Effect of Gaseous Ozone and Hydrogen Peroxide Treatment on the Polyphenolic Profile of Tomato Fruits Grown Under Cover
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Research Material
3.2. Ozone Treatment of Tomato Plants
- ▪ 0 ppm 0 min (control);
- ▪ 2 ppm 1 min;
- ▪ 2 ppm 1.5 min;
- ▪ 2 ppm 3 min.
3.3. Spraying Plants with a Solution of Hydrogen Peroxide
- ▪ control,
- ▪ 1%;
- ▪ 3%,
3.4. Combined Method: Fumigation of Plants with Ozone Gas and Spraying with Hydrogen Peroxide Solution
- ▪ Control
- ▪ O3 (2ppm 1 min) +1%H2O2
- ▪ O3 (2ppm 1.5 min) +1%H2O2
- ▪ O3 (2ppm 3 min) +1%H2O2
- ▪ O3 (2ppm 1 min) +3%H2O2
- ▪ O3 (2ppm 1.5 min) +3%H2O2
- ▪ O3 (2ppm 3 min) +3%H2O2.
3.5. Total Phenolic and Profile of Phenolic Compounds
- -
- Total phenolic content analysis
- -
- Profile of phenolic compounds
- -
- Folin–Ciocalteu reagent, (Pol-Aura, Zabrze, Poland)
- -
- sodium carbonate, purity 99,5% (Sigma–Aldrich, Saint Louis, MO, USA)
- -
- gallic acid, purity 99,85% (Sigma–Aldrich, Saint Louis, MO, USA)
- -
- 0.1% formic acid, pure about 85% (Sigma–Aldrich, Saint Louis, MO, USA)
- -
- 40% acetonitrile, purity ≥ 99.5% (Pol-Aura, Zabrze, Poland)
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhandari, R.; Neupane, N.; Adhikari, D.P. Climatic change and its impact on tomato (Lycopersicum esculentum L.) production in plain area of Nepal. Environ. Chall. 2021, 4, 100129. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020, 10, 45. [Google Scholar] [CrossRef]
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.S. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol. Res. 2020, 155, 104730. [Google Scholar] [CrossRef]
- Helmja, K.; Vaher, M.; Püssa, T.; Raudsepp, P.; Kaljurand, M. Evaluation of antioxidative capability of the tomato (Solanumlycopersicum) skin constituents by capillary electrophoresisand high-performance liquid chromatography. Electrophoresis 2008, 29, 3980–3988. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Dueñas, M.; Pinela, J.; Carvalho, A.M.; Buelga, C.S.; Ferreira, I.C.F.R. Characterization and quantification of phenolic compounds infour tomato (Lycopersicon esculentum L.) farmers’ varietiesin northeastern Portugal homegardens. Plant Foods Hum. Nutr. 2012, 67, 229–234. [Google Scholar] [CrossRef]
- Capanoglu, E.; Beekwilder, J.; Boyacioglu, D.; Hall, R.; de Vos, R. Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 2008, 56, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Andres-Lacueva, C.; Waterhouse, A.; Lamuela-Raventos, R. Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT-Food Sci. Technol 2012, 47, 154–160. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef]
- Slimestad, R.; Verheul, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- Ba, W.; Xu, W.; Deng, Z.; Zhang, B.; Zheng, L.; Li, H. The Antioxidant and Anti-Inflammatory Effects of the Main Carotenoids from Tomatoes via Nrf2 and NF-κB Signaling Pathways. Nutrients 2023, 15, 4652. [Google Scholar] [CrossRef]
