The Early Detection of Cardiac Fatigue: Could the HRV Be Used as a Physiological Biomarker by AI?
Abstract
:1. Introduction
1.1. ECG Features
1.2. Gold Standard for Diagnosis
1.3. Wearable Devices
1.4. HR or HRV?
1.5. Physiological Biomarkers in Complex Systems Theoretical Framework
1.6. AI and ML
1.7. Cardiovascular or Cardiac Fatigue?
2. Materials and Methods
3. Results
3.1. Multivariate Analysis and SCI
3.2. Entropy Analysis (Physical Fatigue)
3.3. Meta-Learning and NNs
3.4. Supervised ML (Physical Fatigue)
3.5. NNs and Fatigue at Work
3.6. Photonic Sensing Smartphones and NNs (MobileNetV3)
3.7. Unsupervised ML (Random Forest)
3.8. Sensorized T-Shirt and Unsupervised ML
3.9. SVM and Global Fatigue Descriptor (GFD)
3.10. SVM and Exercise-Induced Fatigue (Physical Fatigue)
n | Healthy Status | Sample Size (F/M) | Reference Measure/Questionnaire | Method/Classifier Algoritms | Model Performance | Authors (First) | Publication Year |
---|---|---|---|---|---|---|---|
1 | SCI | 99 (45 SCI) (38 M/7 F), 44 AB(37 M/7 F) | HRV from ECG, eye blink duration/IFS | Multivariate analysis and Pearson correl. | NA | Rodrigues [2] | 2016 |
2 | Healthy | 8 (3 F/5 M) | HRV from chest belt, Polar H3 senso/RPE | Entropy-based nonlinear features, ML | Accuracy (90.36%), sensitivity (82.26%), specificity (96.2%) | Nasirzadeh [37] * | 2020 |
3 | Hypertension | 139 (49 F/90 M) | HRV from ECG holter | Meta-learning and NN | Sensitivity, (71.4%) and specificity (87.8%) | Melillo [50] * | 2015 |
4 | Healthy | 80 (38 F/42 M) | HRV from ECG/RPE | DT, SVM, KNN and LightGBM | LightGBM: Accuracy (86%), F1score (0.801) | Ni [51] ^ | 2022 |
5 | Healthy drivers | 12 M | HRV from ECG | PSD of HRV, NN | Accuracy (90%) | Patel [52] * | 2011 |
6 | Healthy | 8 | HR from fiber optic sensor, RespR, GMD form fiber optic sensors/RPE | NN, MobileNetV3 | Mental task accuracy (94%); physical fatigue (95.8%) | Chen [53] * | 2024 |
7 | Healthy | 27 (13 F/14 M) | HRV from PPG, 14 parameters (HR, RespR…), PhF, MF, VAS (multi-sensor wearable device) | Unsupervised ML, Random Forest | Weighted precision 0.70 ± 0.03, recall 0.73 ± 0.03 | Luo [55] | 2020 |
8 | Healthy | 32 (9 F/23 M) | HRV from 3-lead ECG, EEG, EMG and EDA/GSR (sensor shirt) | LSTM, Random Forest | Cognitive fatigue: LSTM model, accuracy (84.1%), recall (0.90). Physical fatigue: Random Forest, accuracy (80.5%), recall (0.88) | Jaiswal [56] ^ | 2022 |
9 | Healthy | 14 M | HRV from chest belt, Polar RS 800 G3, EMG | Binary SVM | Accuracy (82%) | Ramos [57] ^ | 2020 |
10 | Healthy | 16 M | HRV from PPG | SVM | Accuracy (82.9%) | Gan [59] ^ | 2024 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | heart rate |
RespR | respiratory rate |
ML | machine learning |
PhF | physical fatigue |
MF | mental fatigue |
SCI | spinal cord injury |
AB | able-bodied |
NA | not applicable |
IFS | Index Fatigue Scale |
SVM | Support Vector Machine |
LightGBM | light gradient boosting machine |
DT | decision tree |
VAS | visual analog scale |
EMG | electromyography |
IMU | inertial measuring units |
PPG | photoplethysmography |
RPE | rating of perceived exertion |
LSTM | Long Short-Term Memory |
Appendix A
Scopus AI Results for the Query “Questionnaires to Assess the Subjective Experience of Fatigue”
Appendix B
Accuracy, Precision, Recall and F1
- TP (true positives): The number of correctly classified samples belonging to a certain class.
