Valorization of Underutilized Mandarin Juice Byproduct Through Encapsulation of Flavonoids Using Freeze-Drying Technique
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Citrus Pomace Extract: Obtaining and Characterization
2.3. Preparation for Encapsulation
2.4. Encapsulation Using Freeze-Dryer
2.5. Physical Properties of Prepared Encapsulates
2.6. Encapsulation Efficiency Evaluation
2.7. HPLC Analyses
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Vivarelli, S.; Costa, C.; Teodoro, M.; Giambò, F.; Tsatsakis, A.M.; Fenga, C. Polyphenols: A Route from Bioavailability to Bioactivity Addressing Potential Health Benefits to Tackle Human Chronic Diseases. Arch. Toxicol. 2023, 97, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Marcillo-Parra, V.; Tupuna-Yerovi, D.S.; González, Z.; Ruales, J. Encapsulation of Bioactive Compounds from Fruit and Vegetable By-Products for Food Application: A Review. Trends Food Sci. Technol. 2021, 116, 11–23. [Google Scholar] [CrossRef]
- Caballero, S.; Li, Y.O.; McClements, D.J.; Davidov-Pardo, G. Encapsulation and Delivery of Bioactive Citrus Pomace Polyphenols: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 8028–8044. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L. Polyphenols and Bioavailability: An Update. Crit. Rev. Food Sci. Nutr. 2019, 59, 2040–2051. [Google Scholar] [CrossRef]
- Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C.A.; Xiao, J. Available Technologies on Improving the Stability of Polyphenols in Food Processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- Garavand, F.; Jalai-Jivan, M.; Assadpour, E.; Jafari, S.M. Encapsulation of Phenolic Compounds within Nano/Microemulsion Systems: A Review. Food Chem. 2021, 364, 130376. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef]
- Dadwal, M.; Gupta, M. Recent Developments in Citrus Bioflavonoid Encapsulation to Reinforce Controlled Antioxidant Delivery and Generate Therapeutic Uses: Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1187–1207. [Google Scholar] [CrossRef] [PubMed]
- Banožić, M.; Krzywonos, M.; Aladić, K.; Pińkowska, H.; Mucha, I.; Złocińska, A.; Jokić, S. Physicochemical, Structural Characterization and Evaluation of Encapsulated Hesperidin from Natural Sources: Comparison of Two Encapsulation Techniques; Spray Drying and Freeze Drying. J. Drug Deliv. Sci. Technol. 2023, 90, 105098. [Google Scholar] [CrossRef]
- Banožić, M.; Vladić, J.; Banjari, I.; Velić, D.; Aladić, K.; Jokić, S. Spray Drying as a Method of Choice for Obtaining High-Quality Products from Food Wastes: A Review. Food Rev. Int. 2021, 39, 1953–1985. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Balanč, B.; Djordjević, V.; Bugarski, B. Encapsulation Techniques for Food Purposes. In Encapsulation in Food Processing and Fermentation; CRC Press: Boca Raton, FL, USA, 2022; pp. 37–80. [Google Scholar]