- Jiménez Bolaño, D.C.; Insuasty, D.; Rodríguez Macías, J.D.; Grande-Tovar, C.D. Potential Use of Tomato Peel, a Rich Source of Lycopene, for Cancer Treatment. Molecules 2024, 29, 3079. [Google Scholar] [CrossRef]
- Guan, Z.; Biswas, T.; Wu, F. The U.S. Tomato Industry: An Overview of Production and Trade. EDIS, 2018; 2. [Google Scholar] [CrossRef]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Paula, L.; Dodd, T.; Németh, S.; Nanou, C.; Mega, V.; Campos, P. EU ambition to build the world’s leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 2018, 40, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Dziągwa-Becker, M.; Oleszek, M.; Zielińska, S.; Oleszek, W. Chalcones—Features, Identification Techniques, Attributes, and Application in Agriculture. Molecules 2024, 29, 2247. [Google Scholar] [CrossRef]
- Montenegro, I.; Madrid, A.; Cuellar, M.; Seeger, M.; Alfaro, J.F.; Besoain, X.; Martínez, J.P.; Ramirez, I.; Olguín, Y.; Valenzuela, M. Biopesticide Activity from Drimanic Compounds to Control Tomato Pathogens. Molecules 2018, 23, 2053. [Google Scholar] [CrossRef]
- Carletti, L.; Botondi, R.; Moscetti, R.; Stella, E.; Monacra, D.; Cecchini, M.; Massantini, R. Use of ozone in sanitation and storage of fresh fruits and vegetables. J. Food Agric. Environ. 2013, 11, 585–589. [Google Scholar]
- Zhang, X.; Zhang, Z.; Wang, L.; Zhang, Z.; Li, J.; Zhao, C. Impact of ozone on quality of strawberry during cold storage. Front. Agric. China 2011, 5, 356–360. [Google Scholar] [CrossRef]
- Selma, M.V.; Ibáñez, A.M.; Cantwell, M.; Suslow, T. Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe. Food Microbiol. 2008, 25, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Pandiselvam, R.; Subhashini, S.; Priya, E.B.; Kothakota, A.; Ramesh, S.; Shahir, S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 2018, 41, 17–34. [Google Scholar] [CrossRef]
- Dubey, P.; Singh, A.; Yousuf, O. Ozonation: An Evolving Disinfectant Technology for the Food Industry. Food Bioproc Tech. 2022, 15, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods 2021, 10, 605. [Google Scholar] [CrossRef] [PubMed]
- Matłok, N.; Piechowiak, T.; Szostek, M.; Kuboń, M.; Neuberger, P.; Kapusta, I.; Balawejder, M. Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants. Molecules 2024, 29, 3949. [Google Scholar] [CrossRef]
- Ullrich, L.; Gillich, E.; André, A.; Panarese, S.; Imhaus, A.F.; Fieseler, L.; Chetschik, I. Influence of Ozone Treatment during Storage on Odour-Active Compounds, Total Titratable Acidity, and Ascorbic Acid in Oranges and Bananas. Appl. Sci. 2023, 13, 10885. [Google Scholar] [CrossRef]
- Miller, F.A.; Fundo, J.F.; Garcia, E.; Silva, C.L.M.; Brandão, T.R.S. Effect of Gaseous Ozone Process on Cantaloupe Melon Peel: Assessment of Quality and Antilisterial Indicators. Foods 2021, 10, 727. [Google Scholar] [CrossRef]
- Sachadyn-Król, M.; Agriopoulou, S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules 2020, 25, 2416. [Google Scholar] [CrossRef]
