Exploring the Oncogenic Potential of Bisphenol F in Ovarian Cancer Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and BPF Treatment
2.2. Alamar Blue Assay
2.3. In Vitro Wound-Healing Assay
- Wo = Initial wound width at 0 h
- Wt = Wound width at later time point (24 or 48 h)
2.4. Cell Invasion Assay
2.5. Total Anti-Oxidative Capability Assay
2.6. Statistical Analysis
3. Results
3.1. Dose-Dependent Effects of BPF on Ovarian Cell Viability
3.2. BPF-Induced Concentration-Dependent Morphological Changes in SKOV3 Cells
3.3. BPF Enhances Cell Migration Without Altering Invasive Behavior of OC Cells
3.4. BPF Does Not Alter T-AOC in OC Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BPA | Bisphenol A |
BPF | Bisphenol F |
DMSO | Dimethyl Sulfoxide |
NC | Negative Control |
OC | Ovarian cancer |
ROS | Reactive Oxygen Species |
References
- Cancer Today. Available online: https://gco.iarc.who.int/today/ (accessed on 6 August 2024).
- Ovarian Cancer Survival Rates|Ovarian Cancer Prognosis. Available online: https://www.cancer.org/cancer/types/ovarian-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 10 August 2024).
- Ullah, A.; Pirzada, M.; Afsar, T.; Razak, S.; Almajwal, A.; Jahan, S. Effect of Bisphenol F, an Analog of Bisphenol A, on the Reproductive Functions of Male Rats. Environ. Health Prev. Med. 2019, 24, 41. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, M.; Ozden, S. Potential Impacts of Bisphenols on Prostate Cells: An Overview of Cytotoxicity, Proliferation, Oxidative Stress, Apoptosis, and ER-Stress Response Activation. Food Chem. Toxicol. 2024, 184, 114416. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Liu, C.; Shen, Y.; Wang, Q.; Pan, A.; Yang, P.; Chen, Y.-J.; Deng, Y.-L.; Lu, Q.; Cheng, L.-M.; et al. Urinary Levels of Bisphenol A, F and S and Markers of Oxidative Stress among Healthy Adult Men: Variability and Association Analysis. Environ. Int. 2019, 123, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Neri, I.; Russo, G.; Grumetto, L. Bisphenol A and Its Analogues: From Their Occurrence in Foodstuffs Marketed in Europe to Improved Monitoring Strategies—A Review of Published Literature from 2018 to 2023. Arch. Toxicol. 2024, 98, 2441–2461. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Chen, H.-C.; Chang, J.-W.; Huang, H.-B.; Chang, W.-T.; Huang, P.-C. Exposure Characteristics and Cumulative Risk Assessment of Bisphenol A and Its Substitutes: The Taiwan Environmental Survey for Toxicants 2013. Front. Public Health 2024, 12, 1396147. [Google Scholar] [CrossRef]
- Qu, J.; Mao, W.; Liao, K.; Zhang, Y.; Jin, H. Association between Urinary Bisphenol Analogue Concentrations and Lung Cancer in Adults: A Case-Control Study. Environ. Pollut. 2022, 315, 120323. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Jin, Y.; Yang, M.; Zhang, Z.; Zhou, X.; Qiu, S.; Zou, X. Exploring the Relationships between Exposure Levels of Bisphenols and Phthalates and Prostate Cancer Occurrence. J. Hazard. Mater. 2024, 474, 134736. [Google Scholar] [CrossRef]
