Influence of Aging Processes on the Characteristics of Power LEDs Soldered Using Composite Solder Pastes
Abstract
:Featured Application
Abstract
1. Introduction
2. Investigated LED and Soldering Process
3. Measurement Method and Setup
- Step 1: The operation of the tested diodes in the above-described conditions for a predetermined time.
- Step 2: The measurement of the electrical, optical, and thermal parameters of the diodes under study.
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schubert, E.F. Light Emitting Diodes, 2nd ed.; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Weir, B. Driving the 21st Century’s lights. IEEE Spectr. 2012, 49, 42–47. [Google Scholar] [CrossRef]
- Lasance, C.J.M.; Poppe, A. Thermal Management for LED Applications; Springer Science + Business Media: New York, NY, USA, 2014. [Google Scholar]
- Standard JESD51-51; Implementation of the Electrical Test Method for the Measurement of Real Thermal Resistance and Impedance of Light-Emitting Diodes with Exposed Cooling Surface. JEDEC: Arlington, VA, USA, 2012.
- Standard JESD51-52; Guidelines for Combining CIE 127-2007 Total Flux Measurement with Thermal Measurement of LED with Exposed Cooling Surface. JEDEC: Arlington, VA, USA, 2012.
- Górecki, K.; Ptak, P. New method of measurements transient thermal impedance and radial power of power LEDs. IEEE Trans. Instrum. Meas. 2020, 69, 212–220. [Google Scholar] [CrossRef]
- Biber, C. LED light emission as a function of thermal conditions. In Proceedings of the 24th IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 16–20 March 2008; pp. 180–184. [Google Scholar] [CrossRef]
- Poppe, A. Simulation of LED based luminaires by using multi-domain compact models of LEDs and compact thermal models of their thermal environment. Microelectron. Reliab. 2017, 72, 65–74. [Google Scholar] [CrossRef]
- Poppe, A. Multi-domain compact modelling of LEDs: An overview of models and experimental data. Microelectron. J. 2015, 46, 1138–1151. [Google Scholar] [CrossRef]
- Székely, V. A new evaluation method of thermal transient measurement results. Microelectron. J. 1997, 28, 277–292. [Google Scholar] [CrossRef]
- Blackburn, D.L. Temperature measurements of semiconductor devices—A review. In Proceedings of the Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11 March 2004; pp. 70–80. [Google Scholar]
- Górecki, K.; Posobkiewicz, K. Selected problems of power MOSFETs thermal parameters measurements. Energies 2021, 14, 8353. [Google Scholar] [CrossRef]
- Górecki, K.; Górecki, P. The analysis of accuracy of the selected methods of measuring thermal resistance of IGBTs. Metrol. Meas. Syst. 2015, 22, 455–464. [Google Scholar] [CrossRef]
- Poppe, A.; Lasance, C.J.M. On the standardization of thermal characterization of LEDs. In Proceedings of the 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 15–19 March 2009; pp. 151–158. [Google Scholar] [CrossRef]
- Avenas, Y.; Dupont, L.; Khatir, Z. Temperature measurement of power semiconductor devices by thermos-sensitive electrical parameters—A review. IEEE Trans. Power Electron. 2012, 27, 3081–3092. [Google Scholar] [CrossRef]
- Janicki, M.; Torzewicz, T.; Samson, A.; Raszkowski, T.; Napieralski, A. Experimental identification of LED compact thermal model element values. Microelectron. Reliab. 2018, 86, 20–26. [Google Scholar] [CrossRef]
- Huanting, T.C.; Xuehui, H.T.; Ron Hui, S.Y. Estimation of optical power and heat-dissipation coefficient for the photo-electro-thermal theory for LED systems. IEEE Trans. Power Electron. 2012, 27, 2176–2183. [Google Scholar] [CrossRef]