- FP (false positives): The number of samples misclassified as a certain class when they actually belong to other classes.
- TN (true negatives): The number of correctly classified samples in other classes.
- FN (false negatives): The number of samples belonging to a certain class that were misclassified as other classes.
Appendix C
Appendix C.1. HRV Features Identified for Physical Fatigue by Ni et al. [51]
Appendix C.2. HRV Features Identified for Physical Fatigue by Ramos et al. [57]
References
- Tran, P.; Banerjee, P. Myocardial fatigue at a glance. Curr. Heart Fail. Rep. 2023, 20, 191–193. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Tran, Y.; Guest, R.; Middleton, J.; Craig, A. Influence of neurological lesion level on heart rate variability and fatigue in adults with spinal cord injury. Spinal Cord 2016, 54, 292–297. [Google Scholar] [CrossRef]
- Berger, R.D. QT interval variability: Is it a measure of autonomic activity? JACC 2009, 54, 851–852. [Google Scholar] [CrossRef]
- Rosenbaum, D.S.; Jackson, L.E.; Smith, J.M.; Garan, H.; Ruskin, J.N.; Cohen, R.J. Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 1994, 330, 235–241. [Google Scholar] [CrossRef]
- Oxborough, D.; Birch, K.; Shave, R.; George, K. Exercise-induced cardiac fatigue—A review of the echocardiographic literature. Echocardiography 2010, 27, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Guidetti, L.; Meucci, M.; Bolletta, F.; Emerenziani, G.P.; Gallotta, M.C.; Baldari, C. Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode. PLoS ONE 2018, 13, e0209925. [Google Scholar] [CrossRef]
- Zimatore, G.; Serantoni, C.; Gallotta, M.C.; Guidetti, L.; Maulucci, G.; De Spirito, M. Automatic detection of aerobic threshold through recurrence quantification analysis of heart rate time series. Int. J. Environ. Res. Public Health 2023, 20, 1998. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, Z.; Al-Zaiti, S.S.; Bond, R.; Sejdić, E. Remote and Wearable ECG Devices with Diagnostic Abilities in Adults: A State-of-the-Science Scoping Review. Heart Rhythm 2022, 19, 1192–1201. [Google Scholar] [CrossRef]
- Veeramuthu, L.; Cho, C.J.; Liang, F.C.; Venkatesan, M.; Kumar, G.R.; Hsu, H.Y.; Kuo, C.C. Human skin-inspired electrospun patterned robust strain-insensitive pressure sensors and wearable flexible light-emitting diodes. ACS Appl. Mater. Interfaces 2022, 14, 30160–30173. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X. Perspectives in Wearable Systems in the Human-Robot Interaction (HRI) Field. Sensors 2023, 23, 8315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Oh, S.L.; Adam, M.; Tan, J.H.; Koh, J.E.W. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 2017, 415, 190–198. [Google Scholar] [CrossRef]
- Parry-Williams, G.; Sharma, S. The effects of endurance exercise on the heart: Panacea or poison? Nat. Rev. Cardiol. 2020, 17, 402–412. [Google Scholar] [CrossRef] [PubMed]
- George, K.; Whyte, G.P.; Green, D.J.; Oxborough, D.; Shave, R.E.; Gaze, D.; Somauroo, J. The endurance athletes heart: Acute stress and chronic adaptation. Br. J. Sports Med. 2012, 46 (Suppl. S1), 29–36. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A.; Burns, A.T.; Mooney, D.J.; Inder, W.J.; Taylor, A.J.; Bogaert, J.; MacIsaac, A.I.; Heidbüchel, H.; Prior, D.L. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 2012, 33, 998–1006. [Google Scholar] [CrossRef]