- Madheshiya, P.; Gupta, G.S.; Sahoo, A.; Tiwari, S. Role of Elevated Ozone on Development and Metabolite Contents of Lemongrass [Cymbopogon flexuosus (Steud.) (Wats.)]. Metabolites 2023, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Zardzewiały, M.; Matłok, N.; Piechowiak, T.; Saletnik, B.; Balawejder, M.; Gorzelany, J. Preliminary Tests of Tomato Plant Protection Method with Ozone Gas Fumigation Supported with Hydrogen Peroxide Solution and Its Effect on Some Fruit Parameters. Sustainability 2024, 16, 3481. [Google Scholar] [CrossRef]
- Almeida, J.M.; Fidalgo, F.; Confraria, A.; Santos, A.; Pires, H.; Santos, I. Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Funct. Plant Biol. 2005, 32, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Marschner, H. Effect of zinc nutritional-status on activities of superoxide radical and hydrogen-peroxide scavenging enzymes in bean-leaves. Plant Soil. 1993, 155, 127–130. [Google Scholar] [CrossRef]
- Orabi, S.A.; Dawood, M.G.; Salman, S.R. Comparative study between the physiological role of hydrogen peroxide and salicylic acid in alleviating the harmful effect of low temperature on tomato plants grown under sand-ponic culture. Sci. Agric. 2015, 9, 49–59. [Google Scholar]
- Khandaker, M.M.; Boyce, A.N.; Osman, N. The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [Blume] Merrill & L. M. Perry var. jambu madu) fruits. Plant Physiol. Biochem. 2012, 53, 101–110. [Google Scholar]
- Lee, J.-H.; Goto, E. Ozone control as a novel method to improve health-promoting bioactive compounds in red leaf lettuce (Lactuca sativa L.). Front. Plant Sci. 2022, 13, 1045239. [Google Scholar] [CrossRef]
- Nath, A.; Mukhim, K.; Swer, T.; Dutta, D.; Verma, N.; Deka, B.; Gangwar, B. A Review on Application of Ozone in the Food Processing and Packaging. J. Food Prod. Dev. Packag. 2014, 1, 7–21. [Google Scholar]
- Marchica, A.; Cotrozzi, L.; Detti, R.; Lorenzini, G.; Pellegrini, E.; Petersen, M.; Nali, C. The Biosynthesis of Phenolic Compounds Is an Integrated Defence Mechanism to Prevent Ozone Injury in Salvia officinalis. Antioxidants 2020, 9, 1274. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-C.; Miao, A.O.; He, X.-Q.; Li, W.-Z.; Deng, L.-L.; Zeng, K.-F.; Ming, J. Changes in phenolic content, composition and antioxidant activity of blood oranges during cold and on-tree storage. J. Integr. Agric. 2022, 21, 3669–3683. [Google Scholar] [CrossRef]
- Petrov, V.D.; Van Breusegem, F. Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants 2012, 2012, pls014. [Google Scholar] [CrossRef]
- Wu, P.C.; Chen, Y.K.; Yago, J.I.; Chung, K.R. Peroxisomes Implicated in the Biosynthesis of Siderophores and Biotin, Cell Wall Integrity, Autophagy, and Response to Hydrogen Peroxide in the Citrus Pathogenic Fungus Alternaria alternata. Front. Microbiol. 2021, 12, 645792. [Google Scholar] [CrossRef]
- Tentscher, P.R.; Bourgin, M.; von Gunten, U. Ozonation of Para-Substituted Phenolic Compounds Yields p-Benzoquinones, Other Cyclic α,β-Unsaturated Ketones, and Substituted Catechols. Environ. Sci. Technol. 2018, 52, 4763–4773. [Google Scholar] [CrossRef]
- Rodoni, L.; Casadei, N.; Concellón, A.; Chaves, A.; Vicente, A.R. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J. Agric. Food Chem. 2010, 58, 594–599. [Google Scholar] [PubMed]
