Image Analysis of the Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the Mars Environmental Dynamics Analyzer at Extremely Low Reynolds Number
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. MMRTG and Mast Models
2.3. Hypotheses and Environmental Control Calculations
- is the fluid density (kg/m³);
- v is the characteristic velocity of the fluid flow (m/s);
- L is the characteristic length (m), which is a relevant dimension of the object or flow system;
- is the dynamic viscosity of the fluid (Pa·s or N·s/m²), which measures the fluid’s resistance to shear.
- is the trolley’s velocity [m/s];
- F is the frequency of the engine [Hz].
- g is the Martian gravity, with a value of 3.72 m/s²;
- is the thermal expansion coefficient, with a value of 0.0033 1/K;
- is the kinematic viscosity, calculated as the ratio of dynamic viscosity to density, with a value of 0.0005 m2/s;
- L is the characteristic length, set at 1 m for the MMRTG (real dimension);
- The temperature difference () is based on the ambient temperature of the Martian atmosphere, which is 240 K (−33 °C).
3. Results and Discussion
3.1. Scenario Verification
3.1.1. Thermal Scenario
3.1.2. Dynamic Scenario
3.2. Wind Analysis
3.3. MMRTG Emissivity Analysis
3.3.1. Convective Heat Transfer
- : convective heat transfer rate (W);
- : convective heat transfer; coefficient of the ambient air (W/m²·K).
- : surface area of the body (m²);
- : temperature of the body (K);
- : ambient temperature (K);
- : convective heat transfer coefficient of the ambient air (W/m2·K);
- : Reynolds number (dimensionless), a measure of the flow regime;
- : Prandtl number (dimensionless), a measure of the relative thickness of the thermal and velocity boundary layers;
- k: thermal conductivity of the fluid (W/m·K);
- : characteristic length (m).
3.3.2. Radiative Heat Transfer
- : radiative heat transfer rate (W);
- : emissivity of the ambient environment (dimensionless);
- : Stefan–Boltzmann constant ( W/m²·);
- : surface area of the body (m²);
- : temperature of the body (K);
- : ambient temperature (K).
3.4. Plume Height Analysis
3.4.1. Buoyancy Flux
- g: gravitational acceleration = 3.72 ();
- : atmospheric density = 0.02 ();
- : specific heat at constant pressure = 7.4 ();
- : thermal expansion coefficient ();
- Q: heat emitted by the MMRTG ();
- : ambient temperature (K);
- x: downstreams coordinate x (m);
- u: wind speed (m/s).
3.4.2. Dynamic Tests Influence MMRTG/Mast
3.5. Thermal Emission Plume Affected Area
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sebastián, E.; Martínez, G.; Ramos, M.; Perez-Grande, I.; Sobrado, J.; Rodríguez-Manfredi, J.A. Thermal Calibration of the MEDA-TIRS Radiometer Onboard NASA’s Perseverance Rover. Acta Astronaut. 2021, 182, 144–159. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Clarke, E.S. Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment. Planet. Space Sci. 2020, 187, 105075. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Sotzen, K.S. Buoyant thermal plumes from planetary landers and rovers: Application to sizing of meteorological masts. Planet. Space Sci. 2014, 90, 81–89. [Google Scholar] [CrossRef]
- Hess, S.L.; Henry, R.M.; Leovy, C.B.; Ryan, J.A.; Tillman, J.E. Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res. 1977, 82, 4559–4574. [Google Scholar] [CrossRef]
- Sun, Q.H.; Boyd, I.D. Flat-plate aerodynamics at very low Reynolds number. J. Aerosp. Eng. 2004, 18, 77–86. [Google Scholar] [CrossRef]
- Srinath, D.N.; Mittal, S. Optimal airfoil shapes for low Reynolds number flows. Int. J. Comput. Fluid Dyn. 2009, 23, 349–364. [Google Scholar] [CrossRef]