- Neilan, T.G.; Yoerger, D.M.; Douglas, P.S.; Marshall, J.E.; Halpern, E.F.; Lawlor, D.; Picard, M.H.; Wood, M.J. Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur. Heart J. 2006, 27, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.P.; Mahure, C.; Mungulmare, K.; Grewal, H.K.; Bansal, M. Myocardial fatigue in recreational marathon runners: A speckle-tracking echocardiography study. Indian Heart J. 2018, 70, S229–S234. [Google Scholar] [CrossRef]
- Wolff, S.; Picco, J.M.; Díaz-González, L.; Valenzuela, P.L.; Gonzalez-Dávila, E.; Santos-Lozano, A.; Matile, P.; Wolff, D.; Boraita, A.; Lucia, A. Exercise-induced cardiac fatigue in recreational ultramarathon runners at moderate altitude: Insights from myocardial deformation analysis. Front. Cardiovasc. Med. 2022, 8, 744393. [Google Scholar] [CrossRef]
- Burger, A.L.; Wegberger, C.; Tscharre, M.; Kaufmann, C.C.; Muthspiel, M.; Pogran, E.; Freynhofer, M.K.; Szalay, A.; Huber, K.; Jäger, B. Impact of an Ultra-Endurance Marathon on Cardiac Function in Association with Cardiovascular Biomarkers. Sports Med. Open 2024, 10, 67. [Google Scholar] [CrossRef]
- Palacios Le Blé, G.; Pedrero Chamizo, R.; Palacios Gil Antuñano, N.; Maroto Sanchez, B.; Aznar, S.; González Gross, M.M. Biomarkers of physical activity and exercise. Nutr. Hosp. 2015, 31, 237–244. [Google Scholar]
- Hughes, A.; Shandhi, M.M.H.; Master, H.; Dunn, J.; Brittain, E. Wearable devices in cardiovascular medicine. Circ. Res. 2023, 132, 652–670. [Google Scholar] [CrossRef]
- Fox, K.; Borer, J.S.; Camm, A.J.; Danchin, N.; Ferrari, R.; Lopez Sendon, J.L.; Steg, P.G.; Tardif, J.C.; Tavazzi, L.; Tendera, M.; et al. Resting heart rate in cardiovascular disease. J. Am. Coll. Cardiol. 2007, 50, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauer, M.S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 1999, 341, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.K.; Stanley, H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. S1), 2466–2472. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Lai, Y.H.; Huang, P.H.; Hsiao, T.C. Use of sample entropy to assess sub-maximal physical load for avoiding exercise-induced cardiac fatigue. Appl. Sci. 2023, 13, 3813. [Google Scholar] [CrossRef]
- Pethick, J.; Winter, S.L.; Burnley, M. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man. J. Physiol. 2015, 593, 2085–2096. [Google Scholar] [CrossRef]
- Lewis, M.J.; Short, A.L. Exercise and cardiac regulation: What can electrocardiographic time series tell us? Scand. J. Med. Sci. Sports 2010, 20, 794–804. [Google Scholar] [CrossRef]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Marwan, N.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 2002, 66, 026702. [Google Scholar] [CrossRef]
- Zimatore, G.; Gallotta, M.C.; Campanella, M.; Skarzynski, P.H.; Maulucci, G.; Serantoni, C.; De Spirito, M.; Curzi, D.; Guidetti, L.; Baldari, C.; et al. Detecting metabolic thresholds from nonlinear analysis of heart rate time series: A review. Int. J. Environ. Res. Public Health 2022, 19, 12719. [Google Scholar] [CrossRef] [PubMed]
- Zimatore, G.; Serantoni, C.; Gallotta, M.C.; Meucci, M.; Mourot, L.; Ferrari, D.; Baldari, C.; De Spirito, M.; Maulucci, G.; Guidetti, L. Recurrence quantification analysis-based methodology in automatic aerobic threshold detection: Applicability and accuracy across age groups, exercise protocols and health conditions. Appl. Sci. 2024, 14, 9216. [Google Scholar] [CrossRef]
