Evaluation of Interval Type-2 Fuzzy Neural Super-Twisting Control Applied to Single-Phase Active Power Filters
Abstract
:1. Introduction
2. Mathematical Model of Active Power Filter
3. Controller Design and Analysis
4. Experiment Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Huang, W.; Hu, B.; Du, Q.; Guo, X. Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Mishra, A.K.; Das, S.R.; Ray, P.K.; Mallick, R.K.; Mohanty, A.; Mishra, D.K. PSO-GWO Optimized Fractional Order PID Based Hybrid Shunt Active Power Filter for Power Quality Improvements. IEEE Access 2020, 8, 74497–74512. [Google Scholar] [CrossRef]
- Noureddine, K.; Abedlhafid, S. ADALINE Harmonics Extraction Algorithm of Three-Level Shunt Active Power Filter Based on Predictive Current Control. In Proceedings of the 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey, 25–27 September 2020; pp. 1–7. [Google Scholar]
- Mousavi, Y.; Bevan, D.; Kucukdemiral, I.; Fekih, A. Sliding mode control of wind energy conversion systems: Trends and applications. Renew. Sustain. Energy Rev. 2022, 167, 112734. [Google Scholar] [CrossRef]
- Qu, L.; Qiao, W.; Qu, L. An Extended-State-Observer-Based Sliding-Mode Speed Control for Permanent-Magnet Synchronous Motors. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1605–1613. [Google Scholar] [CrossRef]
- Fei, J.; Wang, Z.; Pan, Q. Self-Constructing Fuzzy Neural Fractional-Order Sliding Mode Control of Active Power Filter. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 10600–10611. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Xin, M. Robust Adaptive Sliding Mode Controller for Semi-active Vehicle Suspension System. Int. J. Innov. Comput. Inf. Control 2012, 8, 691–700. [Google Scholar]
- Fei, J.; Zhang, L. Self-Constructing Chebyshev Fuzzy Neural Complementary Sliding Mode Control and Its Application. IEEE Trans. Neural Netw. Learn. Syst. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liu, J.; Liu, F.; Liu, Z.; Gao, Y.; Sun, G. Fractional-Order Sliding Mode Approach of Buck Converters with Mismatched Disturbances. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3890–3900. [Google Scholar] [CrossRef]
- Fei, J.; Wang, H.; Fang, Y. Novel Neural Network Fractional-order Sliding Mode Control with Application to Active Power Filter. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 3508–3518. [Google Scholar] [CrossRef]
- Hou, Q.; Ding, S.; Yu, X. Composite Super-Twisting Sliding Mode Control Design for PMSM Speed Regulation Problem Based on a Novel Disturbance Observer. IEEE Trans. Energy Convers. 2021, 36, 2591–2599. [Google Scholar] [CrossRef]
- Zholtayev, D.; Rubagotti, M.; Do, T.D. Adaptive super-twisting sliding mode control for maximum power point tracking of PMSG-based wind energy conversion systems. Renew. Energy 2022, 183, 877–889. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, F.; Liu, X.; Hua, Y.; Liu, X.; Li, G. Super Twisting Disturbance Observer-Based Fixed-Time Sliding Mode Backstepping Control for Air-Breathing Hypersonic Vehicle. IEEE Access 2020, 8, 17567–17583. [Google Scholar] [CrossRef]
- Shah, I.; Rehman, F. Smooth Second Order Sliding Mode Control of a Class of Underactuated Mechanical Systems. IEEE Access 2018, 6, 7759–7771. [Google Scholar] [CrossRef]
- Fei, J.; Chen, Y.; Liu, L.; Fang, Y. Fuzzy Multiple Hidden Layer Recurrent Neural Control of Nonlinear System Using Terminal Sliding-Mode Controller. IEEE Trans. Cybern. 2022, 52, 9519–9534. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, C.; Li, H.; Lu, R. Barrier Function-Based Adaptive Control for Uncertain Strict-Feedback Systems Within Predefined Neural Network Approximation Sets. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2942–2954. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Hua, M. Robust delay-dependent exponential stability for uncertain stochastic neural networks with mixed delays. Neurocomputing 2011, 74, 1503–1509. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, J.; Lin, G.; Sun, N. Adaptive neural network control for maglev vehicle systems with time-varying mass and external disturbance. Neural Comput. Appl. 2023, 35, 12361–12372. [Google Scholar] [CrossRef]