- Pietruszka, A.; Górecki, P.; Wroński, S.; Illés, B.; Skwarek, A. The Influence of Soldering Profile on the Thermal Parameters of Insulated Gate Bipolar Transistors (IGBTs). Appl. Sci. 2021, 11, 5583. [Google Scholar] [CrossRef]
- Myśliwiec, M.; Kisiel, R.; Guziewicz, M. Material and technological aspects of high-temperature SiC device packages reliability. Microelectron. Int. 2015, 32, 143–148. [Google Scholar] [CrossRef]
- Dziurdzia, B.; Mikołajek, J. X-ray inspection and six-sigma in analysis of LED thermal pad coverage. Solder. Surf. Mt. Technol. 2017, 29, 28–33. [Google Scholar] [CrossRef]
- Hung, L.; Shih, Y.C.; Shi, F.G. Effectiveness of polymer composite-induced passive radiation cooling in thermal management of LED emitters and modules: Impact on hotspot elimination. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1453–1458. [Google Scholar] [CrossRef]
- Gopalakrishna, H.; Sinha, A.; Carpenter, J.; Niverty, S.; Chawla, N.; Jordan, D.; Tamizhmani, G. Activation Energy for End-of-Life Solder Bond Degradation: Thermal Cycling of Field-Aged PV Modules. IEEE J. Photovolt. 2020, 10, 1762–1771. [Google Scholar] [CrossRef]
- Alam, M.S.; Basit, M.; Suhling, J.C.; Lall, P. Mechanical characterization of SAC305 lead free solder at high temperatures. In Proceedings of the 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 755–760. [Google Scholar] [CrossRef]
- Ciappa, M.; Carbognami, F.; Cora, P.; Fichtner, W. A novel thermomechanics-based lifetime prediction model for cycle fatigue failure mechnisms in power semiconductors. Microelectron. Reliab. 2002, 42, 1653–1658. [Google Scholar] [CrossRef]
- Górecki, K.; Kowalke, W.; Ptak, P. Influence of quality of mounting process of RF transistors on their thermal parameters and lifetime. Appl. Sci. 2022, 12, 6113. [Google Scholar] [CrossRef]
- Trivellin, N.; Caria, A.; Fraccaroli, R.; Pierobon, G.; Castellaro, T.; Huang, A.; Magnien, J.; Rosc, J.; Lipak, G.; Hantos, G.; et al. Degradation mechanism in high-power LEDs: Thermal analysis of failure modes. In Proceedings of the 30th International Workshop Thermal Investigations of ICs and Systems THERMINIC 2024, Toulouse, France, 25–27 September 2024. [Google Scholar]
- Hegedus, J.; Takacs, D.; Hantos, G.; Nemeth, M.; Poppe, A. Thermal investigations as part of a remote phosphor aging test. In Proceedings of the 30th International Workshop Thermal Investigations of ICs and Systems THERMINIC 2024, Toulouse, France, 25–27 September 2024. [Google Scholar]
- Peng, Z.; Guo, Z.; Wu, T.; Zhuang, P.; Ye, Z.; Shi, Y.; Shih, T.M.; Lu, Y.; Kuo, H.C.; Chen, Z. Multi-azimuth failure mechanism in phosphor-coated white LEDs by current aging stresses. Appl. Sci. 2018, 8, 610. [Google Scholar] [CrossRef]
- Baba, S.; Palesa, G.; Wiśniewski, J.; Manka, F.; Gierałtowski, A. Active power cycling of SiC modules extended by long-term monitoring of after test. In Proceedings of the 18th IEEE International Conference on Compatibility, Power Electronics and Power Engineering CPE-POWERENG 2024, Gdynia, Poland, 24–26 June 2024. [Google Scholar] [CrossRef]
- Hegedus, J.; Hantos, G.; Poppe, A. Lifetime modelling issues of power light emitting diodes. Energies 2020, 13, 3370. [Google Scholar] [CrossRef]
- IES Approved Method, Measuring Lumen Maintenance of LED Light Sources, Documentation of the Norm IESNA LM-80-08, Report No. Q170601. ISBN#978-0-87995-227-3. Available online: https://nowaled.pl/wp-content/uploads/2020/08/Test-report-LM-80-Edison-2835-3.pdf (accessed on 2 November 2024).
