Estrone Degradation in Soil as Affected by Three Soil Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Experimental Design
2.2.1. Estrone Treatment
2.2.2. Pot Experiment
2.3. Analytical Procedures
2.3.1. Enzymatic Activity
2.3.2. LC/MS Analysis
2.4. Statistics
3. Results
Soils | Cambisol | Fluvisol | Chernozem |
---|---|---|---|
Latitude | 49°33′15″ N | 50°09′50″ N | 50°07′40″ N |
Longitude | 15°21′02″ E | 15°09′24″ E | 14°22′33″ E |
Site | Humpolec | Patek | Suchdol |
texture | sandy loam | silty clay | loamy |
pH | 6.5 | 7.5 | 7.0 |
WHC 1 | 14.77 | 13.71 | 14.78 |
C (mg·kg−1) | 20,512 | 76,509 | 28,304 |
N (mg·kg−1) | 2055 | 2882 | 2333 |
C/N ratio | 10 | 26 | 12 |
C/H ratio | 2 | 12 | 4 |
K (mg·kg−1) 2 | 140 | 390 | 340 |
P (mg·kg−1) 2 | 60 | 30 | 40 |
Ca (mg·kg−1) 2 | 1540 | 26,290 | 6480 |
Mg (mg·kg−1) 2 | 160 | 370 | 220 |
Mn (mg·kg−1) 2 | 80 | 30 | 160 |
S (mg·kg−1) 2 | 60 | 150 | 80 |
Zn (mg·kg−1) 2 | 2.88 | 4.02 | 5.66 |
Fe (mg·kg−1) 2 | 26 | 28 | 6 |
Cu (mg·kg−1) 2 | 2.68 | 0.91 | 3.81 |
Cr (mg·kg−1) 2 | 0.24 | 0.09 | 0.09 |
3.1. Soil Characteristics
3.2. Estrone Concentrations
3.3. Enzymatic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdellah, Y.A.Y.; Zang, H.; Li, C. Steroidal estrogens during composting of animal manure: Persistence, degradation, and fate, a Review. Water Air Soil. Pollut. 2020, 231, 547. [Google Scholar] [CrossRef]
- Bartelt-Hunt, S.; Snow, D.D.; Damon-Powell, T.; Miesbach, D. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J. Cont. Hydrol. 2011, 123, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Gall, H.E.; Sassman, S.A.; Jenkinson, B.; Lee, L.S.; Jafvert, C.T. Comparison of export dynamics of nutrients and animal-borne estrogens from a tile-drained Midwestern agroecosystem. Water Res. 2015, 72, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Barel-Cohen, K.; Shore, L.S.; Shemesh, M.; Wenzel, A.; Mueller, J.; Kronfeld-Schor, N. Monitoring of natural and synthetic hormones in a polluted river. J. Environ. Manag. 2006, 78, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Sutaswiriya, N.; Homklin, S.; Kreetachat, T.; Vaithanomsat, P.; Kreetachat, N. Monitoring estrogen and androgen residues from livestock farms in Phayao Lake, Thailand. Environ. Monit. Assess. 2021, 193, 812. [Google Scholar] [CrossRef]
- Dutta, S.; Inamdar, S.; Tso, J.; Aga, D.S.; Sims, J.T. Free and conjugated estrogen exports in surface-runoff from poultry litter–amended soil. J. Environ. Qual. 2010, 39, 1688–1698. [Google Scholar] [CrossRef]
- Ying, G.G.; Kookana, R.S.; Kumar, A.; Mortimer, M. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Sci. Total Environ. 2009, 407, 5147–5155. [Google Scholar] [CrossRef]
- Ciślak, M.; Kruszelnicka, I.; Zembrzuska, J.; Ginter-Kramarczyk, D. Estrogen pollution of the European aquatic environment: A critical review. Water Res. 2023, 229, 119413. [Google Scholar] [CrossRef]
- Ting, Y.F.; Praveena, S.M. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: A mini review. Environ. Monit. Assess. 2017, 189, 178. [Google Scholar] [CrossRef]
- Grdulska, A.; Kowalik, R. Estrogen removal from wastewater. Struct. Environ. 2020, 12, 133–141. [Google Scholar] [CrossRef]
