A Review of Extraction Techniques of Bioactive Compounds and Pharmacological Properties of Guam’s Invasive Vine—Antigonon leptopus
Abstract
:1. Introduction
2. Botanical Description and Ecology of A. leptopus
3. Ethnobotanical Uses of A. leptopus
3.1. Marianas Islands
3.2. Asia
3.3. Americas
4. Major Bioactive Compounds of A. leptopus
5. Major Pharmacological Properties of A. leptopus Extracts
5.1. Antioxidant Activity
5.2. Antibacterial Activity
5.3. Antimicrobial Activity
5.4. Antidiabetic Activity
5.5. Anti-Inflammatory Activity
5.6. Anticancer Activity
6. Extraction Methodology of Bioactive Compounds from A. leptopus
6.1. Conventional Extraction Techniques
6.1.1. Hot Extraction
6.1.2. Soxhlet Extraction
6.1.3. Maceration
6.1.4. Sequential Extraction
6.2. Non-Conventional Extraction Techniques (Green Technology)
6.2.1. Ultrasound-Assisted Extraction (UAE)
6.2.2. Supercritical-Carbon-Dioxide (S-CO2) Extraction
6.2.3. Microwave-Assisted Extraction (MAE)
7. Toxicity and Safety
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bevacqua, R.F.; Miller, R.H. Invasive Vines of Guam; University of Guam, College of Natural and Applied Sciences: Mangilao, GU, USA, 2020; Available online: https://www.uog.edu/_resources/files/extension/Invasive_vines2.pdf (accessed on 6 February 2025).
- Natural Resources Conservation Service. Antigonon leptopus Hook. & Arn; USDA, NRCS: Washington, DC, USA, 2024. [Google Scholar]
- Guam Invasive Species Council (GISC). Guam Invasive Species Management Plan; Guam Invasive Species Council and the Office of the Governor of Guam: Mangilao, GU, USA, 2017–2019. [Google Scholar]
- Eppinga, M.B.; Haber, E.A.; Sweeny, L.; Maria, J.S.; Rietkerk, M.; Wassen, M.J. Antigonon leptopus invasion is associated with plant community disassembly in a Caribbean island ecosystem. Biol. Invasions. 2022, 24, 353–371. [Google Scholar] [CrossRef]
- Reddy, G.V.P. Survey of invasive plants on Guam and identification of the 20 most widespread. Micronesia 2011, 41, 263–274. [Google Scholar]
- Natural Resources Conservation Service. Invasive Species Fact Sheet: Coral vine (Antigonon leptopus); USDA NRCS: Washington, DC, USA, 2008. [Google Scholar]
- University of Guam (UOG). Invasive Species on Guam. College of Natural and Applied Sciences. Available online: https://www.uog.edu/_resources/files/wptrc/IInvasive_species_GuamSM.pdf (accessed on 6 February 2025).
- Kaisoon, O.; Siriamornpun, S.; Weerapreeyakl, N.; Meeso, N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods 2011, 3, 88–99. [Google Scholar] [CrossRef]
- Vandebroek, I.; Picking, D.; Aiken, S.; Lewis, P.A.; Oberli, A.; Mitchell, S.; Boom, B. A Review of Coralila (Antigonon leptopus): An invasive and popular urban bush medicine in Jamaica. Econ. Bot. 2018, 72, 229–245. [Google Scholar] [CrossRef]
- Moore, P.H.; Krizman, R.D. Field and Garden Plants of Guam; University of Guam: Mangilao, GU, USA, 1981; p. 160. [Google Scholar]
- National Parks Singapore. Antigonon leptopus Hook. & Arn. Flora Fauna Web. 2022. Available online: https://www.nparks.gov.sg/florafaunaweb/flora/1/3/1312 (accessed on 6 February 2025).
- Reddy, R. Mexican creeper, Antigonon leptopus Hook. And Arn: An effective bee forage plant to conserve honey bee. J. Hortic. Sci. 2020, 15, 224–230. [Google Scholar]
- Kekuda, P.T.R.; Raghavendra, H.L. Medicinal uses, phytochemistry and pharmacological activities of Antigonon leptopus Hook. and Arn. (Polygonaceae): A Review. J. Chem. Pharm. Res. 2018, 10, 103–110. [Google Scholar]
- Vanisree, M.; Alexander-Lindo, R.L.; DeWitt, D.L.; Nair, M.G. Functional food components of Antigonon leptopus tea. Food Chem. 2008, 106, 487–492. [Google Scholar] [CrossRef]
- StuartXchange. Cadena de Amor. Philippine Medicinal Plants. 2021. Available online: https://www.stuartxchange.org/CadenaDeAmor (accessed on 6 February 2025).
