The Effect of Pitch Surface on Match Running Performance in Women’s Soccer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Match Data
2.2. Match Analysis and Players’ Data
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernandez-Martinez, J.; Perez-Carcamo, J.; Canales-Canales, S.; Coñapi-Union, B.; Cid-Calfucura, I.; Herrera-Valenzuela, T.; Branco, B.H.M.; Valdés-Badilla, P. Body Composition and Physical Performance by Playing Position in Amateur Female Soccer Players. Appl. Sci. 2024, 14, 5665. [Google Scholar] [CrossRef]
- Trombiero, D.S.; Praça, G.M.; Borges, E.d.P.A.; de Lira, C.A.B.; Leonardi, T.J.; Laporta, L.; Castro, H.d.O.; Costa, G.D.C.T. Analysis of Physiological, Physical, and Tactical Responses in Small-Sided Games in Women’s Soccer: The Effect of Numerical Superiority. Appl. Sci. 2023, 13, 8380. [Google Scholar] [CrossRef]
- Michaildis, Y.; Bagkos, T.; Kaldaras, V.; Gissis, I.; Metaxas, T.Ι. The Profile of the Internal Load of Amateur Soccer Players during Official Matches with Formation 1-4-3-3 and Relationships with Indexes of External Load. Appl. Sci. 2024, 14, 258. [Google Scholar] [CrossRef]
- Villaseca-Vicuña, R.; Perez-Contreras, J.; Zabaloy, S.; Merino-Muñoz, P.; Valenzuela, L.; Burboa, J.; Gonzalez-Jurado, J.A. Comparison of Match Load and Wellness between Friendly and World Cup Matches in Elite Female Soccer Players. Appl. Sci. 2023, 13, 1612. [Google Scholar] [CrossRef]
- Kunzmann, E.; Ford, K.R.; Sugimoto, D.; Baca, A.; Hank, M.; Bujnovsky, D.; Mala, L.; Zahalka, F.; Maly, T. Differences in External and Internal Load in Elite Youth Soccer Players within Different Match Timing Zones. Appl. Sci. 2022, 12, 7230. [Google Scholar] [CrossRef]
- Christaras, M.; Michailidis, Y.; Mandroukas, A.; Vardakis, L.; Christoulas, K.; Metaxas, T. Effects of a Short Half-Time Re-Warm-Up Program on Matches Running Performance and Fitness Test Performance of Male Elite Youth Soccer Players. Appl. Sci. 2023, 13, 2602. [Google Scholar] [CrossRef]
- Mäkiniemi, J.K.; Savolainen, E.H.; Finni, T.; Ihalainen, J.K. Position specific physical demands in different phases of competitive matches in national level women’s football. Biol. Sport. 2023, 40, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Mohr, M.; Ellingsgaard, H.; Bangsbo, J. Physical demands during an elite female soccer game: Importance of training status. Med. Sci. Sports Exerc. 2005, 37, 1242–1248. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Andersson, H.; Kirkendal, D.; Bangsbo, J. Match activities of elite women soccer players at different performance levels. J. Strength. Cond. Res. 2008, 22, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.A.; Randers, M.B.; Heiner-Møller, A.; Krustrup, P.; Mohr, M. Elite female soccer players perform more high-intensity running when playing in international games compared with domestic league games. J. Strength. Cond. Res. 2010, 24, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, J.D.; Favero, T.G. Motion characteristics of women’s college soccer matches: Female Athletes in Motion (FAiM) study. Int. J. Sports Physiol. Perform. 2014, 9, 405–414. [Google Scholar] [CrossRef]
- Kammoun, M.M.; Trabelsi, O.; Gharbi, A.; Masmoudi, L.; Ghorbel, S.; Tabka, Z.; Chamari, K. Anthropometric and physical fitness profiles of tunisian female soccer players: Associations with field position. Acta Gymnica 2020, 50, 130–137. [Google Scholar] [CrossRef]