- Li, J.; Ji, Z.; Luo, X.; Li, Y.; Yuan, P.; Long, J.; Shen, N.; Lu, Q.; Zeng, Q.; Zhong, R.; et al. Urinary Bisphenol A and Its Interaction with ESR1 Genetic Polymorphism Associated with Non-Small Cell Lung Cancer: Findings from a Case-Control Study in Chinese Population. Chemosphere 2020, 254, 126835. [Google Scholar] [CrossRef]
- Dumitrascu, M.C.; Mares, C.; Petca, R.-C.; Sandru, F.; Popescu, R.-I.; Mehedintu, C.; Petca, A. Carcinogenic Effects of Bisphenol A in Breast and Ovarian Cancers. Oncol. Lett. 2020, 20, 282. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Xie, R.-H.; Li, P.-H.; Chen, C.-Y.; You, B.-H.; Sun, Y.-C.; Chou, C.-K.; Chang, Y.-H.; Lin, W.-C.; Chen, G.-Y. Environmental Exposure to Bisphenol A Enhances Invasiveness in Papillary Thyroid Cancer. Int. J. Mol. Sci. 2025, 26, 814. [Google Scholar] [CrossRef]
- Xie, X.; Zhu, Y.; Cheng, H.; Li, H.; Zhang, Y.; Wang, R.; Li, W.; Wu, F. BPA Exposure Enhances the Metastatic Aggression of Ovarian Cancer through the ERα/AKT/mTOR/HIF-1α Signaling Axis. Food Chem. Toxicol. 2023, 176, 113792. [Google Scholar] [CrossRef] [PubMed]
- Segovia-Mendoza, M.; Gómez de León, C.T.; García-Becerra, R.; Ambrosio, J.; Nava-Castro, K.E.; Morales-Montor, J. The Chemical Environmental Pollutants BPA and BPS Induce Alterations of the Proteomic Profile of Different Phenotypes of Human Breast Cancer Cells: A Proposed Interactome. Environ. Res. 2020, 191, 109960. [Google Scholar] [CrossRef]
- Liu, S.; He, B.; Li, H. Bisphenol S Promotes the Progression of Prostate Cancer by Regulating the Expression of COL1A1 and COL1A2. Toxicology 2022, 472, 153178. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Fan, K.; Tian, X.; Wen, J. Bisphenol S (BPS) Triggers the Migration of Human Non-Small Cell Lung Cancer Cells via Upregulation of TGF-β. Toxicol. Vitro 2019, 54, 224–231. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, K.; Zheng, F.; Xu, S.; Li, Y.; Wang, Y.; Ni, H.; Wang, F.; Cui, Z.; Qin, Y.; et al. Low-Dose BPA and Its Substitute BPS Promote Ovarian Cancer Cell Stemness via a Non-Canonical PINK1/P53 Mitophagic Signaling. J. Hazard. Mater. 2023, 452, 131288. [Google Scholar] [CrossRef] [PubMed]
- Catenza, C.J.; Farooq, A.; Shubear, N.S.; Donkor, K.K. A Targeted Review on Fate, Occurrence, Risk and Health Implications of Bisphenol Analogues. Chemosphere 2021, 268, 129273. [Google Scholar] [CrossRef]
- Mhaouty-Kodja, S.; Zalko, D.; Tait, S.; Testai, E.; Viguié, C.; Corsini, E.; Grova, N.; Buratti, F.M.; Cabaton, N.J.; Coppola, L.; et al. A Critical Review to Identify Data Gaps and Improve Risk Assessment of Bisphenol A Alternatives for Human Health. Crit. Rev. Toxicol. 2024, 54, 696–753. [Google Scholar] [CrossRef]
- Ye, X.; Wong, L.-Y.; Kramer, J.; Zhou, X.; Jia, T.; Calafat, A.M. Urinary Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of U.S. Adults during 2000–2014. Environ. Sci. Technol. 2015, 49, 11834–11839. [Google Scholar] [CrossRef]
- Cheng, M.-D.; Li, C.-L.; Pei, X.-Y.; Zhang, Y.-F.; Jia, D.-D.; Zuo, Y.-B.; Cai, S.-L.; Li, P.-F.; Xin, H.; Zhang, Y.-F. Integrative Analysis of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Bisphenols-Induced Cardiomyocyte Hypertrophy. Ecotoxicol. Environ. Saf. 2023, 263, 115391. [Google Scholar] [CrossRef]