- Mina, O.; Gall, H.E.; Elliott, H.A.; Watson, J.E.; Mashtare, M.L.; Langkilde, T.; Harper, J.P.; Boyer, E.W. Estrogen occurrence and persistence in vernal pools impacted by wastewater irrigation practices. Agric. Ecosyst. Environ. 2018, 257, 103–112. [Google Scholar] [CrossRef]
- Combalbert, S.; Hernandez-Raquet, G. Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl. Microbiol. Biotechnol. 2010, 86, 1671–1692. [Google Scholar] [CrossRef]
- Stumpe, B.; Marschner, B. Long-term sewage sludge application and wastewater irrigation on the mineralization and sorption of 17β-estradiol and testosterone in soils. Sci. Total Environ. 2007, 374, 282–291. [Google Scholar] [CrossRef]
- Huang, G.Y.; Liang, Y.Q.; Liu, Y.S.; Shi, W.J.; Liu, S.S.; Hu, L.X.; Xie, L.; Ying, G.G. Swine farm wastewater discharge causes masculinization of western mosquitofish (Gambusia affinis). Environ. Int. 2019, 123, 132–140. [Google Scholar] [CrossRef]
- Lucas, S.D.; Jones, D.L. Biodegradation of estrone and 17 β-estradiol in grassland soils amended with animal wastes. Soil. Biol. Biochem. 2006, 38, 2803–2815. [Google Scholar] [CrossRef]
- Popova, I.E.; Morra, M.J. Environmental transport of endogenous dairy manure estrogens. J. Environ. Sci. Health Part B 2017, 52, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yates, S.R. Degradation and metabolite formation of estrogen conjugates in an agricultural soil. J. Pharm. Biomed. Anal. 2017, 145, 634–640. [Google Scholar] [CrossRef]
- Ye, X.; Wang, H.; Kan, J.; Li, J.; Huang, T.; Xiong, G.; Hu, Z. A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone. Chem. Biol. Interact. 2017, 276, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Jobling, S.; Reynolds, T.; White, R.; Parker, M.G.; Sumpter, J.P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect. 1995, 103, 582–587. [Google Scholar] [CrossRef]
- Janssen, P.A.H.; Lambert, J.G.D.; Vethaak, A.D.; Goos, H.J.T. Environmental pollution caused elevated concentrations of oestradiol and vitellogenin in the female flounder, Platichthys flesus (L.). Aquat. Toxicol. 1997, 39, 195–214. [Google Scholar] [CrossRef]
- Fernández, L.; Louvado, A.; Esteves, V.I.; Gomes, N.C.M.; Almeida, A.; Cunha, Â. Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. J. Hazard. Mat. 2017, 323, 359–366. [Google Scholar] [CrossRef]
- Yu, C.P.; Roh, H.; Chu, K.H. 17β-Estradiol-Degrading Bacteria Isolated from Activated Sludge. Environ. Sci. Technol. 2007, 41, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Pratush, A.; Yang, Q.; Peng, T.; Huang, T.; Hu, Z. Identification of non-accumulating intermediate compounds during estrone (E1) metabolism by a newly isolated microbial strain BH2-1 from mangrove sediments of the South China Sea. Environ. Sci. Pollut. Res. 2020, 27, 5097–5107. [Google Scholar] [CrossRef] [PubMed]
- Nakai, S.; Yamamura, A.; Tanaka, S.; Shi, J.; Nishikawa, M.; Nakashimada, Y.; Hosomi, M. Pathway of 17β-estradiol degradation by Nitrosomonas europaea and reduction in 17β-estradiol-derived estrogenic activity. Environ. Chem. Lett. 2011, 9, 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Nandakumar, R.; Madayiputhiya, N.; Li, X. Proteomic Analysis of 17β-Estradiol Degradation by Stenotrophomonas maltophilia. Environ. Sci. Technol. 2012, 46, 5947–5955. [Google Scholar] [CrossRef]