- Apaya, M.K.; Chichioco-Hernandez, C.L. New steroidal saponin from Antigonon leptopus Hook. and Arn. Pharmacogn. Mag. 2014, 10, 501–505. [Google Scholar]
- Dalanon, M.C.B.; Catibog, J.J.B.; De Leon, R.M.; Garcia, C.A.; Kasilag, J.D.; Pajimna, R.M.B.; Dumaoal, O.S.; Cobeng, A.D.A.; Villalobos, O.A. In-vitro matrix metalloproteinase-9 inhibitory activity of alkaloids from Antigonon leptopus leaves (Polygonaceae). Steth 2020, 14, 1–11. [Google Scholar]
- Musthafa, M.M.; Nastaran, A.D.E.; Marikar, F.M.M.T.; Rajandram, D.; Ahmed, A.B.A. Phytochemical, pharmaceutical and biochemical activites of selected climber plants: A Review. Annu. Res. Rev. Biol. 2017, 16, 1–22. [Google Scholar] [CrossRef]
- Standley, P.C.; Streyermark, J.A. Flora of Guatamala. Chic. Natl. Hist. Mus. 1956, 24, 107–108. [Google Scholar]
- University of West Alabama. Antigonon leptopus. Alabama Herbarium Consortium. Available online: http://floraofalabama.org/Plant.aspx?id=2914 (accessed on 13 May 2025).
- Aschmann, H. A primitive food preparation technique in Baja California. Southwest J. Anthropol. 1952, 8, 36–39. [Google Scholar] [CrossRef]
- Earthpedia. Coral Vine (Antigonon leptopus). Earth. Available online: https://earthpedia.earth.com/plant-encyclopedia/angiosperms/polygonaceae/antigonon-leptopus/ (accessed on 6 February 2025).
- Mamidipalli, W.C.; Nimmagadda, V.R.; Bobbala, R.K.; Gottumukkala, K.M. Preliminary studies of analgesic and anti-inflammatory properties of Antigonon leptopus Hook. Et Arn roots in experimental models. J. Health Sci. 2008, 54, 281–286. [Google Scholar] [CrossRef]
- Carey, M.W.; Babu, D.J.M.; Rao, N.V.; Mohan, G.K. Study of anti-inflammatory activity of Antigonon leptopus Hook. et Arn roots. J. Pharm. Chem. 2008, 2, 133–138. [Google Scholar]
- Vanitha, K.; Thangarasu, S. Phytochemical profiling and GC-MS study of Antigonon leptopus Hook & Arn. Int. J. Chem Tech Res. 2013, 5, 1630–1640. [Google Scholar]
- Hemke, A.T.; Sangle, N.D.; Chandak, K.K.; Pounikar, A.R.; Umekar, M.J. Extraction and characterization of starch from the tubers of Antigonon leptopus species. Int. J. Pharmacogn. 2020, 7, 328–333. [Google Scholar]
- Olaoluwa, O.O.; Aiyelaagbe, O.O.; Irwin, D.; Reid, M. Novel anthraquinone derivatives from the aerial parts of Antigonon leptopus Hook & Arn. Tetrahedron 2013, 69, 63906–66910. [Google Scholar]
- Vanisree, M.; Alexander-Lindo, R.L.; DeWitt, D.L.; Nair, M.G. Health-beneficial phenolic aldehyde in Antigonon leptopus Tea. Evid. Based Complement. Altern. Med. 2009, 2011, 601249. [Google Scholar]
- Ramada, N.A. GC-MS analysis of the methylene chloride and n-butanol fractions of the methanolic extract of Antigonon leptopus (Hook & Arn.). Int. J. Pharmacogn. 2018, 5, 219–222. [Google Scholar]
- Rudhra, S.; Venkatesan, A. Phytochemical studies and antimicrobial activity on the leaves of Antigonon leptopus and Ecbolium viridae. BioRxiv 2024. [Google Scholar] [CrossRef]
- Bolla, N.D.; Bhogavalli, P.K. Preliminary phytochemical screening and antibacterial studies of the flowers of Antigonon leptopus. Ann. Biol. Res. 2010, 1, 229–233. [Google Scholar]
- Marimuthu, J.; Aparna, J.S.; Jeeva, S.; Sukumaran, S.; Anantham, B. Preliminary phytochemical studies on the methanolic flower extracts of some selected medicinal plants from India. Asian Pac. J. Trop. Biomed. 2012, 2, S79–S82. [Google Scholar]
- Shingadia, H.; Deshmukh, V.V.; Soni, S. Plant-mediated synthesis of Ag-Cu-Zn nanoparticles using Antigonon leptopus flower extract and its bioefficacy. Acta Biomed 2024, 95, 378–391. [Google Scholar]