- Minas, I.S.; Karaoglanidis, G.S.; Manganaris, G.A.; Vasilakakis, M. Effect of ozone application during cold storage of kiwifruit on the development of stem-end rot caused by Botrytis cinerea. Postharvest Biol. Technol. 2010, 58, 203–210. [Google Scholar] [CrossRef]
- Glowacz, M.; Colgan, R.; Rees, D. Influence of continuous exposure to gaseous ozone on the quality of red bell peppers, cucumbers and zucchini. Postharvest Biol. Technol. 2015, 99, 1–8. [Google Scholar] [CrossRef]
- Kapusta, I.; Cebulak, T.; Oszmiański, J. The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region). J. Food Meas. Charact. 2017, 11, 1863–1873. [Google Scholar] [CrossRef]
Compound | Rt | λmax | [M-H] m/z | Variant | |||||
---|---|---|---|---|---|---|---|---|---|
min | nm | MS | MS/MS | Control | 2 ppm 1 min | 2 ppm 1.5 min | 2 ppm 3 min | ||
1 | Caffeic acid O-glucoside I | 2.29 | 327 | 341 | 179 | 4.12 | 3.48 | 4.62 | 3.65 |
2 | p-Coumaric acid O-glucoside I | 2.39 | 302 | 325 | 163 | 227 | 2.76 | 3.00 | 2.35 |
3 | Caffeic acid O-glucoside II | 2.51 | 324 | 341 | 179 | 261 | 2.08 | 2.42 | 2.33 |
4 | Caffeic acid O-glucoside III | 2.66 | 329 | 341 | 179 | 0.89 | 0.63 | 0.87 | 0.86 |
5 | Ferulic acid O-glucoside | 2.73 | 314 | 355 | 193 | 0.64 | 0.37 | 0.79 | 1.13 |
6 | Caffeic acid O-glucoside IV | 2.85 | 324 | 341 | 179 | 0.72 | 0.70 | 0.83 | 1.18 |
7 | 3-O-caffeoylquinic acid | 2.95 | 327 | 353 | 191 | 3.18 | 4.67 | 3.78 | 4.32 |
8 | 5-O-caffeoylquinic acid | 3.09 | 327 | 353 | 191 | 1.74 | 1.63 | 2.09 | 1.96 |
9 | p-Coumaric acid O-glucoside II | 3.16 | 320 | 325 | 163 | 0.80 | 0.97 | 0.83 | 0.73 |
10 | Caffeic acid | 3.27 | 327 | 179 | 119 | 0.53 | 0.56 | 0.56 | 0.61 |
11 | Quercetin 3-O-rutinoside-7-O-pentoside | 4.19 | 255.354 | 741 | 609.301 | 1.55 | 1.51 | 1.39 | 1.34 |
12 | Quercetin 3-O-rutinoside | 4.56 | 255.355 | 609 | 301 | 1.43 | 1.21 | 1.69 | 1.63 |
Total | 20.50 ± 0.37 a | 20.57 ± 0.29 a | 22.86 ± 0.30 b | 22.07 ± 0.02 b |
Compound | Rt | λmax | [M-H] m/z | Variant | ||||
---|---|---|---|---|---|---|---|---|
min | nm | MS | MS/MS | Control | 1% H2O2 | 3% H2O2 | ||
1 | Caffeic acid O-glucoside I | 2.29 | 327 | 341 | 179 | 4.12 | 3.66 | 3.34 |
2 | p-Coumaric acid O-glucoside I | 2.39 | 302 | 325 | 163 | 2.27 | 2.19 | 2.35 |
3 | Caffeic acid O-glucoside II | 2.51 | 324 | 341 | 179 | 2.61 | 2.22 | 2.67 |
4 | Caffeic acid O-glucoside III | 2.66 | 329 | 341 | 179 | 0.89 | 0.73 | 0.83 |
5 | Ferulic acid O-glucoside | 2.73 | 314 | 355 | 193 | 0.64 | 0.41 | 1.01 |
6 | Caffeic acid O-glucoside IV | 2.85 | 324 | 341 | 179 | 0.72 | 0.71 | 0.74 |
7 | 3-O-caffeoylquinic acid | 2.95 | 327 | 353 | 191 | 3.18 | 3.22 | 2.65 |
8 | 5-O-caffeoylquinic acid | 3.09 | 327 | 353 | 191 | 1.74 | 1.75 | 1.67 |
9 | p-Coumaric acid O-glucoside II | 3.16 | 320 | 325 | 163 | 0.80 | 0.67 | 0.64 |
10 | Caffeic acid | 3.27 | 327 | 179 | 119 | 0.53 | 0.51 | 0.51 |
11 | Quercetin 3-O-rutinoside-7-O-pentoside | 4.19 | 255.354 | 741 | 609.301 | 1.55 | 1.28 | 1.35 |