- Chen, S.W.; Liaw, J.W.; Chang, Y.J.; Chan, H.L.; Chiu, L.Y. A cycling movement based system for real-time muscle fatigue and cardiac stress monitoring and analysis. PLoS ONE 2015, 10, e0130798. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Rüdiger, H.; Ziemssen, T. Spectral analysis of heart rate variability: Time window matters. Front. Neurol. 2019, 10, 545. [Google Scholar] [CrossRef]
- Beckers, F.; Ramaekers, D.; Aubert, A.E. Approximate entropy of heart rate variability: Validation of methods and application in heart failure. Cardiovasc. Eng. 2001, 1, 177–182. [Google Scholar] [CrossRef]
- Srinivasa, M.; Pandian, P. Application of entropy techniques in analyzing heart rate variability using ECG signals. Int. J. Recent Innov. Trends Comput. Commun. 2019, 7, 9–16. [Google Scholar]
- Nasirzadeh, F.; Mir, M.; Hussain, S.; Tayarani Darbandy, M.; Khosravi, A.; Nahavandi, S.; Aisbett, B. Physical fatigue detection using entropy analysis of heart rate signals. Sustainability 2020, 12, 2714. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Nilanon, T.; Yao, J.; Hao, J.; Purushotham, S.; Liu, Y. Normal/abnormal heart sound recordings classification using convolutional neural network. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 585–588. [Google Scholar] [CrossRef]
- Sansone, M.; Fusco, R.; Pepino, A.; Sansone, C. Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: A review. J. Healthc. Eng. 2013, 4, 465–504. [Google Scholar] [CrossRef]
- Mert, A.; Kilic, N.; Akan, A. ECG signal classification using ensemble decision tree. J. Trends Dev. Mach. Assoc. Technol. 2012, 16, 179–182. [Google Scholar]
- Beritelli, F.; Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Scaglione, F. Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks. Biomed. Eng. Lett. 2018, 8, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Beritelli, F.; Capizzi, G.; Sciuto, G.L.; Napoli, C.; Woźniak, M. A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis. Neural Netw. 2018, 108, 331–338. [Google Scholar] [CrossRef]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Schukat, M.; Howley, E. Deep reinforcement learning: An overview. In Proceedings of the SAI Intelligent Systems Conference (IntelliSys) 2016; Bi, Y., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 535–544. [Google Scholar] [CrossRef]
- Echeverria, J.C.; Crowe, J.A.; Woolfson, M.S.; Hayes-Gill, B.R. Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 2001, 39, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, W.J. Biomedical Digital Signal Processing; PTR Prentice-Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Caffier, P.P.; Erdmann, U.; Ullsperger, P. Experimental evaluation of eye-blink parameters as a drowsiness measure. Eur. J. Appl. Physiol. 2003, 89, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, C. Rating of perceived exertion (RPE). J. Physiother. 2012, 58, 62. [Google Scholar] [CrossRef]
- Melillo, P.; Izzo, R.; De Luca, N.; Pecchia, L. Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis. PLoS ONE 2015, 10, e0128031. [Google Scholar] [CrossRef]
- Ni, Z.; Sun, F.; Li, Y. Heart rate variability-based subjective physical fatigue assessment. Sensors 2022, 22, 3199. [Google Scholar] [CrossRef]