- Kavatagimath, S.A.; Jalapure, S.S.; Hiremath, A.; Kempwade, A. In-vivo screening of ethanolic extract of Antigonon leptopus flower for anti-diabetic and antioxidant potential. Indian J. Pharm. Educ. Res. 2020, 54, S261–S268. [Google Scholar] [CrossRef]
- Sujatha, S.; Rani, V.S.; Ravikumar, B. Antidiabetic effect of flower extract of Antigonon leptopus Hook & Arn in Alloxan-induced diabetic rats. Indian J. Pharm. Educ. Res. 2012, 46, 9–16. [Google Scholar]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
- Elhaj, A.M.; Osman, E.E.; Koko, W.S.; Garbi, M.I.; Kabbashi, A.S. Antioxidant activity, phytochemical screening and cytotoxicity of ethanolic leaves extract of Antigonon leptopus of ethanolic leaves extract of Antigonon leptopus. Res. J. Agric. Environ. Manag. 2015, 4, 202–207. [Google Scholar]
- Pradhan, L.; Bhatnagar, S. Exploration of cytotoxic and antioxidant potential of Antigonon leptopus (Family: Polygonaceae). World J. Pharm. Sci. 2016, 4, 357–362. [Google Scholar]
- Bollapragada, M.; Shantaram, M. Comparative phytochemical profiles and antioxidant properties of Antigonon leptopus, Artabotrys hexapetalus and Allamanda blanchetii leaf extracts. Int. J. Pharmacogn. Phytochem. Res. 2019, 10, 327–333. [Google Scholar]
- Balasubramani, G.; Deepak, P.; Sowmiya, R.R.; Perumal, P. Antigonon leptopus: A Potent Biological Source for Extermination of Fish Bacterial Pathogens Providencia and Aeromonas; Natural Product Research: Formerly Natural Product Letters: Tamil Nadu, India, 2014. [Google Scholar]
- Bhuvaneswari, S.; Aravind, R.; Kaviyarasan, V.; Kalaivanan, K.; Hariram, S.B. A Comparative study on antibacterial activity of common weeds. Int. J. Pharma Bio Sci. 2011, 2, 677–683. [Google Scholar]
- Poosa, M.; Vanapatla, S.R. Protective effect of Antigonon leptopus (Hook et. Arn) in cadmium induced hepatotoxicity and nephrotoxicity in rats. Clin. Phytoscience 2020, 6, 32. [Google Scholar] [CrossRef]
- Priya, K.S.; Bhojaraju, K.S.; Kumari, Y.R.; Prasad, D.V.; Durga, M.S.S.; Preeti, P.M.; Lovaraju, K.P.; Kanthal, L.K. GC-MS profiling and anthelmintic activity of Antigonon leptopus leaves. Int. J. Pharm. Sci. Res. 2014, 5, 1914–1918. [Google Scholar]
- Rameth, B.S. Comparative evaluation of antioxidant and hemolytic potential of ornamental plants Ficus benjamina, Antigonon leptopus, and Amaran. tricolor. Int. J. Green Pharm. 2020, 14, 73–78. [Google Scholar]
- Kiranmayi, G.V.N.; Poojitha, R.; Bhavani, R.P.S.; Monika, S.; Navya, S.; Kumar, S.S. Phytochemical investigation, in vitro antioxidant, and in vivo antidepressant activity of ethanolic leaf extract Antigonon leptopus. Int. J. Green Pharm. 2018, 12, 235–240. [Google Scholar]
- De, D.K.; De, S.K.; Bhattacharya, R.P.; Bhanja, B.; De, D. Antigonon leptopus (Hook. And Arn.)-a new potential plant origin ichthyotoxic on Chana punctatus (Bloch, 1793) for aquaculture management. Int. J. Trend Sci. Res. Dev. 2022, 6, 1658–1668. [Google Scholar]
- Raju, N.J.; Rao, B.G. Investigation of hepatoprotective activity of roots & rhizomes of Antigonon leptopus Hook against carbon tetrachloride-induced hepatotoxicity in rats. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 600–607. [Google Scholar]
- Battu, G.; Raju, N. Studies in preliminary phytochemical and antimicrobial activity of Antigonon leptopus Hook. Int. J. Chem. Sci. 2009, 7, 2900–2904. [Google Scholar]
- Rani, V.S.; Sujatha, S.; Mohan, G.K. Antidiabetic effect of Antigonon leptopus Hook & Arn leaf on streptozotocin—Induced diabetic rats. Pharmacologyonline 2010, 2, 922–931. [Google Scholar]