- Moreno-Gómez-Toledano, R. Relationship between Emergent BPA-Substitutes and Renal and Cardiovascular Diseases in Adult Population. Environ. Pollut. 2022, 313, 120106. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, H.; Li, K.; Huang, R.; Liu, J.; Lu, Z.; Wang, Y.; Wang, J.; Du, Y.; Jin, X.; et al. Environmental Triggers of Autoimmunity: The Association between Bisphenol Analogues and Systemic Lupus Erythematosus. Ecotoxicol. Environ. Saf. 2024, 278, 116452. [Google Scholar] [CrossRef]
- Tiwari, S.; Phoolmala; Goyal, S.; Yadav, R.K.; Chaturvedi, R.K. Bisphenol-F and Bisphenol-S (BPF and BPS) Impair the Stemness of Neural Stem Cells and Neuronal Fate Decision in the Hippocampus Leading to Cognitive Dysfunctions. Mol. Neurobiol. 2024, 61, 9347–9368. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Sun, S.; Chen, L.; Lv, L.; Chen, C.; Huang, Z.; Zhang, A.; He, H.; Tao, H.; Yu, M.; et al. The Association between Prenatal Bisphenol F Exposure and Infant Neurodevelopment: The Mediating Role of Placental Estradiol. Ecotoxicol. Environ. Saf. 2024, 271, 116009. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Lee, J.; Huh, D.-A.; Moon, K.W. Urinary Bisphenol Concentrations and Its Association with Metabolic Disorders in the US and Korean Populations. Environ. Pollut. 2022, 295, 118679. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Choi, H.-G.; Lee, H.-M.; Lee, G.-A.; Hwang, K.-A.; Choi, K.-C. Effects of Bisphenol Compounds on the Growth and Epithelial Mesenchymal Transition of MCF-7 CV Human Breast Cancer Cells. J. Biomed. Res. 2017, 31, 358–369. [Google Scholar] [CrossRef]
- Bakan, B.; Kaptaner, B.; Tokmak, M.; Aykut, H.; Mendil, A.S.; Özkaraca, M. Toxicological Investigation of Bisphenol A and Its Derivates on Human Breast Epithelial (MCF-10A) Cells. Toxicol. Vitro 2024, 104, 106004. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, S.; Jin, H.; Tang, L.; Xia, M. Associations of Bisphenol F and S, as Substitutes for Bisphenol A, with Cardiovascular Disease in American Adults. J. Appl. Toxicol. 2023, 43, 500–507. [Google Scholar] [CrossRef]
- Zhou, S.-M.; Li, J.-Z.; Chen, H.-Q.; Zeng, Y.; Yuan, W.-B.; Shi, Y.; Wang, N.; Fan, J.; Zhang, Z.; Xu, Y.; et al. FTO-Nrf2 Axis Regulates Bisphenol F-Induced Leydig Cell Toxicity in an m6A-YTHDF2-Dependent Manner. Environ. Pollut. 2023, 325, 121393. [Google Scholar] [CrossRef]
- Fouyet, S.; Olivier, E.; Leproux, P.; Dutot, M.; Rat, P. Bisphenol A, Bisphenol F, and Bisphenol S: The Bad and the Ugly. Where Is the Good? Life 2021, 11, 314. [Google Scholar] [CrossRef]
- García-Recio, E.; Costela-Ruiz, V.J.; Melguizo-Rodríguez, L.; Ramos-Torrecillas, J.; Illescas-Montes, R.; De Luna-Bertos, E.; Ruiz, C. Effects of Bisphenol F, Bisphenol S, and Bisphenol AF on Cultured Human Osteoblasts. Arch. Toxicol. 2023, 97, 1899–1905. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Fan, S.; Zhong, Y.; Li, J.; Zhao, Y.; Ni, S.; Liu, J.; Wu, Y. A Case-Control Study of Urinary Concentrations of Bisphenol A, Bisphenol F, and Bisphenol S and the Risk of Papillary Thyroid Cancer. Chemosphere 2023, 312, 137162. [Google Scholar] [CrossRef]
