Modeling and Analysis of a Radiative Thermal Memristor
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
Theoretical Models
3. Results and Discussion
3.1. Thermal Hysteresis and Dynamic Characteristics in PCM Thermal Conductivity of the RTM
3.2. Analysis of Memristance and Thermal Conductance in PCM Systems: Insights into Nonlinear Behavior and Phase Transitions
3.3. Impact of Thermal Contrast, Amplitude, and Temperature Variation on Characteristics of the Lissajous Curve
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECM | electrochemical metallization |
VCM | valence change memory |
ReRAM | resistive random-access memory |
OEM | optoelectronic memristor |
AI | artificial intelligence |
PIC | photonic integrated circuits |
PCM | phase-change materials |
M | memristance |
WVO | Tungsten-doped vanadium dioxide |
G | conductance |
NDTR | negative differential thermal resistance |
RTM | radiative thermal memristor |
References
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Illarionov, G.A.; Morozova, S.M.; Chrishtop, V.V.; Einarsrud, M.A.; Morozov, M.I. Memristive TiO2: Synthesis, technologies, and applications. Front. Chem. 2020, 8, 724. [Google Scholar] [CrossRef]
- Kirar, V.P.S. Memristor: The Missing Circuit Element and its Application. Int. Sch. Sci. Res. Innov. 2012, 6, 1395–1397. [Google Scholar]
- Yang, J.J.; Zhang, M.X.; Strachan, J.P.; Miao, F.; Pickett, M.D.; Kelley, R.D.; Medeiros-Ribeiro, G.; Williams, R.S. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 2010, 97, 232102. [Google Scholar] [CrossRef]
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, R. Probing memristive switching in nanoionic devices. Nat. Electron. 2018, 1, 274–287. [Google Scholar] [CrossRef]
- Yang, Y.; Choi, S.; Lu, W. Oxide heterostructure resistive memory. Nano Lett. 2013, 13, 2908–2915. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable nonvolatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef]
- Wang, M.; Cai, S.; Pan, C.; Wang, C.; Lian, X.; Zhuo, Y.; Xu, K.; Cao, T.; Pan, X.; Wang, B.; et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136. [Google Scholar] [CrossRef]
- Goswami, S.; Matula, A.J.; Rath, S.P.; Hedström, S.; Saha, S.; Annamalai, M.; Sengupta, D.; Patra, A.; Ghosh, S.; Jani, H.; et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 2017, 16, 1216–1224. [Google Scholar] [CrossRef]
- Choi, B.J.; Torrezan, A.C.; Norris, K.J.; Miao, F.; Strachan, J.P.; Zhang, M.X.; Ohlberg, D.A.; Kobayashi, N.P.; Yang, J.J.; Williams, R.S. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett. 2013, 13, 3213–3217. [Google Scholar] [CrossRef]
- Borghetti, J.; Snider, G.S.; Kuekes, P.J.; Yang, J.J.; Stewart, D.R.; Williams, R.S. ‘Memristive’switches enable ‘stateful’logic operations via material implication. Nature 2010, 464, 873–876. [Google Scholar] [CrossRef]
- Yan, X.; Qin, C.; Lu, C.; Zhao, J.; Zhao, R.; Ren, D.; Zhou, Z.; Wang, H.; Wang, J.; Zhang, L.; et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl. Mater. Interfaces 2019, 11, 48029–48038. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef]
- Pereira, M.E.; de Piva Martins, R.F.; Fortunato, E.; Barquinha, P.; Kiazadeh, A. Recent progress in optoelectronic memristors for neuromorphic and in-memory computation. Neuromorphic Comput. Eng. 2023, 3, 022002. [Google Scholar] [CrossRef]
- Wang, T.Y.; Meng, J.L.; Li, Q.X.; He, Z.Y.; Zhu, H.; Ji, L.; Sun, Q.Q.; Chen, L.; Zhang, D.W. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 2021, 89, 106291. [Google Scholar] [CrossRef]
- Youngblood, N.; Ríos Ocampo, C.A.; Pernice, W.H.; Bhaskaran, H. Integrated optical memristors. Nat. Photonics 2023, 17, 561–572. [Google Scholar] [CrossRef]