- Javeed, A.; Sarfraz, M.; Bhutta, N.K.; Han, B. Alkaloids as natural anti-allergy agents: A mini review. Allergy Med. 2024, 2, 100014. [Google Scholar] [CrossRef]
- Koomklang, N. Antioxidant and anti-inflammatory of Antigonon leptopus flower extract. J. Sci. Technol. Mahasarakham 2025, 44, 33–41. [Google Scholar]
- Balasbrumani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. & Arn. J. Trace Elem. Med. Biol. 2015, 30, 83–89. [Google Scholar]
- Ranjan, R.; Ahmad, S. Evaluation of antimicrobial and anti-inflammatory properties in Quisqualis indica L., Mimosa pudica L., and Antigonon leptopus Hook &Arn. Bull. Environ. Pharmacol. Life Sci. 2020, 9, 65–73. [Google Scholar]
- Kanthal, L.K.; Divija, V.; Dhanalakshmi, D.P.; Laharika, K.B.; Manna, S.; Kumar, K.S.; Satyanarayana, M.V.V.N. In-vitro cytotoxic activity and anthelmintic effect of chloroform extract of Antigonon leptopus Hook & Arn. Pharma Chem. 2016, 8, 129–133. [Google Scholar]
- Rosales Fernández, Y.M.; Acosta Baldoquín, M.; Vier1a Tamayo, Y.; Torres, G.M. A novel method to prepare 20% tinctures of Antigonon leptopus (coral vine) and Sida rhombifolia L.(jelly leaf). Revista Cubana de Plantas Medicinales 2017, 22, 20193362869. [Google Scholar]
- Arumughqm, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications-a review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef] [PubMed]
- Tambun, R.; Alexander, V.; Ginting, Y. Performance comparison of maceration method, soxhelation method, and microwave-assisted extraction in extracting active compounds from soursop leaves (Annona muricata): A review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1122, 012095. [Google Scholar] [CrossRef]
- Pereira, A.G.; Cruz, L.; Cassani, L.; Chamorro, F.; Lourenco-Lopez, C.; Freitas, V.; Otero, P.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Comparative study of microwave-assisted extraction and ultrasound-assisted extraction techniques (MAE vs. UAE) for the optimized production of enriched extracts in phenolic compounds of Camellia japonica var Eugenia de Montijo. Eng. Proc. 2023, 37, 124. [Google Scholar]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Da Silva, R.P.; Rocha-Santos, T.A.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunuz, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and challenges in green extraction techniques. S. Afr. J. Chem. Eng. 2023, 46, 88–89. [Google Scholar]
- Lopez-Salazar, H.; Camacho-Diaz, B.H.; Ocampo, M.L.A.; Jimenez-Aparicio, A.P. Microwave-assisted extraction of functional compounds from plants: A review. BioResources 2023, 18, 6614–6638. [Google Scholar] [CrossRef]
- Prajna, S.S.; Priya, K.S.; Swarnalatha, S.; Bhojaraju, P.; Kanthal, L.K.; Satyavathi, K. GC-MS analysis and in-vitro cytotoxic activity of methanolic extract of Antigonon leptopus flowers. Int. J. Pharm. Sci. Res. 2015, 6, 3083–3087. [Google Scholar]
Rank | Scientific Name and Common Name |
---|---|
Kingdom | Plantae—Plants |
Subkingdom | Tracheobionta—Vascular plants |
Superdivision | Spermatophyta—Seed plants |
Division | Magnoliophyta—Flowering plants |
Class | Magnoliopsida—Dicotyledons |
Subclass | Caryophyllidae |
Order | Polygonales |
Family | Polygonaceae Juss.—Buckwheat family |
Genus | Antigonon Endl.—Antigonon |
Species | Antigonon leptopus Hook. & Arn.—Coral vine |
Part Used | Analytical Techniques | Phytochemicals | Bioactivities | Reference |
---|---|---|---|---|
Aerial parts | HPLC; H-NMR; C-NMR; TLC; GC–MS | Anthraquinone derivatives; phenolics; flavonoids; phenolic acids; coumarins; organic acids | Antimicrobial; antioxidant; LPO inhibitory; COX inhibitory; anti-inflammatory; anticoagulant; analgesic; antithrombin; antidiabetic; antidepressant | [14,27,28,29] |