- Rodríguez-Sevillano, Á.A.; Casati-Calzada, M.J.; Bardera-Mora, R.; Feliz-Huidobro, A.; Calle-González, C.; Fernández-Antón, J. Flow Study on the Anemometers of the Perseverance Based on Towing Tank Visualization. Appl. Mech. 2022, 3, 1385–1398. [Google Scholar] [CrossRef]
- Bardera-Mora, R.; Matías-García, J.C.; Barroso-Barderas, E.; Rodríguez-Sevillano, A.A.; Fernández-Antón, J. Aerodynamics Around the Mars 2020 Rover by Low Reynolds wind Tunnel Testing; Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz: Madrid, Spain; Universidad Politécnica de Madrid (UPM), ETSIAE: Madrid, Spain, 2024. [Google Scholar]
- Viúdez-Moreiras, D.; Gómez-Elvira, J.; Newman, C.E.; Navarro, S.; Marín, M.; Torres, J.; De la Torre Juárez, M. Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale’s wind speeds and directions. Icarus 2019, 319, 909–925. [Google Scholar] [CrossRef]
- Bardera, R.; Rodríguez-Sevillano, A.A.; Barroso, E.; Matías, J.C.; Lopez-Cuervo Alcaraz, A. Numerical Analysis of the Thermal Convection Through a Flat Plate in Martian Conditions; Instituto Nacional de Técnica Aeroespacial: Torrejón de Ardoz, Spain, 2024. [Google Scholar]
- CATIA V5. Available online: https://www.3ds.com/products-services/catia/ (accessed on 14 October 2024).
- JPL MARS 2020. Available online: https://science.nasa.gov/mission/mars-2020-perseverance/ (accessed on 14 October 2024).
- Spiga, A. Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: Katabatic winds and boundary layer convection. Planet. Space Sci. 2011, 59, 915–922. Available online: https://web.lmd.jussieu.fr/~aslmd/pub/REF/2011P_26SS...59..915S.pdf (accessed on 14 October 2024). [CrossRef]
- Martínez, G.M.; Newman, C.N.; Vicente-Retortillo, A.D.; Fischer, E.; Renno, N.O.; Richardson, M.I.; Fairén, A.G.; Genzer, M.; Guzewich, S.D.; Haberle, R.M.; et al. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity. Space Sci. Rev. 2017, 212, 295–338. Available online: https://link.springer.com/article/10.1007/s11214-017-0360-x (accessed on 14 October 2024). [CrossRef]
- Alam, M.M.; Zhou, Y.; Yang, H.X.; Guo, H.; Mi, J. The ultra-low Reynolds number airfoil wake. J. Fluid Mech. 2008, 610, 293–320. [Google Scholar] [CrossRef]
- Aprovitola, A.; Iuspa, L.; Pezzella, G.; Viviani, A. Flows past airfoils for the low-Reynolds number conditions of flying in Martian atmosphere. Acta Astronaut. 2020, 172, 273–283. [Google Scholar] [CrossRef]
- Koning, W.J.F. Airfoil Selection for Mars Rotor Applications; NASA/CR—2019–220236; NASA: Washington, DC, USA, 2019.
- MARS CLIMATE DATABASE v6.1. Available online: https://www-mars.lmd.jussieu.fr/mcd_python/ (accessed on 14 October 2024).
- Harmon, B.A.; Lavery, D.B. NASA Radioisotope Power Systems Program Update. In Space Technology and Applications International Forum—STAIF 2008; El-Genk, M.S., Ed.; American Institute of Physics: College Park, MD, USA, 2008; pp. 396–402. [Google Scholar]
- Mohan, K.V.; Arici, O.; Yang, S.-L.; Johnson, J.H. A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation; SAE Technical Paper; SAE: Warrendale, PA, USA, 1997; p. 971804. [Google Scholar]
- Romero Piedrahita, C.A. Contribución al Conocimiento del Comportamiento téRmico y la Gestión Térmica de los Motores de Combustión Interna Alternativos. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2009. [Google Scholar]
- Davy, R.; Davies, J.A.; Taylor, P.A.; Lange, C.; Weng, W.; Whiteway, J.; Gunnlaugson, H.P. Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes. J. Geophys. Res. 2010, 115, E00E13. [Google Scholar] [CrossRef]
- Bardera-Mora, R.; Rodríguez-Sevillano, J.; Jiménez-Martínez, J. Influence of the Mars 2020 rover on wind measurements under low Reynolds number conditions. Planet. Sci. J. 2019, 56, 1107–1113. Available online: https://www.scinapse.io/papers/2914481874 (accessed on 14 October 2024).