- Patel, M.; Lal, S.K.L.; Kavanagh, D.; Rossiter, P. Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. Appl. 2011, 38, 7235–7242. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Xiao, K.; Ferraro, M.; Ushakov, N.; Kumar, S.; Ge, F.; Li, X.; Min, R. AI-enabled scalable smartphone photonic sensing system for remote healthcare monitoring. IEEE Internet Things J. 2024, 12, 4510–4524. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, X.; Zhou, Y.; Zhan, J.; Chen, K.; Li, Z. Noncontact Monitoring of Heart Rate Variability Using a Fiber Optic Sensor. IEEE Internet Things J. 2023, 10, 14988–14994. [Google Scholar] [CrossRef]
- Luo, H.; Lee, P.A.; Clay, I.; Jaggi, M.; De Luca, V. Assessment of fatigue using wearable sensors: A pilot study. Digit. Biomark. 2020, 4 (Suppl. S1), 59–72. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.; Zadeh, M.Z.; Hebri, A.; Makedon, F. Assessing fatigue with multimodal wearable sensors and machine learning. arXiv 2022, arXiv:2205.00287. [Google Scholar]
- Ramos, G.; Vaz, J.R.; Mendonça, G.V.; Pezarat-Correia, P.; Rodrigues, J.; Alfaras, M.; Gamboa, H. Fatigue evaluation through machine learning and a global fatigue descriptor. J. Healthc. Eng. 2020, 2020, 6484129. [Google Scholar] [CrossRef]
- Kong, X.; Chen, Z.; Liu, W.; Ning, K.; Zhang, L.; Marier, S.M.; Liu, Y.; Chen, Y.; Xia, F. Deep learning for time series forecasting: A survey. Int. J. Mach. Learn. Cybern. 2025; in press. [Google Scholar] [CrossRef]
- Gan, L.; Yang, Z.; Shen, Y.; Cao, R.; Xia, Y.; Shi, Y.; Cao, B. Heart rate variability analysis method for exercise-induced fatigue monitoring. Biomed. Signal Process. Control 2024, 92, 105966. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Zhang, X. Real-time Driving Fatigue Detection of ECG Signals Acquired Based on Novel Electrodes Using Wavelet Scattering Networks. Measurement 2025, 243, 116438. [Google Scholar] [CrossRef]
- Tél, T.; Fülöp, Á.; Vicsek, T. Determination of fractal dimensions for geometrical multifractals. Phys. A 1989, 159, 155–166. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Watanabe, H.; Wang, T.-Y.; Ando, H.; Mizushina, H.; Morita, T.; Emoto, M.; Hatada, T.; Bando, T.; Ujike, H. Visually induced symptoms questionnaire (VISQ): A subjective evaluation method for biomedical effects induced by stereoscopic 3D video. Appl. Ergon. 2024, 117, 104238. [Google Scholar] [CrossRef]
- Nap-van der Vlist, M.M.; Vroegindeweij, A.; Hoefnagels, J.W.; van der Ent, C.K.; Swart, J.F.; van de Putte, E.M.; Nijhof, S.L. Paediatric short fatigue questionnaire, a 4-item fatigue questionnaire for children. J. Psychosom. Res. 2023, 165, 111130. [Google Scholar] [CrossRef] [PubMed]
- Hossain, J.L.; Ahmad, P.; Reinish, L.W.; Kayumov, L.; Hossain, N.K.; Shapiro, C.M. Subjective fatigue and subjective sleepiness: Two independent consequences of sleep disorders? J. Sleep Res. 2005, 14, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Naschitz, J.E.; Rozenbaum, M.; Shaviv, N.; Fields, M.C.; Enis, S.; Babich, J.P.; Manor, H.; Yeshurun, D.; Sabo, E. The feeling of fatigue—Fatigue severity by unidimensional versus composite questionnaires. Behav. Med. 2004, 29, 167–174. [Google Scholar] [CrossRef]
- Chiou, K.S.; Chiaravalloti, N.D.; Wylie, G.R.; DeLuca, J.; Genova, H.M. Awareness of subjective fatigue after moderate to severe traumatic brain injury. J. Head Trauma Rehabil. 2016, 31, E60–E68. [Google Scholar] [CrossRef]