- Modric, T.; Esco, M.; Perkovic, S.; Basic, Z.; Versic, S.; Morgans, R.; Sekulic, D. Artificial Turf Increases the Physical Demand of Soccer by Heightening Match Running Performance Compared with Natural Grass. J. Strength. Cond. Res. 2023, 37, 2222–2228. [Google Scholar] [CrossRef] [PubMed]
- Modric, T.; Versic, S.; Sekulic, D. Does aerobic performance define match running performance among professional soccer players? A position-specific analysis. Res. Sports Med. 2021, 29, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; Harley, J.A.; Tweddle, S.P. Examining the external training load of an English Premier League football team with special reference to acceleration. J. Strength. Cond. Res. 2016, 30, 2424–2432. [Google Scholar] [CrossRef] [PubMed]
- Trewin, J.; Meylan, C.; Varley, M.C.; Cronin, J. The influence of situational and environmental factors on match-running in soccer: A systematic review. Sci. Med. Footb. 2017, 1, 183–194. [Google Scholar] [CrossRef]
- Williams, J.H.; Akogyrem, E.; Williams, J.R. A Meta-Analysis of Soccer Injuries on Artificial Turf and Natural Grass. J. Sports Med. 2013, 2013, 380523. [Google Scholar] [CrossRef]
- Meyers, M.C.; Barnhill, B.S. Incidence, causes, and severity of high school football injuries on FieldTurf versus natural grass: A 5-year prospective study. Am. J. Sports Med. 2004, 32, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Unanue, J.; Fernandez-Luna, A.; Burillo, P.; Gallardo, L.; Sanchez-Sanchez, J.; Manzano-Carrasco, S.; Felipe, J.L. Key performance indicators at FIFA Women’s World Cup in different playing surfaces. PLoS ONE 2020, 15, e0241385. [Google Scholar] [CrossRef]
- Sassi, A.; Stefanescu, A.; Menaspa, P.; Bosio, A.; Riggio, M.; Rampinini, E. The cost of running on natural grass and artificial turf surfaces. J. Strength. Cond. Res. 2011, 25, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Kanaras, V.; Metaxas, T.I.; Mandroukas, A.; Gissis, I.; Zafeiridis, A.; Riganas, C.S.; Manolopoulos, E.; Paschalis, V.; Vrabas, I.S. The effect of natural and artificial grass on sprinting performance in young soccer players. Am. J. Sports Sci. 2014, 2, 1–4. [Google Scholar] [CrossRef]
- Gollan, S.; Bellenger, C.; Norton, K. Contextual Factors Impact Styles of Play in the English Premier League. J. Sports Sci. Med. 2020, 19, 78–83. [Google Scholar] [PubMed]
- Okholm Kryger, K.; Wang, A.; Mehta, R.; Impellizzeri, F.M.; Massey, A.; McCall, A. Research on women’s football: A scoping review. Sci. Med. Footb. 2022, 6, 549–558. [Google Scholar] [CrossRef]
- Brito, Â.; Roriz, P.; Silva, P.; Duarte, R.; Garganta, J. Effects of pitch surface and playing position on external load activity profiles and technical demands of young soccer players in match play. Int. J. Perform. Anal. Sport. 2017, 17, 902–918. [Google Scholar] [CrossRef]
- Andersson, H.; Ekblom, B.; Krustrup, P. Elite football on artificial turf versus natural grass: Movement patterns, technical standards, and player impressions. J. Sports Sci. 2008, 26, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.V.; Aksdal, I.M.; Stalsberg, R. Scaling Demands of Soccer According to Anthropometric and Physiological Sex Differences: A Fairer Comparison of Men’s and Women’s Soccer. Front. Psychol. 2019, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Cardoso de Araújo, M.; Baumgart, C.; Jansen, C.T.; Freiwald, J.; Hoppe, M.W. Sex Differences in Physical Capacities of German Bundesliga Soccer Players. J. Strength. Cond. Res. 2020, 34, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Meier, H.E.; Konjer, M.; Leinwather, M. The demand for women’s league soccer in Germany. Eur. Sport Manag. Q. 2016, 16, 1–19. [Google Scholar] [CrossRef]