Flowers | Qualitative assays | Alkaloids; tannins; terpenoids; flavonoids; triterpenoids; volatile oils; carboxylic acids; glycosides; carbohydrates; phenolics; saponins; steroids; phytosterols; sapogenins | Antibacterial; antimicrobial | [30,31,32,33] |
Flowers | RP-HPLC; qualitative assays | Phenolics; flavonoids; terpenoids; alkaloids; phytosterols; proteins | Antioxidant; antidiabetic; hypolipidemic; hypoglycemic | [8,34,35] |
Flowers | HPLC–DAD | Phenolic acids; flavonoids | Antioxidant; antiproliferative activity | [36] |
Leaves | Qualitative assays | Phenolics; alkaloids; tannins; glycosides; coumarins; flavonoids; triterpenes | Antioxidant | [37,38,39] |
Leaves | GC–MS; qualitative assays | Saponins; fixed oils; phenolics; tannins; flavonoids; alkaloids; amino acids; phlobatannins | Antibacterial | [40,41] |
Leaves | Qualitative assays | Phenolics; flavonoids; tannins; carbohydrates; steroids | Antioxidant; hepatoprotective | [42] |
Leaves | GC–MS | Phenolics; terpenes; hydrocarbons; quinazolines; coumarins; steroids | Anthelmintic | [43] |
Leaves | HPLC; C-NMR; H-NMR; qualitative assays | Alkaloids; carbohydrates; glycosides; phenolics; tannins; saponins; flavonoids | Antioxidant; antidepressant; antihemolytic; MMP-9 inhibitory; xanthin oxidase inhibitory; antioxidant; | [16,17,44,45] |
Leaves | GC–MS | Saponins; phenolics; tannins; flavonoids; alkaloids; fixed oils; amino acids | [25,46] | |
Tubers, roots and rhizomes | GC–MS | Carbohydrates; saponins; phenolics; fatty acid; volatile oils; steroids; Flavonoids; tannins; alkaloids; glycosides; triterpenoids | Analgesic; anti-inflammatory; hepatoprotective; antimicrobial; antifungal | [23,24,25,26,47,48] |
Part Used | Method | Toxicity | Reference |
---|---|---|---|
Roots | In vivo Acute toxicity study with methanol extract on albino mice | No cytotoxicity up to a dose of 2000 mg/kg B.W. | [23] |
Flowers | In vivo Acute toxicity study with ethanol extract on albino mice | No cytotoxicity up to a dose of 2000 mg/kg B.W. | [34] |
Flowers | In vitro MTT assay against CHOK 1 cell line and A-549 cell line | No cytotoxicity was observed | [63] |
Leaves | In vivo Cytotoxicity brine shrimp assay | Mild dose-dependent activity | [38] |
Leaves | In vivo Acute toxicity study with methanol extract on male Wistar albino rats | No cytotoxicity up to a dose of 2000 mg/kg B.W. | [42] |
Leaves | In vitro Microculture tetrazolium assay with ethanol extract | No cytotoxicity observed | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valerio, C.K.U.; Ferdosh, S. A Review of Extraction Techniques of Bioactive Compounds and Pharmacological Properties of Guam’s Invasive Vine—Antigonon leptopus. Appl. Sci. 2025, 15, 5625. https://doi.org/10.3390/app15105625
Valerio CKU, Ferdosh S. A Review of Extraction Techniques of Bioactive Compounds and Pharmacological Properties of Guam’s Invasive Vine—Antigonon leptopus. Applied Sciences. 2025; 15(10):5625. https://doi.org/10.3390/app15105625
Chicago/Turabian StyleValerio, Christel Kei U., and Sahena Ferdosh. 2025. "A Review of Extraction Techniques of Bioactive Compounds and Pharmacological Properties of Guam’s Invasive Vine—Antigonon leptopus" Applied Sciences 15, no. 10: 5625. https://doi.org/10.3390/app15105625
APA StyleValerio, C. K. U., & Ferdosh, S. (2025). A Review of Extraction Techniques of Bioactive Compounds and Pharmacological Properties of Guam’s Invasive Vine—Antigonon leptopus. Applied Sciences, 15(10), 5625. https://doi.org/10.3390/app15105625