- Xiao, J.; Cheng, J.; Shi, K.; Zhang, R. A General Approach to Fixed-Time Synchronization Problem for Fractional-Order Multidimension-Valued Fuzzy Neural Networks Based on Memristor. IEEE Trans. Fuzzy Syst. 2022, 30, 968–977. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Li, K. Fuzzy adaptive finite-time event-triggered control of time-varying formation for nonholonomic multirobot systems. IEEE Trans. Intell. Veh. 2023, 9, 725–737. [Google Scholar] [CrossRef]
- Fei, J.; Liu, L. Real-Time Nonlinear Model Predictive Control of Active Power Filter Using Self-Feedback Recurrent Fuzzy Neural Network Estimator. IEEE Trans. Ind. Electron. 2022, 69, 8366–8376. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, R.; Li, S.; He, W.; Shi, Z. Composite Neural Learning Based Nonsingular Terminal Sliding Mode Control of MEMS Gyroscopes. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Liu, J.; Dian, S.; Guo, R.; Li, S. Sliding-Mode-Control-Theory-Based Adaptive General Type-2 Fuzzy Neural Network Control for Power-line Inspection Robots. Neurocomputing 2020, 401, 281–294. [Google Scholar] [CrossRef]
- Du, G.; Liang, Y.; Gao, B.; Al Otaibi, S.; Li, D. A Cognitive Joint Angle Compensation System Based on Self-Feedback Fuzzy Neural Network with Incremental Learning. IEEE Trans. Ind. Inform. 2021, 17, 2928–2937. [Google Scholar] [CrossRef]
- Li, Y.; Feng, K.; Li, K. Finite-time fuzzy adaptive dynamic event-triggered formation tracking control for USVs with actuator faults and multiple constraints. IEEE Trans. Ind. Inform. 2023, 20, 5285–5296. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, S. A novel dynamic recurrent functional link neural network-based identification of nonlinear systems using Lyapunov stability analysis. Neural Comput. Appl. 2021, 33, 7875–7892. [Google Scholar] [CrossRef]
- Cheng, T.; Wu, J.; Wang, H.; Zheng, H. Dynamic Optimization of Rotor-Side PI Controller Parameters for Doubly-Fed Wind Turbines Based on Improved Recurrent Neural Networks Under Wind Speed Fluctuations. IEEE Access 2023, 11, 102713–102726. [Google Scholar] [CrossRef]
- Wang, J.; Fang, Y.; Fei, J. Adaptive Super-Twisting Sliding Mode Control of Active Power Filter Using Interval Type-2-Fuzzy Neural Networks. Mathematics 2023, 11, 2785. [Google Scholar] [CrossRef]
- Blooming, T.M.; Carnovale, D.J. Application of IEEE STD 519-1992 Harmonic Limits. In Proceedings of the Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference, Appleton, WI, USA, 18–22 June 2006; pp. 1–9. [Google Scholar]
- Wallace, I. Key Changes and Differences between the New IEEE 519-2014 Standard and IEEE 519-1992. Alcatel Telecommun. Rev. 2014, 11, 1–2. [Google Scholar]
Parameters | Values |
---|---|
Supply voltage | |
APF main circuit | , , , |
Nonlinear load at steady state | , |
Additional nonlinear load in parallel | , |
Sampling time |
ASMC | STSMC | IT2FNN-SFR STSMC | |
---|---|---|---|
Steady state | 5.40% | 4.71% | 4.16% |
Additional load connected | 4.94% | 4.23% | 3.87% |
Additional load disconnected | 5.87% | 5.10% | 4.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, X.; Fei, J. Evaluation of Interval Type-2 Fuzzy Neural Super-Twisting Control Applied to Single-Phase Active Power Filters. Appl. Sci. 2024, 14, 3271. https://doi.org/10.3390/app14083271
Wang J, Li X, Fei J. Evaluation of Interval Type-2 Fuzzy Neural Super-Twisting Control Applied to Single-Phase Active Power Filters. Applied Sciences. 2024; 14(8):3271. https://doi.org/10.3390/app14083271
Chicago/Turabian StyleWang, Jiacheng, Xiangguo Li, and Juntao Fei. 2024. "Evaluation of Interval Type-2 Fuzzy Neural Super-Twisting Control Applied to Single-Phase Active Power Filters" Applied Sciences 14, no. 8: 3271. https://doi.org/10.3390/app14083271
APA StyleWang, J., Li, X., & Fei, J. (2024). Evaluation of Interval Type-2 Fuzzy Neural Super-Twisting Control Applied to Single-Phase Active Power Filters. Applied Sciences, 14(8), 3271. https://doi.org/10.3390/app14083271