.; Vitetta, L.; Hall, S. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions. Inflammopharmacology 2022, 30, 1167–1178. [Google Scholar] [CrossRef]
- Söpper, U.; Hoffmann, A.; Daniels, R. Mucoadhesion and Mucopenetration of Cannabidiol (CBD)-Loaded Mesoporous Carrier Systems for Buccal Drug Delivery. Sci. Pharm. 2021, 89, 35. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Boddu, S.H.S.; Gorain, B.; Sreeharsha, N.; Shah, J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021, 13, 1206. [Google Scholar] [CrossRef] [PubMed]
- Shipp, L.; Liu, F.; Kerai-Varsani, L.; Okwuosa, T.C. Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J. Control. Release 2022, 352, 1071–1092. [Google Scholar] [CrossRef]
- Limsuwan, S.; Phonsatta, N.; Panya, A.; Asasutjarit, R.; Tansakul, N. Pharmacokinetics behavior of four cannabidiol preparations following single oral administration in dogs. Front. Vet. Sci. 2024, 11, 1389810. [Google Scholar] [CrossRef]
- O’Sullivan, S.E.; Jensen, S.S.; Kolli, A.R.; Nikolajsen, G.N.; Bruun, H.Z.; Hoeng, J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals 2024, 17, 244. [Google Scholar] [CrossRef]
- Liang, J.; Peng, X.; Zhou, X.; Zou, J.; Cheng, L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020, 25, 516. [Google Scholar] [CrossRef] [PubMed]
- Assadpour, E.; Rezaei, A.; Das, S.S.; Krishna Rao, B.V.; Singh, S.K.; Kharazmi, M.S.; Jha, N.K.; Jha, S.K.; Prieto, M.A.; Jafari, S.M. Cannabidiol-Loaded Nanocarriers and Their Therapeutic Applications. Pharmaceuticals 2023, 16, 487. [Google Scholar] [CrossRef]
- Morakul, B.; Junyaprasert, V.B.; Sakchaisri, K.; Teeranachaideekul, V. Cannabidiol-Loaded Nanostructured Lipid Carriers (NLCs) for Dermal Delivery: Enhancement of Photostability, Cell Viability, and Anti-Inflammatory Activity. Pharmaceutics 2023, 15, 537. [Google Scholar] [CrossRef]
- Rebelatto, E.R.L.; Rauber, G.S.; Caon, T. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications. Int. J. Pharm. 2023, 635, 122727. [Google Scholar] [CrossRef]
- Ferraz, M.P. Advanced Nanotechnological Approaches for Biofilm Prevention and Control. Appl. Sci. 2024, 14, 8137. [Google Scholar] [CrossRef]
- Muta, T.; Khetan, R.; Song, Y.; Garg, S. Optimising Cannabidiol Delivery: Improving Water Solubility and Permeability Through Phospholipid Complexation. Int. J. Mol. Sci. 2025, 26, 2647. [Google Scholar] [CrossRef] [PubMed]
- Sionov, R.V.; Siag, A.; Mersini, E.T.; Kogan, N.M.; Alkhazov, T.; Koman, I.; Rowlo, P.; Gutkin, V.; Gross, M.; Steinberg, D. The Incorporation of CBD into Biodegradable DL-Lactide/Glycolide Copolymers Creates a Persistent Antibacterial Environment: An In Vitro Study on Streptococcus mutans and Staphylococcus aureus. Pharmaceutics 2025, 17, 463. [Google Scholar] [CrossRef]
- David, C.; de Souza, J.F.; Silva, A.F.; Grazioli, G.; Barboza, A.S.; Lund, R.G.; Fajardo, A.R.; Moraes, R.R. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. J. Mater. Sci. Mater. Med. 2024, 35, 14. [Google Scholar] [CrossRef]
- Baranov, N.; Popa, M.; Atanase, L.I.; Ichim, D.L. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021, 26, 2735. [Google Scholar] [CrossRef]
- Casedas, G.; Yarza-Sancho, M.; Lopez, V. Cannabidiol (CBD): A Systematic Review of Clinical and Preclinical Evidence in the Treatment of Pain. Pharmaceuticals 2024, 17, 1438. [Google Scholar] [CrossRef]
Target Pathogen/Condition | Mechanism/Details | References | |
---|---|---|---|
In vitro evidence | Streptococcus mutans (Dental caries) | Inhibits growth, acid production, and biofilm formation. Disrupts membrane integrity; inhibits quorum sensing; prevents biofilm on hydroxyapatite and enamel-like surfaces. | [20,21,38,42] |
Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum (Periodontal pathogens) | Inhibits growth and biofilm formation. MIC and MBC values comparable to chlorhexidine; attenuates LPS-induced inflammation in gingival fibroblasts. | [43,44,45,46] | |