- Donovan, K.A.; Stein, K.D.; Lee, M.; Leach, C.R.; Ilozumba, O.; Jacobsen, P.B. Systematic review of the multidimensional fatigue symptom inventory-short form. Support. Care Cancer 2015, 23, 191–212. [Google Scholar] [CrossRef]
- Agasi-Idenburg, C.; Velthuis, M.; Wittink, H. Quality criteria and user-friendliness in self-reported questionnaires on cancer-related fatigue: A review. J. Clin. Epidemiol. 2010, 63, 705–711. [Google Scholar] [CrossRef]
- Roemmich, J.N.; Barkley, J.E.; Epstein, L.H.; Lobarinas, C.L.; White, T.M.; Foster, J.H. Validity of PCERT and OMNI walk/run ratings of perceived exertion. Med. Sci. Sports Exerc. 2006, 38, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Gallotta, M.C.; Bonavolontà, V.; Zimatore, G.; Iazzoni, S.; Guidetti, L.; Baldari, C. Effects of open (racket) and closed (running) skill sports practice on children’s attentional performance. Open Sports Sci. J. 2020, 13, 105–113. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
Feature | Physiological Insight | Fatigue-Related Change | |
---|---|---|---|
ECG | QTc Interval | Ventricular repolarization | Prolongation |
QT Variability Index | Electrical instability | Increase | |
T-Wave Alternans | Repolarization | Increase | |
ST Segment | Myocardial strain | Mild depression/elevation | |
Heart Rate Recovery | Vagal reactivation post-stress | Slower recovery (≤12 bpm@1 min) | |
HRV | RMSSD/SDNN (HRV) | Parasympathetic activity | Decrease |
LF/HF Ratio (HRV) | Sympathetic–vagal balance | Increase | |
Entropy | Complexity, autonomic balance | Decrease | |
DET (RQA) | Signal complexity, predictability | Increase |
2005–2025 | “Cardiovascular Fatigue” and “Heart Rate” | “Cardiovascular Fatigue” and “AI” | “Cardiac Pathologies” and “Heart Rate” | ||||||
---|---|---|---|---|---|---|---|---|---|
Article | Review | 2024–2025 | Article | Review | 2024–2025 | Article | Review | 2024–2025 | |
PubMed | 190 (27) | 59 | 9 (3) | 17 (10) | 40 (2) | 2 | 54 | 12 | 1 |
Scopus | 4 | 1 | 0 | 31 | 17 | 2 | 159 | 39 | 25 |
Google Scholar | 12 * | 0 | 67 * | 10 * | 1320 * | 188 * | |||
TOTAL ^ | 194 | 9 | 48 | 4 | 213 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimatore, G.; Gallotta, M.C.; Alessandria, M.; Campanella, M.; Ricci, M.; Galiuto, L. The Early Detection of Cardiac Fatigue: Could the HRV Be Used as a Physiological Biomarker by AI? Appl. Sci. 2025, 15, 5489. https://doi.org/10.3390/app15105489
Zimatore G, Gallotta MC, Alessandria M, Campanella M, Ricci M, Galiuto L. The Early Detection of Cardiac Fatigue: Could the HRV Be Used as a Physiological Biomarker by AI? Applied Sciences. 2025; 15(10):5489. https://doi.org/10.3390/app15105489
Chicago/Turabian StyleZimatore, Giovanna, Maria Chiara Gallotta, Marco Alessandria, Matteo Campanella, Marta Ricci, and Leonarda Galiuto. 2025. "The Early Detection of Cardiac Fatigue: Could the HRV Be Used as a Physiological Biomarker by AI?" Applied Sciences 15, no. 10: 5489. https://doi.org/10.3390/app15105489
APA StyleZimatore, G., Gallotta, M. C., Alessandria, M., Campanella, M., Ricci, M., & Galiuto, L. (2025). The Early Detection of Cardiac Fatigue: Could the HRV Be Used as a Physiological Biomarker by AI? Applied Sciences, 15(10), 5489. https://doi.org/10.3390/app15105489