- Shaaban, H.A.; Farouk, A. Encapsulation of Essential Oils and Their Use in Food Applications; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Dry. Technol. 2020, 38, 235–258. [Google Scholar] [CrossRef]
- Pudziuvelyte, L.; Marksa, M.; Sosnowska, K.; Winnicka, K.; Morkuniene, R.; Bernatoniene, J. Freeze-Drying Technique for Microencapsulation of Elsholtzia Ciliata Ethanolic Extract Using Different Coating Materials. Molecules 2020, 25, 2237. [Google Scholar] [CrossRef]
- Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of Grape (Vitis labrusca var. Bordo) Skin Phenolic Extract Using Gum Arabic, Polydextrose, and Partially Hydrolyzed Guar Gum as Encapsulating Agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Pudziuvelyte, L.; Bernatoniene, J. Optimizing Encapsulation: Comparative Analysis of Spray-Drying and Freeze-Drying for Sustainable Recovery of Bioactive Compounds from Citrus x paradisi L. Peels. Pharmaceutics 2024, 17, 596. [Google Scholar] [CrossRef]
- Hu, Y.; Kou, G.; Chen, Q.; Li, Y.; Zhou, Z. Protection and Delivery of Mandarin (Citrus reticulata Blanco) Peel Extracts by Encapsulation of Whey Protein Concentrate Nanoparticles. LWT 2019, 99, 24–33. [Google Scholar] [CrossRef]
- Mahdi, A.A.; Mohammed, J.K.; Al-Ansi, W.; Ghaleb, A.D.S.; Al-Maqtari, Q.A.; Ma, M.; Ahmed, M.I.; Wang, H. Microencapsulation of Fingered Citron Extract with Gum Arabic, Modified Starch, Whey Protein, and Maltodextrin Using Spray Drying. Int. J. Biol. Macromol. 2019, 152, 1125–1134. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, W.; Ke, Z.; Li, Y.; Zhou, Z. In Vitro Release and Antioxidant Activity of Satsuma Mandarin (Citrus reticulata Blanco cv. unshiu) Peel Flavonoids Encapsulated by Pectin Nanoparticles. Int. J. Food Sci. Technol. 2017, 52, 2362–2373. [Google Scholar] [CrossRef]
- Montero-Calderon, A.; Cortes, C.; Zulueta, A. Green Solvents and Ultrasound-Assisted Extraction of Bioactive Orange (Citrus sinensis) Peel Compounds. Sci. Rep. 2019, 9, 16120. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Screening the Effect of Four Ultrasound-Assisted Extraction Parameters on Hesperidin and Phenolic Acid Content of Aqueous Citrus Pomace Extracts. Food Biosci. 2018, 21, 20–26. [Google Scholar] [CrossRef]
- Tolun, A.; Altintas, Z.; Artik, N. Microencapsulation of Grape Polyphenols Using Maltodextrin and Gum Arabic as Two Alternative Coating Materials: Development and Characterization. J. Biotechnol. 2016, 239, 23–33. [Google Scholar] [CrossRef]
- Torres, M.D.; Moreira, R.; Chenlo, F.; Vázquez, M.J. Water Adsorption Isotherms of Carboxymethyl Cellulose, Guar, Locust Bean, Tragacanth and Xanthan Gums. Carbohydr. Polym. 2012, 89, 592–598. [Google Scholar] [CrossRef]
