Recent Advances in Tunable External Cavity Diode Lasers
Abstract
Featured Application
Abstract
1. Introduction
2. Basic Theory of External Cavity Diode Lasers
3. Research Progress of ECDL
3.1. External Cavity Quantum Well Laser
3.1.1. Grating-Feedback Configuration
3.1.2. F-P Cavity Configuration
3.1.3. Other External Cavity Configuration
3.2. External Cavity Quantum Dot Laser
3.3. Dual-Wavelength External-Cavity Diode Laser
4. Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms
Acronyms | Full Name |
ECDL | external cavity diode laser |
DFB | distributed feedback |
DBR | distributed Bragg reflector |
VCSEL | vertical cavity surface emitting laser |
EL | electroluminescence |
VBG | volume Bragg grating |
LP-MOCVD | low-pressure metal-organic chemical vapor deposition |
TEC | thermoelectric cooling |
AFPF | all-dielectric thin film Fabry-Perot filter |
ECQDL | external cavity quantum dot laser |
QD | quantum dot |
EC | external-cavity |
AR | anti-reflection |
HR | high-reflection |
THz | terahertz |
References
- Bashkansky, M.; Lucke, R.L.; Funk, E.; Richard, L.J.; Reintjes, J. Two-dimensional synthetic aperture imaging in the optical domain. Opt. Lett. 2002, 27, 1983–1985. [Google Scholar] [CrossRef]
- Bagnoli, P.E.; Beverini, N.; Falciai, R.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C. Development of an erbium-doped fibre laser as a deep-sea hydrophone. J. Opt. A Pure Appl. Opt. 2006, 8, S535–S539. [Google Scholar] [CrossRef]
- Laurila, T.; Cattaneo, H.; Koskinen, V.; Kauppinen, J.; Hernberg, R. Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. Opt. Express 2005, 13, 2453–2458. [Google Scholar] [CrossRef]
- Galbacs, G. A review of applications and experimental improvements related to diode laser atomic spectroscopy. Appl. Spectrosc. Rev. 2006, 41, 253–303. [Google Scholar] [CrossRef]
- Ward, A.; Robbins, D.; Busico, G.; Barton, E.; Ponnampalam, L.; Duck, J.; Whitbread, N.; Williams, P.; Carter, A.; Wale, M. Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 149–156. [Google Scholar] [CrossRef]
- Mason, B.; Fish, G.A.; Denbaars, S.P.; Coldren, L.A. Widely tunable sampled grating DBR laser with integrated electroabsorption modulator. IEEE Photonics Technol. Lett. 1999, 11, 638–640. [Google Scholar] [CrossRef]
- Westbergh, P.; Gustavsson, J.S.; Haglund, A.; Skold, M.; Joel, A.; Larsson, A. High-Speed, Low-Current-Density 850 nm VCSELs. EEE J. Sel. Top. Quantum Electron. 2010, 15, 694–703. [Google Scholar] [CrossRef]
- Suzuki, T.; Kaneko, Y.; Choi, S.; Sasaki, O. External-cavity laser diode using acousto-optic deffector as tunable grating. Opt. Lett. 2022, 47, 1871–1874. [Google Scholar] [CrossRef] [PubMed]
- Tobias, W.G.; Rosenberg, J.S.; Hutzler, N.R.; Ni, K.K. A low-temperature external cavity diode laser for broad wavelength tuning. Rev. Sci. Instrum. 2016, 87, 49. [Google Scholar] [CrossRef] [PubMed]