- Vescovi, J.D.; Fernandes, E.; Klas, A. Physical demands of women’s soccer matches: A perspective across the developmental spectrum. Front. Sports Act. Living 2021, 3, 634696. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Coratella, G.; Stiff, A.; Iacono, A.D. The Validity and Between-Unit Variability of GNSS Units (STATSports Apex 10 and 18 Hz) for Measuring Distance and Peak Speed in Team Sports. Front. Physiol. 2018, 9, 1288. [Google Scholar] [CrossRef]
- Rampinini, E.; Alberti, G.; Fiorenza, M.; Riggio, M.; Sassi, R.; Borges, T.; Coutts, A. Accuracy of GPS devices for measuring high-intensity running in field-based team sports. Int. J. Sports Med. 2015, 36, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Stevens, T.G.; de Ruiter, C.J.; Twisk, J.W.; Savelsbergh, G.J.; Beek, P.J. Quantification of in-season training load relative to match load in professional Dutch Eredivisie football players. Sci. Med. Footb. 2017, 1, 117–125. [Google Scholar] [CrossRef]
- Vladovic, J.; Versic, S.; Foretic, N.; Morgans, R.; Modric, T. Quantification of External Training Load among Elite-Level Goalkeepers within Competitive Microcycle. Appl. Sci. 2023, 13, 10880. [Google Scholar] [CrossRef]
- Baptista, I.; Johansen, D.; Seabra, A.; Pettersen, S.A. Position specific player load during match-play in a professional football club. PLoS ONE 2018, 13, e0198115. [Google Scholar] [CrossRef] [PubMed]
- Konefał, M.; Chmura, P.; Zając, T.; Chmura, J.; Kowalczuk, E.; Andrzejewski, M. Evolution of technical activity in various playing positions, in relation to match outcomes in professional soccer. Biol. Sport 2019, 36, 181. [Google Scholar] [CrossRef]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Ferrari Bravo, D.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Rey, E.; Costa, P.B.; Corredoira, F.J.; Sal de Rellán Guerra, A. Effects of Age on Physical Match Performance in Professional Soccer Players. J. Strength. Cond. Res. 2023, 37, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef] [PubMed]
- McCormack, W.P.; Stout, J.R.; Wells, A.J.; Gonzalez, A.M.; Mangine, G.T.; Fragala, M.S.; Hoffman, J.R. Predictors of high-intensity running capacity in collegiate women during a soccer game. J. Strength. Cond. Res. 2014, 28, 964–970. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Varley, M.C.; Aughey, R.J. Acceleration profiles in elite Australian soccer. Int. J. Sports Med. 2013, 34, 34–39. [Google Scholar] [CrossRef] [PubMed]
CD | FB | CM | OF | |||||
---|---|---|---|---|---|---|---|---|
AT | NG | AT | NG | AT | NG | AT | NG | |
TD (m) | 9303 ± 535 | 8326 ± 547 | 10,307 ± 511 | 10,088 ± 519 | 10,164 ± 513 | 9455 ± 514 | 10,062 ± 382 | 9759 ± 391 |
HIR (m) | 111 ± 43 | 150 ± 43 | 240 ± 43 | 254 ± 44 | 180 ± 63 | 214 ± 63 | 269 ± 33 | 257 ± 34 |
HIA (#) | 38 ± 7 | 36 ± 7 | 36 ± 2 | 36 ± 3 | 35 ± 3 | 34 ± 3 | 47 ± 6 | 47 ± 6 |
HID (#) | 45 ± 5 | 45 ± 5 | 48 ± 5 | 50 ± 5 | 48 ± 4 | 49 ± 4 | 52 ± 3 | 53 ± 3 |
CD | FB | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 8326 (547) | 4538–12,114 | 15.22 (1.37) | 10,088 (519) | 8129–12,047 | 19.43 (2.33) |
Pitch: AT | 977 (383) | 195–1760 | 2.55 (30.07) | 219 (269) | −326–765 | 0.82 (36.3) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 1,194,232 (308,349) | 3.87 (<0.01) | 678,154 (159,913) | 4.24 (<0.01) | ||
Player | 438,893 (724,196) | 0.60 (0.54) | 689,117 (749,595) | 0.92 (0.36) | ||
CM | OF | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 9455 (514) | 7857–11,052 | 18.39 (3.13) | 9759 (391) | 8658–10,861 | 24.99 (3.85) |