- Yamashita, C.; Chung, M.M.S.; dos Santos, C.; Mayer, C.R.M.; Moraes, I.C.F.; Branco, I. Microencapsulation of an Anthocyanin-Rich Blackberry (Rubus spp.) By-Product Extract by Freeze-Drying. LWT 2017, 84, 256–262. [Google Scholar] [CrossRef]
- Ramírez, M.J.; Giraldo, G.I.; Orrego, C.E. Modeling and Stability of Polyphenol in Spray-Dried and Freeze-Dried Fruit Encapsulates. Powder Technol. 2015, 277, 89–96. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Gholizadeh Vazvani, M.; Hassanisaadi, M.; Skorik, Y.A. Micro-/Nano-Carboxymethyl Cellulose as a Promising Biopolymer with Prospects in the Agriculture Sector: A Review. Polymers 2023, 15, 440. [Google Scholar] [CrossRef]
- Perković, G.; Martinović, J.; Šelo, G.; Bucić-Kojić, A.; Planinić, M.; Ambrus, R. Characterization of Grape Pomace Extract Microcapsules: The Influence of Carbohydrate Co-Coating on the Stabilization of Goat Whey Protein as a Primary Coating. Foods 2024, 13, 1346. [Google Scholar] [CrossRef]
- Da Silva Júnior, M.E.; Araújo, M.V.R.L.; Martins, A.C.S.; Dos Santos Lima, M.; Da Silva, F.L.H.; Converti, A.; Maciel, M.I.S. Microencapsulation by Spray-Drying and Freeze-Drying of Extract of Phenolic Compounds Obtained from Ciriguela Peel. Sci. Rep. 2023, 13, 15222. [Google Scholar] [CrossRef] [PubMed]
- Bodart, M.; De Peñaranda, R.; Deneyer, A.; Flamant, G. Photometry and Colorimetry Characterisation of Materials in Daylighting Evaluation Tools. Build. Environ. 2008, 43, 2046–2058. [Google Scholar] [CrossRef]
- Moawad, S.; El-Kalyoubi, M.; Khallaf, M.; Mohammed, D.M.; Mahmoud, K.F.; Farouk, A. Effect of Spray-Drying on the Physical, Sensory, and In-Vivo Parameters of Orange Peel Oil and Limonene. Egypt. J. Chem. 2022, 65, 353–368. [Google Scholar] [CrossRef]
- Amin, S.G.; Shah, D.A.; Dave, R.H. Formulation and Evaluation of Liposomes of Fenofibrate Prepared by Thin Film Hydration Technique. Int. J. Pharm. Sci. Res. 2018, 9, 3621–3637. [Google Scholar] [CrossRef]
- Poomkokrak, J.; Niamnuy, C.; Choicharoen, K.; Devahastin, S. Encapsulation of Soybean Extract Using Spray Drying. J. Food Sci. Agric. Technol. 2015, 1, 105–110. [Google Scholar]
- Mazumder, M.A.R.; Ranganathan, T.V. Encapsulation of Isoflavone with Milk, Maltodextrin and Gum Acacia Improves Its Stability. Curr. Res. Food Sci. 2019, 2, 77–83. [Google Scholar] [CrossRef]
- Chen, M.; Li, R.; Gao, Y.; Zheng, Y.; Liao, L.; Cao, Y.; Li, J.; Zhou, W. Encapsulation of Hydrophobic and Low-Soluble Polyphenols into Nanoliposomes by pH-Driven Method: Naringenin and Naringin as Model Compounds. Foods 2021, 10, 963. [Google Scholar] [CrossRef]
