Evaluating the Functionality of a Field-Based Test Battery for the Identification of Risk for Anterior Cruciate Ligament Injury: An Exploratory Factor Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.3.1. Drop Landing
2.3.2. Surface Electromyography
2.3.3. Muscle Strength Testing
2.3.4. Triple Hop for Distance
2.3.5. Landing Error Scoring System
2.3.6. Core Stability
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tayfur, B.; Charuphongsa, C.; Morrissey, D.; Miller, S.C. Neuromuscular function of the knee joint following knee injuries: Does it ever get back to normal? A systematic review with meta-analyses. Sports Med. 2021, 51, 321–338. [Google Scholar] [CrossRef]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br. J. Sports Med. 2014, 48, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, A.J.; Grandhi, R.K.; Schneider, D.K.; Stanfield, D.; Webster, K.E.; Myer, G.D. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Am. J. Sports Med. 2016, 44, 1861–1876. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.A.; Behrend, H.; Henz, S.; Stutz, G.; Rukavina, A.; Kuster, M.S. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Kuenze, C.; Pietrosimone, B.; Currie, K.D.; Walton, S.R.; Kerr, Z.Y.; Brett, B.L.; Chandran, A.; DeFreese, J.D.; Mannix, R.; Echemendia, R.J.; et al. Joint injury, osteoarthritis, and cardiovascular disease risk factors in former national football league athletes: An NFL-LONG Study. J. Athl. Train 2023, 58, 528. [Google Scholar] [CrossRef] [PubMed]
- Lie, M.M.; Risberg, M.A.; Storheim, K.; Engebretsen, L.; Øiestad, B.E. What’s the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. Br. J. Sports Med. 2019, 53, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, C.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Della, V.F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della, V.S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- Huang, Y.L.; Jung, J.; Mulligan, C.M.S.; Oh, J.; Norcross, M.F. A majority of anterior cruciate ligament injuries can be prevented by injury prevention programs: A systematic review of randomized controlled trials and cluster-randomized controlled trials with meta-analysis. Am. J. Sports Med. 2020, 48, 1505–1515. [Google Scholar] [CrossRef]
- Webster, K.E.; Hewett, T.E. Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. J. Orthop. Res. 2018, 36, 2696–2708. [Google Scholar] [CrossRef]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel, -A.A.; Ocarino, J.M.; Fonseca, S.T. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition—Narrative review and new concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, S.T.; Souza, T.R.; Verhagen, E.; van Emmerik, R.; Bittencourt, N.F.N.; Mendonça, L.D.M.; Andrade, A.G.P.; Resende, R.A.; Ocarino, J.M. Sports injury forecasting and complexity: A synergetic approach. Sports Med. 2020, 50, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Tsarbou, C.; Liveris, N.I.; Xergia, S.A.; Papageorgiou, G.; Kvist, J.; Tsepis, E. ACL injury etiology in its context: A systems thinking, group model building approach. J. Clin. Med. 2024, 13, 4928. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Gusztav, F.; Wang, M.; Baker, J.S.; Gu, Y. Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue. Comput. Methods Programs Biomed. 2023, 241, 107761. [Google Scholar] [CrossRef] [PubMed]
- Losciale, J.M.; Truong, L.K.; Ward, P.; Collins, G.S.; Bullock, G.S. Limitations of separating athletes into high or low-risk groups based on a cut-off. A clinical commentary. Int. J. Sports Phys. Ther. 2024, 19, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, L. To do or not to do?—The value of the preseason assessment in sport injury prevention. Int. J. Sports Phys. Ther. 2022, 17, 111–113. [Google Scholar] [CrossRef]
- Tsarbou, C.; Liveris, N.I.; Xergia, S.A.; Tsekoura, M.; Fousekis, K.; Tsepis, E. Pre-season ACL risk classification of professional and semi-professional football players, via a proof-of-concept test battery. Appl. Sci. 2023, 13, 7780. [Google Scholar] [CrossRef]
- Gokeler, A.; Dingenen, B.; Hewett, T.E. Rehabilitation and return to sport testing after anterior cruciate ligament reconstruction: Where are we in 2022? Arthrosc. Sports Med. Rehabil. 2022, 4, e77–e82. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, R.; Jacobsen, P.; Prior, S.; Skazalski, C.; Otten, R.; Johnson, A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J. Sci. Med. Sport 2012, 15, 444–450. [Google Scholar] [CrossRef]
- Hanzlíková, I.; Hébert-Losier, K. Is the landing error scoring system reliable and valid? A systematic review. Sports Health 2020, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the reporting of observational studies in epidemiology (STROBE). Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef] [PubMed]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef]
- Bates, N.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clin. Biomech. 2013, 28, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R. Standards for reporting EMG data. J. Electromyogr. Kinesiol. 1999, 24, I–II. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst, -K.C.; Hägg, G. European Recommendations for Surface Electromyography Results of the SENIAM Project. Available online: http://www.seniam.org/pdf/contents8.PDF (accessed on 5 May 2022).