- Lian, C.; Vagionas, C.; Alexoudi, T.; Pleros, N.; Youngblood, N.; Ríos, C. Photonic (computational) memories: Tunable nanophotonics for data storage and computing. Nanophotonics 2022, 11, 3823–3854. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, S.; Zhao, Y.; Zhang, J.; Huang, J. Recent progress in photonic synapses for neuromorphic systems. Adv. Intell. Syst. 2020, 2, 1900136. [Google Scholar] [CrossRef]
- Emboras, A.; Goykhman, I.; Desiatov, B.; Mazurski, N.; Stern, L.; Shappir, J.; Levy, U. Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 2013, 13, 6151–6155. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, M.; Morris, J.; Piacentini, S.; Antesberger, M.; Massa, F.; Crespi, A.; Ceccarelli, F.; Osellame, R.; Walther, P. Experimental photonic quantum memristor. Nat. Photonics 2022, 16, 318–323. [Google Scholar] [CrossRef]
- Ben-Abdallah, P. Thermal memristor and neuromorphic networks for manipulating heat flow. AIP Adv. 2017, 7, 065002. [Google Scholar] [CrossRef]
- Yang, F.; Gordon, M.P.; Urban, J.J. Theoretical framework of the thermal memristor via a solid-state phase change material. J. Appl. Phys 2019, 125, 025109. [Google Scholar] [CrossRef]
- Lee, S.; Hippalgaonkar, K.; Hong, F.; Ko, C.; Suh, J.; Wang, K.; Urban, J.J.; Zhang, X.; Dames, C.; Hartnoll, S.A.; et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 2017, 355, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Heredia, C.L.; Ramirez-Rincon, J.A.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J.J.; Champeaux, C.; Dumas-Bouchiat, F.; Ezzahri, Y.; Joulain, K. Thermal hysteresis measurement of the VO2 emissivity and its application in thermal rectification. Sci. Rep. 2018, 8, 8479. [Google Scholar] [CrossRef] [PubMed]
- Qazilbash, M.M.; Brehm, M.; Andreev, G.O.; Frenzel, A.J.; Ho, P.C.; Chae, B.G.; Kim, B.J.; Yun, S.J.; Kim, H.T.; Balatsky, A.V.; et al. Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide. Phys. Rev. B 2009, 79, 075107. [Google Scholar] [CrossRef]
- Ordonez-Miranda, J.; Ezzahri, Y.; Tiburcio-Moreno, J.; Joulain, K.; Drevil-lon, J. Radiative Thermal Memristor. Phys. Rev. Lett. 2018, 123, 025901. [Google Scholar] [CrossRef]
- Cervantes-Alvarez, F.; Macias, J.D.; Alvarado-Gil, J.J. Heat transport in electrically aligned multiwalled carbon nanotubes dispersed in water. J. Phys. D Appl. Phys. 2018, 51, 065302. [Google Scholar] [CrossRef]
- Silicon Carbide (SiC) Properties and Applications. 2001. Available online: https://www.azom.com/article.aspx?ArticleID=42 (accessed on 5 January 2024).
S/N | Physical Parameters | Symbol | Value | Ref. |
---|---|---|---|---|
1 | Thermal conductivity for metallic phase | 5.3 | [25] | |
2 | Thermal conductivity for insulating phase | 3.4 | [25] | |
3 | Cooling temperature | 301 K | [25] | |
4 | Heating temperature | 310 K | [25] | |
5 | SiC thermal conductivity | 3.88 | [30] | |
6 | Fitting parameter | 1.57 | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odebowale, A.A.; Berhe, A.M.; Hattori, H.T.; Miroshnichenko, A.E. Modeling and Analysis of a Radiative Thermal Memristor. Appl. Sci. 2024, 14, 2633. https://doi.org/10.3390/app14062633
Odebowale AA, Berhe AM, Hattori HT, Miroshnichenko AE. Modeling and Analysis of a Radiative Thermal Memristor. Applied Sciences. 2024; 14(6):2633. https://doi.org/10.3390/app14062633
Chicago/Turabian StyleOdebowale, Ambali Alade, Andergachew Mekonnen Berhe, Haroldo T. Hattori, and Andrey E. Miroshnichenko. 2024. "Modeling and Analysis of a Radiative Thermal Memristor" Applied Sciences 14, no. 6: 2633. https://doi.org/10.3390/app14062633
APA StyleOdebowale, A. A., Berhe, A. M., Hattori, H. T., & Miroshnichenko, A. E. (2024). Modeling and Analysis of a Radiative Thermal Memristor. Applied Sciences, 14(6), 2633. https://doi.org/10.3390/app14062633