- Na, H.M.; Song, H.J.; Park, J.H.; Lee, J.H.; Park, J.H. Blue-emitting external cavity laser diode. In Proceedings of the Components and Packaging for Laser Systems II, San Francisco, CA, USA, 16–17 February 2016; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, K.; Zhang, Z.; Orchard, J.R.; Childs, D.T.D.; Hugues, M.; Wada, O.; Hogg, R.A. Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1900209. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Varangis, P.; Newell, T.; Stintz, A.; Fuchs, B.; Malloy, K.; Lester, L. 150-nm tuning range in a grating-coupled external cavity quantum-dot laser. IEEE Photonics Technol. Lett. 2000, 12, 759–761. [Google Scholar] [CrossRef]
- Kareem, T.A.; Al Husseini, H.B. Two-states quantum dot laser complex dynamics under optically injection. J. Opt. 2024. [Google Scholar] [CrossRef]
- Gordeev, N.Y.; Kulagina, M.M.; Guseva, Y.A.; Serin, A.A.; Payusov, A.S.; Kornyshov, G.O.; Zubov, F.I.; Zhukov, A.E.; Maximov, M.V. Low-threshold 1.3 μm ring lasers with InAs/InGaAs/GaAs quantum dot active region. Laser Phys. Lett. 2022, 19, 066201. [Google Scholar] [CrossRef]
- Ping, G.U.; Fan, C.; Masahiko, T.; Kiyomi, S.; Ci-Ling, P. Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode. Jpn. J. Appl. Phys. 1999, 38, L1246. [Google Scholar] [CrossRef]
- Daghestani, N.S.; Cataluna, M.A.; Ross, G.; Rose, M.J. Compact Dual-Wavelength InAs/GaAs Quantum-Dot External-Cavity Laser Stabilized by a Single Volume Bragg Grating. IEEE Photonics Technol. Lett. 2011, 23, 176–178. [Google Scholar] [CrossRef]
- Mroziewicz, B. External cavity wavelength tunable semiconductor lasers—A review. Opto-Electron. Rev. 2008, 16, 347–366. [Google Scholar] [CrossRef]
- Zorabedian, P. Tunable External-Cavity Semiconductor Lasers. In Tunable Lasers Handbook; Academic Press: Cambridge, MA, USA, 1995; pp. 349–442. [Google Scholar] [CrossRef]
- Sato, H.; Ohya, J. Theory of spectral linewidth of external cavity semiconductor lasers. IEEE J. Quantum Electron. 2003, 22, 1060–1063. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Yang, Q.; Wang, L. Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection. Opt. Express 2012, 20, 19670–19682. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Jensen, O.B.; Petersen, P.M. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm. Appl. Opt. 2016, 55, 2263. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, H.; Chen, C.; Zhou, Y.; Wang, Y.; Liang, L.; Tian, Z.; Qin, L.; Wang, L. An Ultra-High-SMSR External-Cavity Diode Laser with a Wide Tunable Range around 1550 nm. Appl. Sci. 2019, 9, 4390. [Google Scholar] [CrossRef]
- Li, B.; Gao, J.; Luo, S.; Xiong, D.; Wang, X.; Zuo, D. 500 mW tunable external cavity diode laser with narrow line-width emission in blue-violet region. Opt. Laser Technol. 2017, 96, 176–179. [Google Scholar] [CrossRef]
- Fortin, G.; Mccarthy, N. Continuous Tuning of a Diode Laser Over 8.4 THz Near 1550 nm with a Chirped Grating. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1499–1504. [Google Scholar] [CrossRef]
- Bennetts, S.; Mcdonald, G.D.; Hardman, K.S.; Debs, J.E.; Kuhn, C.C.N.; Close, J.D. External cavity diode lasers with 5 kHz linewidth and 200 nm tuning range at 1.55 μm and methods for linewidth measurement. Opt. Express 2014, 22, 10642. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Lin, W.C.; Chen, H.Z.; Shy, J.T.; Chui, H.C. Single-Frequency External Cavity Green Diode Laser. IEEE Photonics J. 2017, 9, 1507207. [Google Scholar] [CrossRef]