- Chen, Y.L.; Yu, C.P.; Lee, T.H.; Goh, K.S.; Chu, K.H.; Wang, P.H.; Ismail, W.; Shih, C.J.; Chiang, Y.R. Biochemical mechanisms and catabolic enzymes involved in bacterial estrogen degradation pathways. Cell Chem. Biol. 2017, 24, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, X.; Yang, Y.; Tao, S.; Xing, B. Sorption Mechanisms of Phenanthrene, Lindane, and Atrazine with Various Humic Acid Fractions from a Single Soil Sample. Environ. Sci. Technol. 2011, 45, 2124–2130. [Google Scholar] [CrossRef]
- Yu, Z.; Xiao, B.; Huang, W.; Peng, P. Sorption of steroid estrogens to soils and sediments. Environ. Toxicol. Chem. 2004, 23, 531–539. [Google Scholar] [CrossRef]
- Caron, E.; Farenhorst, A.; Zvomuya, F.; Gaultier, J.; Rank, N.; Goddard, T.; Sheedy, C. Sorption of four estrogens by surface soils from 41 cultivated fields in Alberta, Canada. Geoderma 2010, 155, 19–30. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil. Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Mashtare, M.L.; Green, D.A.; Lee, L.S. Biotransformation of 17α- and 17β-estradiol in aerobic soils. Chemosphere 2013, 90, 647–652. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. Sci. Total Environ. 2019, 690, 447–459. [Google Scholar] [CrossRef]
- Tamagawa, Y.; Yamaki, R.; Hirai, H.; Kawai, S.; Nishida, T. Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi. Chemosphere 2006, 65, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Štursová, M.; Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil. 2011, 338, 99–110. [Google Scholar] [CrossRef]
- Casey, F.X.M.; Šimůnek, J.; Lee, J.; Larsen, G.L.; Hakk, H. Sorption, mobility, and transformation of estrogenic hormones in natural soil. J. Environ. Qual. 2005, 34, 1372–1379. [Google Scholar] [CrossRef]
- Renaud, F.G.; Leeds-Harrison, P.B.; Brown, C.D.; van Beinum, W. Determination of time-dependent partition coefficients for several pesticides using diffusion theory. Chemosphere 2004, 57, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Jung, C.; Han, J.; Her, N.; Park, C.M.; Jang, M.; Son, A.; Yoon, Y. Sorptive removal of selected emerging contaminants using biochar in aqueous solution. J. Ind. Eng.Chem. 2016, 36, 364–371. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Z.; Wen, Y.; Zhang, W.; Xie, Y.; Cao, N.; Sun, D.; Yang, Y. The response of steroid estrogens bioavailability to various sorption mechanisms by soil organic matter extracted with sequential alkaline-extraction method from an agriculture soil. Environ. Pollut. 2022, 308, 119630. [Google Scholar] [CrossRef]
- Lee, S.; Pardue, J.H.; Moe, W.M.; Kim, D.J. Effect of sorption and desorption-resistance on biodegradation of chlorobenzene in two wetland soils. J. Hazard. Mat. 2009, 161, 492–498. [Google Scholar] [CrossRef]
- Flogeac, K.; Guillon, E.; Aplincourt, M. Adsorption of several metal ions onto a model soil sample: Equilibrium and EPR studies. J. Coll. Interf. Sci. 2005, 286, 596–601. [Google Scholar] [CrossRef]
- Lee, S.; Kommalapati, R.R.; Valsaraj, K.T.; Pardue, J.H.; Constant, W.D. Rate-Limited Desorption of Volatile Organic Compounds from Soils and Implications for the Remediation of a Louisiana Superfund Site. Environ. Monit. Assess. 2002, 75, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Neale, P.A.; Escher, B.I.; Schäfer, A.I. Quantification of solute–solute interactions using negligible-depletion solid-phase microextraction: Measuring the affinity of estradiol to bulk organic matter. Environ. Sci. Technol. 2008, 42, 2886–2892. [Google Scholar] [CrossRef]