Pitch: AT | 709 (220) | 263–1156 | 3.22 (36.04) | 302 (256) | −210–815 | 1.18 (57.24) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 479,676 (113,320) | 4.23 (<0.01) | 987,530 (185,084) | 5.33 (<0.01) | ||
Player | 947,485 (844,530) | 1.12 (0.26) | 455,275 (438,499) | 1.03 (0.23) |
CD | FB | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 150 (43) | −214–515 | 3.47 (1.22) | 254 (44) | 94–415 | 5.83 (2.41) |
Pitch: AT | −40 (25) | −90–10 | −1.62 (30.04) | −14 (23) | −61–33 | −0.62 (36.36) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 4894 (1264) | 3.87 (<0.01) | 5041 (1188) | 4.24 (<0.01) | ||
Player | 3107 (4817) | 0.65 (0.52) | 4826 (5205) | 0.93 (0.35) | ||
CM | OF | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 214 (63) | 23–406 | 3.4 (3.29) | 257 (34) | 164–351 | 7.55 (4.1) |
Pitch: AT | −34 (28) | −91–22 | −1.23 (36.17) | 12 (25) | −39–62 | 0.46 (57.27) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 7721 (1821) | 4.24 (<0.01) | 9637 (1807) | 5.33 (<0.01) | ||
Player | 14,164 (12,424) | 1.14 (0.25) | 3144 (3232) | 0.97 (0.33) |
CD | FB | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 36 (7.29) | −34.03–106.5 | 4.98 (1.13) | 36 (2.5) | 29.64–41.53 | 14.22 (6.85) |
Pitch: AT | 2 (3.32) | −4.9–8.66 | 0.57 (30.03) | 0 (3.23) | −6.51–6.57 | 0.01 (37.96) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 90 (23) | 3.87 (<0.01) | 103 (24) | 4.26 (<0.01) | ||
Player | 94 (141) | 0.67 (0.5) | 2 (9) | 0.17 (0.87) | ||
CM | OF | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 34 (2.79) | 25.11–42.02 | 12.02 (3.29) | 47 (6.29) | 27.89–65.16 | 7.4 (3.44) |
Pitch: AT | 2 (2.56) | −3.61–6.76 | 0.62 (35.98) | 1 (2.86) | −4.88–6.57 | 0.3 (57.17) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 65 (16) | 4.17 (<0.01) | 123 (23) | 5.34 (<0.01) | ||
Player | 17 (24) | 0.69 (0.49) | 139 (121) | 1.15 (0.25) |
CD | FB | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 45.29 (5.37) | 20.64–69.94 | 8.43 (1.88) | 49.98 (5.05) | 34.26–65.7 | 9.91 (3.12) |
Pitch: AT | −0.09 (5.16) | −10.62–10.45 | −0.02 (30.14) | −1.86 (4) | −9.97–6.24 | −0.47 (36.85) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 217 (56) | 3.87 (<0.01) | 151 (36) | 4.25 (<0.01) | ||
Player | 29 (60) | 0.48 (0.63) | 50 (61) | 0.82 (0.41) | ||
CM | OF | |||||
Fixed effect | Coef (SE) | 95% CI | t (df) | Coef (SE) | 95% CI | t (df) |
Intercept | 48.82 (4.38) | 36.45–61.19 | 11.14 (3.84) | 52.51 (2.9) | 45.26–59.75 | 18.08 (5.55) |
Pitch: AT | −0.65 (3.03) | −6.8–5.5 | −0.21 (36.49) | −0.72 (3.15) | −7.03–5.59 | −0.23 (57.27) |
Random effect | Coef (SE) | z (p) | Coef (SE) | z (p) | ||
Residuals | 91 (22) | 4.24 (<0.01) | 150 (28) | 5.31 (<0.01) | ||
Player | 56 (55) | 1.02 (0.31) | 11 (20) | 0.54 (0.59) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutnjak, M.; Pavlinovic, V.; Modric, T. The Effect of Pitch Surface on Match Running Performance in Women’s Soccer. Appl. Sci. 2025, 15, 40. https://doi.org/10.3390/app15010040
Kutnjak M, Pavlinovic V, Modric T. The Effect of Pitch Surface on Match Running Performance in Women’s Soccer. Applied Sciences. 2025; 15(1):40. https://doi.org/10.3390/app15010040
Chicago/Turabian StyleKutnjak, Manca, Vladimir Pavlinovic, and Toni Modric. 2025. "The Effect of Pitch Surface on Match Running Performance in Women’s Soccer" Applied Sciences 15, no. 1: 40. https://doi.org/10.3390/app15010040
APA StyleKutnjak, M., Pavlinovic, V., & Modric, T. (2025). The Effect of Pitch Surface on Match Running Performance in Women’s Soccer. Applied Sciences, 15(1), 40. https://doi.org/10.3390/app15010040