- Perret, L.; Pfeiffer, P.; Javahiraly, N. Origin and Control of Sinusoidal Nonlinearities in Wavelength-Tuned Littman External Cavity Laser Diodes. J. Light. Technol. 2009, 27, 4927–4934. [Google Scholar] [CrossRef]
- Hildebrandt, L.; Knispel, R.; Stry, S.; Sacher, J.R.; Schael, F. Antireflection-Coated Blue GaN Laser Diodes in an External Cavity and Doppler-Free Indium Absorption Spectroscopy. Appl. Opt. 2003, 42, 2110–2118. [Google Scholar] [CrossRef]
- Fedorova, K.A.; Cataluna, M.A.; Kudryashov, I.; Khalfin, V.; Rafailov, E.U. Broadly Tunable InGaAsP–InP Strained Multiquantum-Well External Cavity Diode Laser. IEEE Photonics Technol. Lett. 2010, 22, 1205–1207. [Google Scholar] [CrossRef]
- Xu, B.; Lv, X.; Ding, D.; Lv, W.; Zhang, Y.; Zhang, J. High-power broadly tunable grating-coupled external cavity laser in green region. Rev. Sci. Instrum. 2018, 89, 125106. [Google Scholar] [CrossRef] [PubMed]
- Loh, H.; Lin, Y.J.; Teper, I.; Cetina, M.; Simon, J.; Thompson, J.K.; Vuletić, V. Influence of grating parameters on the linewidths of external-cavity diode lasers. Appl. Opt. 2006, 45, 9191–9197. [Google Scholar] [CrossRef]
- Fang, X.; Wang, P.; Song, Y.; Yan, X.; Peng, H.; Tang, X. High-power external cavity diode laser with narrow linewidth emission and adjustable polarization state at 445 nm. Opt. Eng. 2022, 61, 046103. [Google Scholar] [CrossRef]
- Ding, D.; Lv, X.; Chen, X.; Wang, F.; Zhang, J.; Che, K. Tunable high-power blue external cavity semiconductor laser. Opt. Laser Technol. 2017, 94, 1–5. [Google Scholar] [CrossRef]
- Saliba, S.D.; Junker, M.; Turner, L.D.; Scholten, R.E. Mode stability of external cavity diode lasers. Appl. Opt. 2009, 48, 6692–6700. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Luo, W.; Shi, J.; Zheng, Z.; Kong, H.; Qiu, M.; Sun, K.; Li, Z.; Qu, Y.; et al. The effect of lens focal length on the output characteristics of 1.55 µm tunable external-cavity semiconductor lasers. Photonics 2024, 11, 809. [Google Scholar] [CrossRef]
- Jin, J.; Guo, S.; Lu, F.; Zhang, G. Narrow-linewidth tunable external-cavity semiconductor laser with Littman setup. In Proceedings of the Optics and Optoelectronic Inspection and Control: Techniques, Applications, and Instruments, Beijing, China, 8–10 November 2000; Volume 4220. [Google Scholar] [CrossRef]
- Sun, J.; Qiu, L.; Liu, L.; Sheng, L.; Cui, Y.; Huang, L.; Pan, M.; Nian, F.; Hu, J. Output Characteristics of External-Cavity Mode-Hop-Free Tunable Laser Source in C+L Band. Photonics 2024, 11, 677. [Google Scholar] [CrossRef]
- Pilgrim, J.S.; Kane, D.J. Broadband External Cavity Diode Laser: US20040783193. US7245642B1, 5 December 2024. [Google Scholar]
- Kato, N.; Takiguchi, Y.; Tanaka, H.O.Y. Spectral-broadness simulation of a Littman/Metcalf external cavity diode laser with a dynamic-curvature end mirror. Opt. Express 2023, 31, 27123–27135. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, Y.; Yang, T.; Li, Y.; Wang, Q.; Meng, F.; Cao, J.; Fang, Z.; Li, T.; Zang, E. External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback. Opt. Lett. 2011, 36, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yu, F. A Novel Wavelength Tuning Method in External Cavity Diode Laser with All-Dielectric Thin Film Fabry-Perot Filter. In Proceedings of the 2010 Symposium on Photonics and Optoelectronics, Chengdu, China, 19–21 June 2010. [Google Scholar] [CrossRef]