Enterococcus faecalis (Endodontic infections) | Reduces biofilms and viable counts in dentinal tubules. Enhances root canal disinfection; potential use in irrigants or intracanal medicaments. | [12,19,47] | |
Candida albicans (Oral candidiasis) | Reduces viability, hyphal transformation, and biofilm integrity. Reduces adhesion to acrylic surfaces; potential against denture stomatitis and oral candidiasis. | [24,48] | |
Antimicrobial Resistance (general) | Synergistic effects with antibiotics (e.g., bacitracin, erythromycin); does not induce resistance. | [49,50] | |
Anti-Inflammatory Effects in Oral Infection Models | Inflammation in oral cells (HGFs, PDLs) | Reduces TNF-α, IL-1β, IL-6, PGE2. Inhibits NF-κB translocation and cytokine gene expression. | [52,53] |
Oxidative Stress | Decreases ROS; increases SOD and GPx expression. Antioxidant action in oral epithelial cells. | [38,51,54] | |
Immune Modulation | Reduces iNOS and NO; shifts macrophages to M2 phenotype. Suppresses pro-inflammatory immune responses. | [55] | |
Animal/ Preclinical Studies | Periodontitis, Mucositis | Reduces inflammation, cytokines (IL-1β, TNF-α), and preserves bone and tissue. Systemic and topical CBD effective; confirmed by micro-CT and histology. | [38,56,57] |
Clinical Studies | Aphthous Ulcers | Reduces pain and accelerates healing. Topical CBD application in RCT. | [58] |
CBD Mouthwash | Reduces plaque and gingival inflammation. Comparable to chlorhexidine, fewer side effects. | [45,59] | |
Mucositis (Oncology) | Decreases severity and duration of oral mucositis. Case series in chemotherapy patients. | [60] | |
Pain Relief | Analgesic effects via TRPV1 and adenosine receptors. Reduces nociceptive signaling and peripheral sensitization. | [61,62] |
Delivery Systems | Advantages | Disadvantages | References | |
---|---|---|---|---|
Topical Delivery Systems | Mucoadhesive Gels and Ointments | Direct application to infection site. Enhances tissue penetration. Reduces inflammation and microbial load. | Limited to accessible areas. May require frequent application | [63] |
Mouth Rinses | Easy to use. Reduces plaque and gingival bleeding. | Short retention time. May need repeated administration. | [45,59] | |
Buccal Films and Patches | Adheres to the mucosa. Extended CBD release. Effective for chronic lesions. | Potential discomfort. May detach with saliva or movement. | [38,64,65] | |
Systemic Delivery Approaches | Oral Capsules/Edibles | Convenient for widespread infections. Supports systemic immune modulation. | Low bioavailability (6–10%). Delayed onset due to first-pass metabolism. | [27,66] |
Sublingual Oils/Tinctures | Avoids first-pass metabolism. Faster onset. Improved bioavailability (up to 35%). | Lacks local targeting. Shorter duration of action. | [37,67] | |
Localized Drug Delivery Systems | Nanoparticle-Based Delivery | Enhanced solubility and stability. Improved cellular uptake. Strong antimicrobial and anti-inflammatory effects. | Complex formulation. Still under development. | [74] |
Hydrogels/Injectable Systems | Localized, sustained release. Biodegradable and minimally invasive. Supports tissue regeneration. | Requires clinical application. Potential cost and formulation complexity. | [38] | |
Biodegradable Inserts | Long-term drug release. Maintains high local concentration. Effective for chronic biofilms. | Invasive placement. May not be suitable for all patients or locations. | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz, M.P. The Potential of Cannabidiol in the Management of Oral Infections. Appl. Sci. 2025, 15, 5736. https://doi.org/10.3390/app15105736
Ferraz MP. The Potential of Cannabidiol in the Management of Oral Infections. Applied Sciences. 2025; 15(10):5736. https://doi.org/10.3390/app15105736
Chicago/Turabian StyleFerraz, Maria Pia. 2025. "The Potential of Cannabidiol in the Management of Oral Infections" Applied Sciences 15, no. 10: 5736. https://doi.org/10.3390/app15105736
APA StyleFerraz, M. P. (2025). The Potential of Cannabidiol in the Management of Oral Infections. Applied Sciences, 15(10), 5736. https://doi.org/10.3390/app15105736