- Jordan, M.J.; Aagaard, P.; Herzog, W. Asymmetry and thigh muscle coactivity in fatigued anterior cruciate ligament-reconstructed elite skiers. Med. Sci. Sports Exerc. 2017, 49, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bates, N.A.; Schilaty, N.D.; Ueno, R.; Hewett, T.E. Timing of strain response of the ACL and MCL relative to impulse delivery during simulated landings leading up to ACL failure. J. Appl. Biomech. 2020, 36, 148–155. [Google Scholar] [CrossRef]
- Zebis, M.K.; Andersen, L.L.; Bencke, J.; Kjær, M.; Aagaard, P. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am. J. Sports Med. 2009, 37, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. Phys. Med. Rehabil. 2011, 3, 472–479. [Google Scholar] [CrossRef]
- Hansen, E.M.; McCartney, C.N.; Sweeney, R.S.; Palimenio, M.R.; Grindstaff, T.L. Hand-held dynamometer positioning impacts discomfort during quadriceps strength testing: A validity and reliability study. Int. J. Sports Phys. Ther. 2015, 10, 62–68. [Google Scholar] [PubMed]
- Thorborg, K.; Petersen, J.; Magnusson, S.P.; Hölmich, P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand. J. Med. Sci. Sports 2010, 20, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.T.; Shultz, S.J.; Schmitz, R.J.; Perrin, D.H. Triple-hop distance as a valid predictor of lower limb strength and power. J. Athl. Train. 2008, 43, 144. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Squillante, A.; Dawes, J. The single leg triple hop for distance test. Strength Cond. J 2017, 39, 94–98. [Google Scholar] [CrossRef]
- Padua, D.A.; DiStefano, L.J.; Beutler, A.I.; De La Motte, S.J.; DiStefano, M.J.; Marshall, S.W. The landing error scoring system as a screening tool for an anterior cruciate ligament injury–prevention program in elite-youth soccer athletes. J. Athl. Train. 2015, 50, 589–595. [Google Scholar] [CrossRef]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E.; Beutler, A.I. The landing error scoring system (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Liveris, N.I.; Tsarbou, C.; Xergia, S.A.; Papadopoulos, A.; Tsepis, E. Comparison of inter-rater and intra-rater reliability of raters with different levels of experience when using landing error scoring system (LESS) in field-based screening of professional football players. Sports 2024, 12, 242. [Google Scholar] [CrossRef]
- Liveris, N.I.; Tsarbou, C.; Tsimeas, P.D.; Papageorgiou, G.; Xergia, S.A.; Tsiokanos, A. Evaluating the effects of match-induced fatigue on landing ability; the case of the basketball game. Int. J. Exerc. Sci. 2021, 14, 768–778. [Google Scholar]
- Pfile, K.; Boling, M.; Baellow, A.; Zuk, E.; Nguyen, A.-D. Greater core endurance identifies improved mechanics during jump landing in female youth soccer athletes. Women Sport Phys. Act. J. 2024, 32, 1–7. [Google Scholar] [CrossRef]
- De Blaiser, C.; Roosen, P.; Willems, T.; Danneels, L.; Vanden Bossche, L.; De Ridder, R. Is core stability a risk factor for lower extremity injuries in an athletic population? A systematic review. Phys. Ther. Sport 2018, 30, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Chia, L.; de Oliveira, S.D.; McKay, M.J.; Sullivan, J.; Micolis de Azevedo, F.; Pappas, E. Limited support for trunk and hip deficits as risk factors for athletic knee injuries: A systematic review with meta-analysis and best-evidence synthesis. J. Orthop. Sports Phys. Ther. 2020, 50, 476–489. [Google Scholar] [CrossRef]
- De Blaiser, C.; De Ridder, R.; Willems, T.; Danneels, L.; Vanden Bossche, L.; Palmans, T.; Roosen, P. Evaluating abdominal core muscle fatigue: Assessment of the validity and reliability of the prone bridging test. Scand. J. Med. Sci. Sports 2018, 28, 391–399. [Google Scholar] [CrossRef]
- McGill, S.M.; Childs, A.; Liebenson, C. Endurance times for low back stabilization exercises: Clinical targets for testing and training from a normal database. Arch. Phys. Med. Rehabil. 1999, 80, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Coorevits, P.; Danneels, L.; Cambier, D.; Ramon, H.; Vanderstraeten, G. Assessment of the validity of the biering-sørensen test for measuring back muscle fatigue based on EMG median frequency characteristics of back and hip muscles. J. Electromyogr. Kinesiol. 2008, 18, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Watkins, M.W. Exploratory factor analysis: A guide to best practice. J. Black Psychol. 2018, 44, 219–246. [Google Scholar] [CrossRef]