- Lewoczko-Adamczyk, W.; Pyrlik, C.; Hger, J.; Schwertfeger, S.; Trnkle, G. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt. Express 2015, 23, 9705–9709. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Cui, J.M.; Ai, M.Z.; Qian, Z.H.; Cao, H.; Huang, Y.F.; Jia, X.J.; Li, C.F.; Guo, G.C. Large-tuning-range frequency stabilization of an ultraviolet laser by an open-loop piezo-electric ceramic controlled Fabry–Pérot cavity. Opt. Express 2021, 29, 24674–24683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Wang, N.; Gao, L.; Feng, M.; Chen, B.; Tsang, Y.H.; Liu, A.Q. Narrow-linewidth external-cavity tunable lasers. In Proceedings of the International Conference on Optical Communications & Networks, Guangzhou, China, 5 November–7 December 2011; IET: Stevenage, UK, 2011. [Google Scholar] [CrossRef]
- Zorabedian, P.; Trutna, W.R., Jr. Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser. Opt. Lett. 1988, 13, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Feng, M.; Feng, Z.; Lam, M.Y.; Gao, L.; Chen, B.; Liu, A.Q.; Tsang, Y.H.; Zhang, X. Narrow-Linewidth Tunable Lasers with Retro-Reflective External Cavity. IEEE Photonics Technol. Lett. 2012, 24, 1591–1593. [Google Scholar] [CrossRef]
- Hao, W.; Peng, H.; Zhang, J.; Zhang, J.; Zhu, H.; Ning, Y. High-Power Narrow-Linewidth Tunable 670.8-nm Master Oscillator Power Amplifier with High Efficiency. IEEE Photonics J. 2017, 9, 1506006. [Google Scholar] [CrossRef]
- Zhu, J.; Qiao, D.; Jones KC, N. 1.7 THz tuning range pivot-point-independent mode-hop-free external cavity diode laser. Opt. Express 2023, 31, 3970–3983. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Ning, Y.; Zeng, Y.; Zhang, J.; Zhang, X.; Qin, L.; Wang, L. Bimodal-sized quantum dots for broad spectral bandwidth emitter. Opt. Express 2015, 23, 32230. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Luo, S.; Ji, H.M.; Ji, H.M.; Yang, X.J.; Liang, P.; Yang, T. Broadband tunable InAs/InP quantum dot external-cavity laser emitting around 1.55 μm. Opt. Express 2015, 23, 18493–18500. [Google Scholar] [CrossRef]
- Asryan, L.; Grundmann, M.; Ledentsov, N.; Stier, O.; Suris, R.; Bimberg, D. Effect of excited-state transitions on the threshold characteristics of a quantum dot laser. IEEE J. Quantum Electron. 2000, 37, 418–425. [Google Scholar] [CrossRef]
- Djie, H.S.; Ooi, B.S.; Fang, X.M.; Wu, Y.; Hopkinson, M. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser. Opt. Lett. 2007, 32, 44–46. [Google Scholar] [CrossRef]
- Varangis, P.M.; Li, H. Low-threshold quantum dot lasers with 201 nm tuning range. Electron. Lett. 2000, 36, 1544–1545. [Google Scholar] [CrossRef]
- Lv, X.Q.; Jin, P.; Wang, Z.G. Broadly Tunable Grating-Coupled External Cavity Laser With Quantum-Dot Active Region. IEEE Photonics Technol. Lett. 2010, 22, 1799–1801. [Google Scholar] [CrossRef]
- Lin, G.; Su, P.Y.; Cheng, H.C. Low threshold current and widely tunable external cavity lasers with chirped multilayer InAs/InGaAs/GaAs quantum-dot structure. Opt. Express 2012, 20, 3941–3947. [Google Scholar] [CrossRef]