12 | Quercetin 3-O-rutinoside | 4.56 | 255.355 | 609 | 301 | 1.43 | 1.41 | 1.69 |
Total | 20.50 ± 0.37 a | 18.79 ± 0.24 a | 19.45 ± 0.27 a |
Compound | Rt | λmax | [M-H] m/z | Variant | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | Nm | MS | MS/MS | Control | 2 ppm 1 min 1% H2O2 | 2 ppm 1.5 min 1 % H2O2 | 2 ppm 3 min 1% H2O2 | 2 ppm 1 min 3% H2O2 | 2 ppm 1.5 min 3 % H2O2 | 2 ppm 3 min 3% H2O2 | ||
1 | Caffeic acid O-glucoside I | 2.29 | 327 | 341 | 179 | 4.12 | 3.98 | 3.56 | 3.88 | 3.84 | 3.85 | 4.00 |
2 | p-Coumaric acid O-glucoside I | 2.39 | 302 | 325 | 163 | 2.27 | 2.90 | 3.80 | 2.95 | 3.14 | 2.41 | 2.61 |
3 | Caffeic acid O-glucoside II | 2.51 | 324 | 341 | 179 | 2.61 | 1.89 | 1.81 | 1.36 | 1.54 | 3.08 | 2.27 |
4 | Caffeic acid O-glucoside III | 2.66 | 329 | 341 | 179 | 0.89 | 0.81 | 1.04 | 0.89 | 0.91 | 0.78 | 1.06 |
5 | Ferulic acid O-glucoside | 2.73 | 314 | 355 | 193 | 0.64 | 0.60 | 1.05 | 0.53 | 0.44 | 0.92 | 0.94 |
6 | Caffeic acid O-glucoside IV | 2.85 | 324 | 341 | 179 | 0.72 | 0.86 | 0.88 | 0.77 | 0.79 | 0.92 | 0.91 |
7 | 3-O-caffeoylquinic acid | 2.95 | 327 | 353 | 191 | 3.18 | 2.81 | 5.63 | 5.46 | 4.50 | 2.87 | 4.29 |
8 | 5-O-caffeoylquinic acid | 3.09 | 327 | 353 | 191 | 1.74 | 1.71 | 2.02 | 2.21 | 1.86 | 1.74 | 1.85 |
9 | p-Coumaric acid O-glucoside II | 3.16 | 320 | 325 | 163 | 0.80 | 0.86 | 0.95 | 0.77 | 1.11 | 0.65 | 0.80 |
10 | Caffeic acid | 3.27 | 327 | 179 | 119 | 0.53 | 0.60 | 0.57 | 0.64 | 0.81 | 0.59 | 0.67 |
11 | Quercetin 3-O-rutinoside-7-O-pentoside | 4.19 | 255.354 | 741 | 609.301 | 1.55 | 1.31 | 1.98 | 1.65 | 2.17 | 1.27 | 1.42 |
12 | Quercetin 3-O-rutinoside | 4.56 | 255.355 | 609 | 301 | 1.43 | 1.40 | 2.15 | 2.70 | 2.38 | 1.49 | 1.86 |
Total | 20.50 ± 0.37 a | 19.73 ± 0.43 a | 25.42 ± 0.35 b | 23.81 ± 0.20 b | 23.49 ± 0.20 b | 20.57 ± 0.17 a | 22.69 ± 0.39 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zardzewiały, M.; Matłok, N.; Kapusta, I.; Piechowiak, T.; Gorzelany, J.; Balawejder, M. Effect of Gaseous Ozone and Hydrogen Peroxide Treatment on the Polyphenolic Profile of Tomato Fruits Grown Under Cover. Appl. Sci. 2025, 15, 224. https://doi.org/10.3390/app15010224
Zardzewiały M, Matłok N, Kapusta I, Piechowiak T, Gorzelany J, Balawejder M. Effect of Gaseous Ozone and Hydrogen Peroxide Treatment on the Polyphenolic Profile of Tomato Fruits Grown Under Cover. Applied Sciences. 2025; 15(1):224. https://doi.org/10.3390/app15010224
Chicago/Turabian StyleZardzewiały, Miłosz, Natalia Matłok, Ireneusz Kapusta, Tomasz Piechowiak, Józef Gorzelany, and Maciej Balawejder. 2025. "Effect of Gaseous Ozone and Hydrogen Peroxide Treatment on the Polyphenolic Profile of Tomato Fruits Grown Under Cover" Applied Sciences 15, no. 1: 224. https://doi.org/10.3390/app15010224
APA StyleZardzewiały, M., Matłok, N., Kapusta, I., Piechowiak, T., Gorzelany, J., & Balawejder, M. (2025). Effect of Gaseous Ozone and Hydrogen Peroxide Treatment on the Polyphenolic Profile of Tomato Fruits Grown Under Cover. Applied Sciences, 15(1), 224. https://doi.org/10.3390/app15010224