- Gaskin, C.J.; Happell, B. On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and recommendations for future use. Int. J. Nurs. Stud. 2014, 51, 511–521. [Google Scholar] [CrossRef]
- Arumugam, A.; Häger, C.K. Thigh muscle co-contraction patterns in individuals with anterior cruciate ligament reconstruction, athletes and controls during a novel double-hop test. Sci. Rep. 2022, 12, 8431. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.M.; Winkelmann, Z.K.; Ebermann, L.E.; Games, K.E. Triple Hop for distance as a predictor of lower extremity performance in firefighter equipment. Int. J. Exerc. Sci. 2019, 12, 515. [Google Scholar] [CrossRef] [PubMed]
- Hanzlíková, I.; Athens, J.; Hébert-Losier, K. Factors influencing the landing error scoring system: Systematic review with meta-analysis. J. Sci. Med. Sport 2021, 24, 269–280. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD | |
---|---|
Age | 21.32 ± 4.54 |
Weight | 74.64 ± 8.03 |
Height | 178.75 ± 6.42 |
BMI | 23.33 ± 1.83 |
Football starting age | 7.40 ± 2.66 |
Years at professional level | 3.27 ± 3.49 |
F1 (22.5%) Core Stability | F2 (21.63%) GRF | F3 (10.52%) Dynamic Balance | F4 (10.17%) Hamstrings Strength | F5 (8.43%) Q–H EMG Ratio | F6 (5.77%) Quadriceps Performance | |
---|---|---|---|---|---|---|
Q–H EMG ratio pre-landing | 0.844 | |||||
Q–H EMG ratio post-landing | 0.936 | |||||
Hamstrings isometric (brake) | 0.884 | |||||
Hamstrings isometric | 0.866 | |||||
Quadriceps isometric | 0.871 | |||||
THD | 0.731 | |||||
Prone bridge | 0.837 | |||||
Side bridge D | 0.885 | |||||
Side bridge ND | 0.713 | |||||
Peak VGRF normalized | 0.973 | |||||
Total COP length | 0.678 | |||||
COP SDx | 0.791 | |||||
COP Sdy | 0.922 | |||||
RDF | 0.959 | |||||
Biering–Sorensen | 0.667 |
F1 (22.19%) Core Stability | F2 (20.35%) Dynamic Balance | F3 (13.78%) GRF | F4 (10.12%) Q–H EMG Ratio | F5 (8.13%) QD-ABD Strength | |
---|---|---|---|---|---|
Q–H EMG ratio pre-landing | 0.864 | ||||
Q–H EMG ratio post-landing | 0.897 | ||||
Peak VGRF-normalized | 0.973 | ||||
RDF | 0.935 | ||||
Total COP length | 0.704 | 0.318 | |||
COP SDx | 0.725 | ||||
COP Sdy | 0.939 | ||||
Prone bridge | 0.784 | ||||
Side bridge D | 0.869 | ||||
Side bridge ND | 0.886 | ||||
Abductors isometric | 0.828 | ||||
THD | 0.619 | ||||
Quadriceps isometric | 0.848 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsarbou, C.; Liveris, N.I.; Xergia, S.A.; Papageorgiou, G.; Sideris, V.; Giakas, G.; Tsepis, E. Evaluating the Functionality of a Field-Based Test Battery for the Identification of Risk for Anterior Cruciate Ligament Injury: An Exploratory Factor Analysis. Appl. Sci. 2025, 15, 167. https://doi.org/10.3390/app15010167
Tsarbou C, Liveris NI, Xergia SA, Papageorgiou G, Sideris V, Giakas G, Tsepis E. Evaluating the Functionality of a Field-Based Test Battery for the Identification of Risk for Anterior Cruciate Ligament Injury: An Exploratory Factor Analysis. Applied Sciences. 2025; 15(1):167. https://doi.org/10.3390/app15010167
Chicago/Turabian StyleTsarbou, Charis, Nikolaos I. Liveris, Sofia A. Xergia, George Papageorgiou, Vasileios Sideris, Giannis Giakas, and Elias Tsepis. 2025. "Evaluating the Functionality of a Field-Based Test Battery for the Identification of Risk for Anterior Cruciate Ligament Injury: An Exploratory Factor Analysis" Applied Sciences 15, no. 1: 167. https://doi.org/10.3390/app15010167
APA StyleTsarbou, C., Liveris, N. I., Xergia, S. A., Papageorgiou, G., Sideris, V., Giakas, G., & Tsepis, E. (2025). Evaluating the Functionality of a Field-Based Test Battery for the Identification of Risk for Anterior Cruciate Ligament Injury: An Exploratory Factor Analysis. Applied Sciences, 15(1), 167. https://doi.org/10.3390/app15010167