- Ortner, G.; Allen, C.N.; Dion, C.; Barrios, P.; Raymond, S. External cavity InAs/InP quantum dot laser with a tuning range of 166 nm. Appl. Phys. Lett. 2006, 88, 1178. [Google Scholar] [CrossRef]
- Gao, F.; Luo, S.; Ji, H.M.; Yang, X.G.; Yang, T. Enhanced performance of tunable external-cavity 1.5 μm InAs/InP quantum dot lasers using facet coating. Appl. Opt. 2015, 54, 472–476. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, S.; Ji, H.; Qu, D.; Huang, Y. Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition. Chin. Phys. B 2021, 30, 018106. [Google Scholar] [CrossRef]
- Nevsky, A.Y.; Bressel, U.; Ernsting, I.; Eisele, C.; Okhapkin, M.; Schiller, S.; Gubenko, A.; Livshits, D.; Mikhrin, S.; Krestnikov, I.; et al. A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges. Appl. Phys. B 2008, 92, 501–507. [Google Scholar] [CrossRef]
- Fedorova, K.A.; Cataluna, M.A.; Krestnikov, I.; Krestnikov, I.; Livshits, D.; Rafailov, E.U. Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers. Opt. Express 2010, 18, 19438. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Akahane, K.; Kawanishi, T.; Omigawa, Y.; Sotobayashi, H.; Yoshioka, Y.; Takai, H. Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique. Opt. Express 2011, 19, B636–B644. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Gong, Q.; Cao, C.F.; Li, S.G.; Wang, Y.; Liu, Q.B.; Yue, L.; Zhang, Y.G.; Feng, S.L.; Ma, C.H. High performance external cavity InAs/InP quantum dot lasers. Appl. Phys. Lett. 2011, 98, 201110. [Google Scholar] [CrossRef]
- Nikitichev, D.I.; Fedorova, K.A.; Ding, Y.; Alhazime, A.; Able, A.; Kaenders, W.; Krestnikov, I.; Livshits, D.; Rafailov, E.U. Broad wavelength tunability from external cavity quantum-dot mode-locked laser. Appl. Phys. Lett. 2012, 101, 395–401. [Google Scholar] [CrossRef]
- Lv, X.; Jin, P.; Wang, Z. Influence of antireflection coating on the performance of broadly tunable quantum dot external cavity laser. J. Nanosci. Nanotechnol. 2018, 18, 7493–7497. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, F.; Lv, Z.; Zhang, Z.; Yang, T.; Wang, Z. Widely Tunable InAs/InP Quantum-Dot External-Cavity Laser with Bent-Waveguide Structure. J. Nanosci. Nanotechnol. 2018, 18, 7426–7429. [Google Scholar] [CrossRef]
- Yuan, H.-H.; Gao, F.; Yang, T. Ultra-broadband unable single- and double-mode InAs/InP quantum dot external-cavity laser emitting around 1.65 μm. Opt. Lett. 2018, 43, 3025–3028. [Google Scholar] [CrossRef]
- Lin, X.; Yang, Y.; Li, X.; Lv, Y.; Wang, Z.; Du, J.; Luo, X.; Zhou, D.; Xiao, C.; Wu, K. Blue lasers using low-toxicity colloidal quantum dots. Nat. Nanotechnol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Dai, H.; Chen, X. Tunable Narrowband Carbon Quantum Dots Laser Based on Self-Assembled Microstructure. Adv. Opt. Mater. 2023, 11, 2301156. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, W.; Fan, J.; Zhou, X.; Wang, Y.; Qu, H.; Zheng, W. High-power tunable dual-wavelength diode laser with a composite external cavity. Opt. Lett. 2022, 47, 2486–2489. [Google Scholar] [CrossRef] [PubMed]
- Zolotovskaya, S.A.; Daghestani, N.; Venus, G.B.; Glebov, L.B.; Smirnov, V.I.; Rafailov, E.U. Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings. Appl. Phys. Lett. 2007, 91, 3521. [Google Scholar] [CrossRef]