- Gogola-Mruk, J.; Krawczyk, K.; Marynowicz, W.; Rokita, M.; Nimpsz, S.; Ptak, A. Bisphenols S and F Drive Ovarian Granulosa Cell Tumor Invasion via a Metabolic Switch. Toxicol. Lett. 2023, 375, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Sun, S.; Xu, J.; Feng, C.; Yu, Y.; Xu, G.; Wu, M.; Peng, W. Low-Concentration BPAF- and BPF-Induced Cell Biological Effects Are Mediated by ROS in MCF-7 Breast Cancer Cells. Environ. Sci. Pollut. Res. 2018, 25, 3200–3208. [Google Scholar] [CrossRef]
- Bujnakova Mlynarcikova, A.; Scsukova, S. Evaluation of Effects of Bisphenol Analogs AF, S, and F on Viability, Proliferation, Production of Selected Cancer-Related Factors, and Expression of Selected Transcripts in Caov-3 Human Ovarian Epithelial Cell Line. Food Chem. Toxicol. 2024, 191, 114889. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Tamimi, Y.; Dobretsov, S.; Balushi, N.A.; Alshekaili, J.; Al Balushi, H.; Al Kindi, M.; Hassan, S.I.; Bahlani, S.A.; Tsang, B.K.; et al. Malformin-A1 (MA1) Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin-Induced Apoptosis. Molecules 2021, 26, 3624. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Xu, J.; Huang, Z.; Yao, Q.; Chen, F.; Liu, H.; Zhang, Z.; Lin, J. ADMA Mediates Gastric Cancer Cell Migration and Invasion via Wnt/β-Catenin Signaling Pathway. Clin. Transl. Oncol. 2021, 23, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, R.D.; Hansen, H.J.; Goldenberg, D.M. Inhibition of Adhesion, Invasion, and Metastasis by Antibodies Targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res. 2005, 65, 8809–8817. [Google Scholar] [CrossRef]
- Tahtamouni, L.; Ahram, M.; Koblinski, J.; Rolfo, C. Molecular Regulation of Cancer Cell Migration, Invasion, and Metastasis. Anal. Cell. Pathol. 2019, 2019, 1356508. [Google Scholar] [CrossRef]
- Michałowicz, J.; Mokra, K.; Bąk, A. Bisphenol A and Its Analogs Induce Morphological and Biochemical Alterations in Human Peripheral Blood Mononuclear Cells (in Vitro Study). Toxicol. Vitro 2015, 29, 1464–1472. [Google Scholar] [CrossRef]
- Sabry, R.; Nguyen, M.; Younes, S.; Favetta, L.A. BPA and Its Analogs Increase Oxidative Stress Levels in in Vitro Cultured Granulosa Cells by Altering Anti-Oxidant Enzymes Expression. Mol. Cell. Endocrinol. 2022, 545, 111574. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Huang, Y.; Liu, Y.; Xu, J.; Sun, S.; Zhang, X.; Xu, G.; Wu, M.; Yu, Y.; Feng, C. Low-Concentration BPF Induced Cell Biological Responses by the ERα and GPER1-Mediated Signaling Pathways in MCF-7 Breast Cancer Cells. Ecotoxicol. Environ. Saf. 2018, 165, 144–152. [Google Scholar] [CrossRef]
- Domcke, S.; Sinha, R.; Levine, D.A.; Sander, C.; Schultz, N. Evaluating Cell Lines as Tumour Models by Comparison of Genomic Profiles. Nat. Commun. 2013, 4, 2126. [Google Scholar] [CrossRef]