- Harsanyi, G.; Poppe, A.; Hegedus, J.; Hantos, G.; Bojta, P.; Kovacs, R. Climatically accelerated material processes determining the long-term reliability of light-emitting diodes. Materials 2024, 17, 1643. [Google Scholar] [CrossRef]
- Juarez, M.A.; Vazquez, A.P.; Santillan, R.; Lopez, A.R.; Vazquez, G.; Sosa, J.M. Study of light degradation in high power LEDs as a function of the feeding waveform. In Proceedings of the IEEE International Autumn Meeting on Power, Electronics and Computing ROPEC 2020, Ixtapa, Mexico, 4–6 November 2020. [Google Scholar] [CrossRef]
- Tang, Y.; Li, G.Y.; Pan, Y.C. Effects of TiO2 nanoparticles addition on microstructure, microhardness and tensile properties of Sn-3.0Ag-0.5Cu-xTiO2 composite solder. Mater. Des. 2014, 55, 574–582. [Google Scholar] [CrossRef]
- Illes, B.; Choi, H.; Skwarek, A. Comparing the solderability of different SAC0307 composite solder pastes. In Proceedings of the 24th European Microelectronics and Packaging Conference & Exhibition EMPC 2023, Cambridge, UK, 11–14 September 2023. [Google Scholar] [CrossRef]
- Ramli, M.I.I.; Saud, N.; Salleh, M.A.A.M.; Derman, M.N.; Said, R.M. Effect of TiO2 additions on Sn-0.7Cu-0.05Ni lead free composite solder. Microelectron. Reliab. 2016, 65, 255–264. [Google Scholar] [CrossRef]
- El-Daly, A.A.; Al-Ganainy, G.S.; Fawzy, A.; Younis, M.J. Structural characterization and creep resistance of nano-silicon carbide reinforced Sn-1.0Ag-0.5Cu lead-free solder alloy. Mater. Des. 2014, 55, 837–845. [Google Scholar] [CrossRef]
- Yahaya, M.Z.; Nazeri, M.F.M.; Kheawhom, S.; Illes, B.; Skwarek-Illes, A.; Mohamad, A.A. Microstructural analysis of Sn-3.0Ag-0.5Cu-TiO2 composite solder alloy after selective electrochemical etching. Mater. Res. Express 2020, 7, 016583. [Google Scholar] [CrossRef]
- Tsao, L.C.; Chang, S.Y. Effects of nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag0.25Cu solder. Mater. Des. 2010, 31, 990–993. [Google Scholar] [CrossRef]
- XLamp XM-L2 LEDs, Product Family Data Sheet. Available online: https://downloads.cree-led.com/files/ds/x/XLamp-XML2.pdf (accessed on 23 December 2024).
- Datasheet XM-NT-1SB22-F MCPCB Board. Available online: https://static.maritex.com.pl/file/display/9wIf6YiznU9d6aBwfToa-QuJ3DnZWFR6/MCPCB-XM-NT-1SB22-F.pdf (accessed on 23 December 2024).
- Abraham, M.A. Definition of the Luminous Efficacy. In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2017; Available online: https://www.sciencedirect.com/topics/engineering/luminous-efficacy (accessed on 20 December 2024).
- Skwarek, A.; Ptak, P.; Górecki, K.; Hurtony, T.; Illes, B. Microstructure influence of SACX0307-TiO2 composite solder joints on thermal properties of power LED assemblies. Materials 2020, 13, 1563. [Google Scholar] [CrossRef]
- Górecki, K.; Kalinowska, A.; Ptak, P. Comparison of selected methods of measuring the luminous flux of solid-state light sources. Opto-Electron. Rev. 2024, 32, e149234. [Google Scholar]
- Rooney, J.P. Aging in electronic systems. In Proceedings of the Annual Reliability and Maintainability Symposium, 1999 Proceedings (Cat. No. 99CH36283), Washington, DC, USA, 18–21 January 1999. [Google Scholar] [CrossRef]
- Choudhary, M.; Shafiq, M.; Kiitam, I.; Hussain, A.; Palu, I.; Taklaja, P. A Review of Aging Models for Electrical Insulation in Power Cables. Energies 2022, 15, 3408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górecki, K.; Ptak, P.; Skwarek, A. Influence of Aging Processes on the Characteristics of Power LEDs Soldered Using Composite Solder Pastes. Appl. Sci. 2025, 15, 324. https://doi.org/10.3390/app15010324
Górecki K, Ptak P, Skwarek A. Influence of Aging Processes on the Characteristics of Power LEDs Soldered Using Composite Solder Pastes. Applied Sciences. 2025; 15(1):324. https://doi.org/10.3390/app15010324
Chicago/Turabian StyleGórecki, Krzysztof, Przemysław Ptak, and Agata Skwarek. 2025. "Influence of Aging Processes on the Characteristics of Power LEDs Soldered Using Composite Solder Pastes" Applied Sciences 15, no. 1: 324. https://doi.org/10.3390/app15010324
APA StyleGórecki, K., Ptak, P., & Skwarek, A. (2025). Influence of Aging Processes on the Characteristics of Power LEDs Soldered Using Composite Solder Pastes. Applied Sciences, 15(1), 324. https://doi.org/10.3390/app15010324