- Hermerschmidt, A.; Wang, F.; Eichler, H.J. Dual-wavelength bandwidth-narrowed output of a high-power diode laser using a simple external cavity. Appl. Phys. B 2004, 79, 321–324. [Google Scholar] [CrossRef]
- Zambon, V.; Piché, M.; McCarthy, N. Tunable dual-wavelength operation of an external cavity semiconductor laser. Opt. Commun. 2006, 264, 180–186. [Google Scholar] [CrossRef]
- Chi, M.; Jensen, O.B.; Petersen, P.M. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference. Opt. Lett. 2011, 36, 2626–2628. [Google Scholar] [CrossRef]
- Zheng, Y.; Kurita, T.; Sekine, T.; Kato, Y.; Kawashima, T. Tunable continuous-wave dual-wavelength laser by external-cavity superluminescent diode with a volume Bragg grating and a diffraction grating. Appl. Phys. Lett. 2016, 109, 141107. [Google Scholar] [CrossRef]
- Yuan, H.H.; Gao, F.; Yang, T. Continuously tunable mode-spacing of a dual-mode external cavity InAs/InP quantum dot laser. Appl. Opt. 2017, 56, 6846–6850. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sekine, T.; Kurita, T.; Kato, Y.; Kawashima, T. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating. Jpn. J. Appl. Phys. 2018, 57, 030307. [Google Scholar] [CrossRef]
- Vu, T.N.; Klehr, A.; Sumpf, B.; Wenzel, H.; Erbert, G.; Tränkle, G. Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm. Opt Lett. 2014, 39, 5138–5141. [Google Scholar] [CrossRef] [PubMed]
Author | Quantum Dot | Tunable Range | Output Power | Linewidth | Year | Ref |
---|---|---|---|---|---|---|
H. Li et al. | InAs | 1095–1245 nm | 18 mW | <3 nm | 2000 | [12] |
Yu. A. et al. | InAs | 1125–1280 nm | 200 mW | 30 kHz | 2008 | [59] |
X. Q. Lv et al. | InAs | 1038.3–1246 nm | 200 mW | ~1 nm | 2010 | [54] |
Ksenia A. Fedorova et al. | InAs/GaAs | 1122–1324 nm | 480 mW | 0.13 nm | 2010 | [60] |
Naokatsu Yamamoto et al. | InAs/InGaAs | 1265–1321 nm | 3 mW | 210 kHz | 2011 | [61] |
P. Chen et al. | InAs/InP | 98 nm | 7 mW | 2011 | [62] | |
D. I. Nikitichev et al. | InAs/GaAs | 1182.5–1319 nm | 870 mW | ~1 nm | 2012 | [63] |
Feng Gao et al. | InAs/InP | 1457–1561 nm | 34 mW | 2015 | [57] | |
Xueqin Lv et al. | InAs | 1084.7–1234.3 nm | 223 mW | 2 nm | 2018 | [64] |
Yunyun Ding et al. | InAs/InP | 1442–1582 nm | 20 mW | 2018 | [65] | |
Huihong Yuan et al. | InAs/InP | 1518–1750 nm | 2018 | [66] | ||
YanWang et al. | InAs/InP | 1414–1506 nm | 6.5mW | 2021 | [58] | |
Meng Zhang et al. | carbon | 583–594 nm | 2023 | [67] | ||
Xuyang Lin et al. | ZnSe/ZnS | 417–424 nm | 0.2 nm | 2023 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Song, Y. Recent Advances in Tunable External Cavity Diode Lasers. Appl. Sci. 2025, 15, 206. https://doi.org/10.3390/app15010206
Wang Y, Song Y. Recent Advances in Tunable External Cavity Diode Lasers. Applied Sciences. 2025; 15(1):206. https://doi.org/10.3390/app15010206
Chicago/Turabian StyleWang, Yan, and Yue Song. 2025. "Recent Advances in Tunable External Cavity Diode Lasers" Applied Sciences 15, no. 1: 206. https://doi.org/10.3390/app15010206
APA StyleWang, Y., & Song, Y. (2025). Recent Advances in Tunable External Cavity Diode Lasers. Applied Sciences, 15(1), 206. https://doi.org/10.3390/app15010206