- Troszynska, A.; Narolewska, O.; Wolejszo, A.; Ostaszyk, A. Effect of Carboxymethyl Cellulose (CMC) on Perception of Astringency of Phenolic Compounds. Pol. J. Food Nutr. Sci. 2008, 58, 241. [Google Scholar]
- Ćorković, I.; Pichler, A.; Buljeta, I.; Šimunović, J.; Kopjar, M. Carboxymethylcellulose Hydrogels: Effect of Its Different Amount on Preservation of Tart Cherry Anthocyanins and Polyphenols. Curr. Plant Biol. 2021, 28, 100222. [Google Scholar] [CrossRef]
- Pai, D.A.; Vangala, V.R.; Ng, J.W.; Tan, R.B.H. Resistant Maltodextrin as a Shell Material for Encapsulation of Naringin: Production and Physicochemical Characterization. J. Food Eng. 2015, 161, 68–74. [Google Scholar] [CrossRef]
Maltodextrin (MD) | Gum Arabic (GA) | Carboxymethylcellulose (CMC) | Abbreviation | |
---|---|---|---|---|
1. | 6 | 0 | 0 | MD6 |
2. | 0 | 6 | 0 | GA6 |
3. | 0 | 0 | 6 | CMC6 |
4. | 2 | 2 | 2 | MD2GA2CMC2 |
5. | 4 | 2 | 0 | MD4GA2 |
6. | 4 | 0 | 2 | MD4CMC2 |
7. | 0 | 4 | 2 | GA4CMC2 |
8. | 2 | 4 | 0 | MD2GA4 |
9. | 2 | 0 | 4 | MD2CMC4 |
10. | 0 | 2 | 4 | GA2CMC4 |
Sample | Moisture Content (%) | Aw Value | WAI (g/g) | WSI (%) |
---|---|---|---|---|
MD6 | 2.410 ± 0.029 cde | 0.170 ± 0.002 c | 0.884 ± 0.042 f | 77.233 ± 0.042 c |
GA6 | 3.615 ± 0.281 ab | 0.203 ± 0.006 b | 0.354 ± 0.003 g | 88.530 ± 0.003 b |
CMC6 | 4.027 ± 0.000 a | 0.207 ± 0.012 b | 11.316 ± 0.104 a | 7.113 ± 0.104 f |
MD2GA2CMC2 | 1.936 ± 0.012 de | 0.110 ± 0.001 e | 6.580 ± 0.06 c | 30.152 ± 0.06 e |
MD4GA2 | 3.474 ± 0.009 ab | 0.240 ± 0.001 a | 1.302 ± 0.012 e | 60.535 ± 0.012 d |
MD4CMC2 | 2.532 ± 0.032 cd | 0.180 ± 0.010 c | 5.371 ± 0.049 d | 32.093 ± 0.049 e |
GA4CMC2 | 2.036 ± 0.016 de | 0.180 ± 0.001 c | 8.107 ± 0.074 b | 8.169 ± 0.074 f |
MD2GA4 | 2.695 ± 0.064 c | 0.193 ± 0.006 bc | 0.363 ± 0.003 g | 98.257 ± 0.003 a |
MD2CMC4 | 3.394 ± 0.189 b | 0.203 ± 0.006 b | 11.282 ± 0.102 a | 8.935 ± 0.102 f |
GA2CMC4 | 1.854 ± 0.057 e | 0.140 ± 0.001 d | 11.499 ± 0.100 a | 6.267 ± 0.100 f |
Sample | L | a* | b* | C* | °h | ΔE |
---|---|---|---|---|---|---|
MD6 | 80.073 ± 0.27 b | 6.007 ± 0.43 ab | 22.723 ± 0.404 cd | 23.720 ± 0.468 cde | 75.180 ± 0.865 e | 17.875 ± 0.45 c |
GA6 | 75.433 ± 1.032 cd | 5.497 ± 0.403 bcd | 24.557 ± 0.543 ab | 25.033 ± 0.545 ab | 77.377 ± 0.756 cd | 21.867 ± 0.114 ab |
CMC6 | 78.943 ± 0.105 b | 3.743 ± 0.045 g | 22.453 ± 0.215 d | 22.837 ± 0.315 e | 81.650 ± 1.897 a | 18.025 ± 0.193 c |
MIX2:2:2 | 83.253 ± 0.430 a | 3.787 ± 0.012 g | 19.170 ± 0.06 e | 19.570 ± 0.108 f | 78.443 ± 0.653 bc | 12.842 ± 0.190 d |
MD4GA2 | 73.107 ± 0.528 d | 6.197 ± 0.042 a | 24.960 ± 0.592 a | 25.400 ± 0.06 a | 75.863 ± 0.093 de | 24.101 ± 0.100 a |
MD4CMC2 | 77.703 ± 0.528 bc | 4.917 ± 0.071 de | 23.873 ± 0.07 abc | 24.010 ± 0.265 bcde | 78.173 ± 0.274 bc | 20.022 ± 0.848 bc |