Ink Flow [mL/s] | Velocity [cm/s] | Engine Frequency (Trolley) [Hz] |
---|---|---|
0.3 | 1.5 | 39 |
0.7 | 3.5 | 93 |
1.4 | 6.7 | 180 1 |
Ink Flow [mL/s] | Laminar Flow Height (289 K) [%] 1 | Laminar Flow Height (301 K) [%] 1 |
---|---|---|
0.3 | 47 | 88 |
0.7 | 72 | 145 |
1.4 | 120 | 198 |
Ink Flow [mL/s] | Grashof Number (301 K) [] |
---|---|
0.3 | 0.64 |
0.7 | 3.15 |
1.4 | 7.86 |
Ink Flow [mL/s] | Plume Height (289 K) [%] 1 | Plume Height (301 K) [%] 1 |
---|---|---|
0.3 | 81 | 86 |
0.7 | 106 | 116 |
1.4 | 129 | 123 |
Ink Flow [mL/s] | Reynold Number |
---|---|
0.3 | 1239 |
0.7 | 2817 |
1.4 | 5408 |
Air Velocity [m/s] | Downstreams Coordinate x [m] 1 | Plume Height [m] |
---|---|---|
0.3 | 2 | 7.4 |
0.5 | 2 | 4.5 |
1.0 | 2 | 2.2 |
2.0 | 2 | 1.1 |
Temperatures [K] | Ink Flow [mL/s] | Exit Angle [°] | Affected Area [%] * |
---|---|---|---|
289 | 0.3 | 13 | 133 |
0.7 | 7 | 115 | |
1.4 | 9 | 122 | |
301 | 0.3 | 22 | 159 |
0.7 | 14 | 137 | |
1.4 | 7 | 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Sevillano, Á.A.; Casati-Calzada, M.J.; Bardera-Mora, R.; Matías-García, J.C.; Barroso-Barderas, E.; Fernández-Rivero, E. Image Analysis of the Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the Mars Environmental Dynamics Analyzer at Extremely Low Reynolds Number. Appl. Sci. 2025, 15, 220. https://doi.org/10.3390/app15010220
Rodríguez-Sevillano ÁA, Casati-Calzada MJ, Bardera-Mora R, Matías-García JC, Barroso-Barderas E, Fernández-Rivero E. Image Analysis of the Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the Mars Environmental Dynamics Analyzer at Extremely Low Reynolds Number. Applied Sciences. 2025; 15(1):220. https://doi.org/10.3390/app15010220
Chicago/Turabian StyleRodríguez-Sevillano, Ángel Antonio, María Jesús Casati-Calzada, Rafael Bardera-Mora, Juan Carlos Matías-García, Estela Barroso-Barderas, and Emilio Fernández-Rivero. 2025. "Image Analysis of the Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the Mars Environmental Dynamics Analyzer at Extremely Low Reynolds Number" Applied Sciences 15, no. 1: 220. https://doi.org/10.3390/app15010220
APA StyleRodríguez-Sevillano, Á. A., Casati-Calzada, M. J., Bardera-Mora, R., Matías-García, J. C., Barroso-Barderas, E., & Fernández-Rivero, E. (2025). Image Analysis of the Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the Mars Environmental Dynamics Analyzer at Extremely Low Reynolds Number. Applied Sciences, 15(1), 220. https://doi.org/10.3390/app15010220