- Qualls, R.G. Comparison of the behavior of soluble organic and inorganic nutrients in forest soils. Forest Ecol. Manag. 2000, 138, 29–50. [Google Scholar] [CrossRef]
- Loffredo, E.; Senesi, N. Fate of anthropogenic organic pollutants in soils with emphasis on adsorption/desorption processes of endocrine disruptor compounds. Pure Appl. Chem. 2006, 78, 947–961. [Google Scholar] [CrossRef]
- Drahorad, S.L.; Jehn, F.U.; Ellerbrock, R.H.; Siemens, J.; Felix-Henningsen, P. Soil organic matter content and its aliphatic character define the hydrophobicity of biocrusts in different successional stages. Ecohydrology 2020, 13, e2232. [Google Scholar] [CrossRef]
- Durán–Álvarez, J.C.; Prado, B.; Ferroud, A.; Juayerk, N.; Jiménez-Cisneros, B. Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils. Sci. Total Environ. 2014, 473–474, 189–198. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B.; Liu, W.; Tao, S.; Lin, X.; Zhang, Y.; Yuan, H.; Dai, H.; Zhang, X.; Xiao, Y. Two-compartment sorption of phenanthrene on eight soils with various organic carbon contents. J. Environ. Sci. Health Part B 2006, 41, 1333–1347. [Google Scholar] [CrossRef]
- Takigami, H.; Taniguchi, N.; Shimizu, Y. Sorption and desorption of 17β-estradiol to natural sediment. Water Sci. Technol. 2011, 64, 1473–1478. [Google Scholar] [CrossRef]
- Schmitt, H.; Haapakangas, H.; van Beelen, P. Effects of antibiotics on soil microorganisms: Time and nutrients influence pollution-induced community tolerance. Soil. Biol. Biochem. 2005, 37, 1882–1892. [Google Scholar] [CrossRef]
Enzymatic Activity | |
---|---|
soils comparison | p-values |
equality of variance ANOVA Post hoc pairwise comparison Fluvisol-Cambisol Fluvisol-Chernozem Cambisol-Chernozem | Brown–Forsythe test 0.00466543 Kruskal–Wallis 0.01272 Wilcoxon test with Bonferroni corrections 0.045 0.023 1.000 |
Estrone | |
soils comparison | p-values |
soils, individually—0 to 28 days Fluvisol Cambisol Chernozem soils, together—equality of variance 0 and 28 days 0 days 28 days ANOVA 0 days 28 days Post hoc pairwise comparison 0 days Fluvisol-Cambisol Fluvisol-Chernozem Cambisol-Chernozem 28 days Fluvisol-Cambisol Fluvisol-Chernozem Cambisol-Chernozem | Friedman test 0.0262 0.0142 0.0121 Brown–Forsythe test 0.9438856 0.1035599 0.001856509 One-way ANOVA 0.0914 1.2 × 10−5 Tukey HSD 0.3101227 0.0804346 0.5635242 0.0000253 0.0000186 0.7627496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitriu, A.C.; Szakova, J.; Cemperova, S. Estrone Degradation in Soil as Affected by Three Soil Groups. Appl. Sci. 2025, 15, 5703. https://doi.org/10.3390/app15105703
Dumitriu AC, Szakova J, Cemperova S. Estrone Degradation in Soil as Affected by Three Soil Groups. Applied Sciences. 2025; 15(10):5703. https://doi.org/10.3390/app15105703
Chicago/Turabian StyleDumitriu, Alexandra Cristina, Jirina Szakova, and Sara Cemperova. 2025. "Estrone Degradation in Soil as Affected by Three Soil Groups" Applied Sciences 15, no. 10: 5703. https://doi.org/10.3390/app15105703
APA StyleDumitriu, A. C., Szakova, J., & Cemperova, S. (2025). Estrone Degradation in Soil as Affected by Three Soil Groups. Applied Sciences, 15(10), 5703. https://doi.org/10.3390/app15105703