GA4CMC2 | 74.900 ± 1.975 d | 5.207 ± 0.284 cde | 23.607 ± 0.823 bcd | 24.200 ± 0.884 abcd | 77.850 ± 0.238 bcd | 21.750 ± 1.939 ab |
MD2GA4 | 77.810 ± 0.626 bc | 5.593 ± 0.099 abc | 24.187 ± 0.482 ab | 24.827 ± 0.475 abc | 76.967 ± 0.333 cde | 20.294 ± 0.742 bc |
MD2CMC4 | 79.113 ± 0.641 b | 4.103 ± 0.093 fg | 22.727 ± 0.239 cd | 23.097 ± 0.246 de | 79.757 ± 0.172 ab | 18.163 ± 0.515 c |
GA2CMC4 | 78.387 ± 0.798 b | 4.687 ± 0.257 ef | 24.253 ± 0.551 ab | 24.700 ± 0.589 abc | 79.077 ± 0.359 bc | 19.868 ± 0.551 bc |
Sample | TPC (mgGAE/g) | Hesperidin (mg/g) | Naringin (mg/g) | Rutin (mg/g) |
---|---|---|---|---|
Core extract | 24.808 ± 0.041 | 8.399 ± 0.010 | 8.318 ± 0.009 | 3.551 ± 0.004 |
MD6 | 5.641 ± 0.001 j | 1.010 ± 0.000 j | 1.398 ± 0.001 h | 0.816 ± 0.000 e |
GA6 | 7.846 ± 0.003 i | 1.668 ± 0.002 h | 2.064 ± 0.001 f | 1.584 ± 0.001 b |
CMC6 | 11.128 ± 0.002 b | 2.826 ± 0.003 a | 3.098 ± 0.002 a | 0.250 ± 0.000 f |
MD2GA2CMC2 | 12.821 ± 0.002 a | 2.246 ± 0.003 c | 2.402 ± 0.001 d | 0.208 ± 0.000 g |
MD4GA2 | 8.000 ± 0.002 h | 1.444 ± 0.001 i | 1.912 ± 0.001 g | 1.134 ± 0.002 d |
MD4CMC2 | 9.795 ± 0.003 e | 2.246 ± 0.004 b | 2.464 ± 0.002 c | 0.202 ± 0.000 h |
GA4CMC2 | 9.897 ± 0.001 d | 1.816 ± 0.001 g | 2.090 ± 0.002 e | 1.590 ± 0.001 a |
MD2GA4 | 9.949 ± 0.001 c | 2.050 ± 0.002 e | 2.592 ± 0.002 b | 0.184 ± 0.000 i |
MD2CMC4 | 9.282 ± 0.001 g | 1.886 ± 0.001 f | 2.091 ± 0.001 e | 1.230 ± 0.002 c |
GA2CMC4 | 9.641 ± 0.002 f | 2.164 ± 0.002 d | 2.406 ± 0.002 d | 0.156 ± 0.001 j |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banožić, M.; Filipović, A.; Ištuk, J.; Kovač, M.; Ivanković, A.; Kajić, N.; Puljić, L.; Aladić, K.; Jokić, S. Valorization of Underutilized Mandarin Juice Byproduct Through Encapsulation of Flavonoids Using Freeze-Drying Technique. Appl. Sci. 2025, 15, 380. https://doi.org/10.3390/app15010380
Banožić M, Filipović A, Ištuk J, Kovač M, Ivanković A, Kajić N, Puljić L, Aladić K, Jokić S. Valorization of Underutilized Mandarin Juice Byproduct Through Encapsulation of Flavonoids Using Freeze-Drying Technique. Applied Sciences. 2025; 15(1):380. https://doi.org/10.3390/app15010380
Chicago/Turabian StyleBanožić, Marija, Adrijana Filipović, Jozo Ištuk, Mario Kovač, Anita Ivanković, Nikolina Kajić, Leona Puljić, Krunoslav Aladić, and Stela Jokić. 2025. "Valorization of Underutilized Mandarin Juice Byproduct Through Encapsulation of Flavonoids Using Freeze-Drying Technique" Applied Sciences 15, no. 1: 380. https://doi.org/10.3390/app15010380
APA StyleBanožić, M., Filipović, A., Ištuk, J., Kovač, M., Ivanković, A., Kajić, N., Puljić, L., Aladić, K., & Jokić, S. (2025). Valorization of Underutilized Mandarin Juice Byproduct Through Encapsulation of Flavonoids Using Freeze-Drying Technique. Applied Sciences, 15(1), 380. https://doi.org/10.3390/app15010380