- Huang, S. Analysis of Environmental Pollutant Bisphenol F Elicited Prostate Injury Targets and Underlying Mechanisms through Network Toxicology, Molecular Docking, and Multi-Level Bioinformatics Data Integration. Toxicology 2024, 506, 153847. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Brüning-Richardson, A.; Kirby, C. Cell Migration in Cancer; Cell Migration in 2D and 3D. In Cell Migration in Development, Health and Disease; Brüning-Richardson, A., Knipp, S., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 111–137. ISBN 978-3-031-64532-7. [Google Scholar]
- Castillo Sanchez, R.; Gomez, R.; Perez Salazar, E. Bisphenol A Induces Migration through a GPER-, FAK-, Src-, and ERK2-Dependent Pathway in MDA-MB-231 Breast Cancer Cells. Chem. Res. Toxicol. 2016, 29, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, F.; Cai, Q.; Deng, L.; Ouyang, Q.; Zhang, X.H.-F.; Zheng, J. Invasion and Metastasis in Cancer: Molecular Insights and Therapeutic Targets. Signal Transduct. Target. Ther. 2025, 10, 57. [Google Scholar] [CrossRef]
- Akça, H.; Polat, A.; Koca, C. Determination of Total Oxidative Stress and Total Antioxidant Capacity before and after the Treatment of Iron-Deficiency Anemia. J. Clin. Lab. Anal. 2013, 27, 227–230. [Google Scholar] [CrossRef]
- Mazdak, H.; Tolou_Ghamari, Z.; Gholampour, M. Bladder Cancer: Total Antioxidant Capacity and Pharmacotherapy with Vitamin-E. Int. Urol. Nephrol. 2020, 52, 1255–1260. [Google Scholar] [CrossRef]
- Ahmadzadeh, A.; Khodayar, M.J.; Salehcheh, M.; Nazari Khorasgani, Z.; Matin, M. Evaluation of the Total Oxidant Status to the Antioxidant Capacity Ratio as a Valuable Biomarker in Breast Cancer Patients. Rep. Biochem. Mol. Biol. 2023, 12, 277–283. [Google Scholar] [CrossRef]
- Deng, Y.; He, H.; Wan, H.; Shen, N.; Li, J.; Zhang, S.; Zeng, Q.; Chang, J.; Lu, Q.; Zhong, R.; et al. Bisphenol A Exposure, Interaction with Genetic Variants and Colorectal Cancer via Mediating Oxidative Stress Biomarkers. Environ. Pollut. 2021, 287, 117630. [Google Scholar] [CrossRef] [PubMed]
- Rajaura, S.; Bhardwaj, N.; Singh, A.; Babu, R.; Gupta, N.; Ahmed, M.Z. Bisphenol A-Induced Oxidative Stress Increases the Production of Ovarian Cancer Stem Cells in Mice. Reprod. Toxicol. 2024, 130, 108724. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakr, H.; Al Kharusi, A.; Malgundkar, S.H.; Sirasanagandla, S.R. Exploring the Oncogenic Potential of Bisphenol F in Ovarian Cancer Development. Appl. Sci. 2025, 15, 5561. https://doi.org/10.3390/app15105561
Sakr H, Al Kharusi A, Malgundkar SH, Sirasanagandla SR. Exploring the Oncogenic Potential of Bisphenol F in Ovarian Cancer Development. Applied Sciences. 2025; 15(10):5561. https://doi.org/10.3390/app15105561
Chicago/Turabian StyleSakr, Hussein, Amira Al Kharusi, Shika Hanif Malgundkar, and Srinivasa Rao Sirasanagandla. 2025. "Exploring the Oncogenic Potential of Bisphenol F in Ovarian Cancer Development" Applied Sciences 15, no. 10: 5561. https://doi.org/10.3390/app15105561
APA StyleSakr, H., Al Kharusi, A., Malgundkar, S. H., & Sirasanagandla, S. R. (2025). Exploring the Oncogenic Potential of Bisphenol F in Ovarian Cancer Development. Applied Sciences, 15(10), 5561. https://doi.org/10.3390/app15105561