Odor Impact Assessment via Dispersion Model: Comparison of Different Input Meteorological Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. CALPUFF
2.2. CALMET
2.2.1. Meteorological Data
2.2.2. CALMET Parameters
2.3. Site Domain
2.4. Emission Sources
2.5. Statistical Metrics
3. Results and Discussion
3.1. Wind Roses
3.2. Contour Maps
- At 5 ouE/m3, 90–95% of the population perceives the odor.
- At 3 ouE/m3, 85% of the population perceives the odor.
- At 1 ouE/m3, 50% of the population perceives the odor.
3.3. Separations Distances
3.4. Statistical Metrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Pérez, J.; de Larrea-Baz, N.F.; Lope, V.; Molina, A.J.; O’Callaghan-Gordo, C.; Alonso, M.H.; Rodríguez-Suárez, M.M.; Mirón-Pozo, B.; Alguacil, J.; Gómez-Acebo, I.; et al. Residential proximity to industrial pollution sources and colorectal cancer risk: A multicase-control study (MCC-Spain). Environ. Int. 2020, 144, 106055. [Google Scholar] [CrossRef]
- Leogrande, S.; Alessandrini, E.R.; Stafoggia, M.; Morabito, A.; Nocioni, A.; Ancona, C.; Bisceglia, L.; Mataloni, F.; Giua, R.; Mincuzzi, A.; et al. Industrial air pollution and mortality in the Taranto area, Southern Italy: A difference-in-differences approach. Environ. Int. 2019, 132, 105030. [Google Scholar] [CrossRef]
- Badach, J.; Kolasińska, P.; Paciorek, M.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Dymnicka, M.; Namieśnik, J. A case study of odour nuisance evaluation in the context of integrated urban planning. J. Environ. Manag. 2018, 213, 417–424. [Google Scholar] [CrossRef]
- Brancher, M.; Griffiths, K.D.; Franco, D.; de Melo Lisboa, H. A review of odour impact criteria in selected countries around the world. Chemosphere 2017, 168, 1531–1570. [Google Scholar] [CrossRef] [PubMed]
- Hawko, C.; Verriele, M.; Hucher, N.; Crunaire, S.; Leger, C.; Locoge, N.; Savary, G. A review of environmental odor quantification and qualification methods: The question of objectivity in sensory analysis. Sci. Total Environ. 2021, 795, 148862. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Guarino, M.; Bacenetti, J. Measurements techniques and models to assess odor annoyance: A review. Environ. Int. 2020, 134, 105261. [Google Scholar] [CrossRef] [PubMed]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, M.T.; Geretto, M.; Pulliero, A.; Izzotti, A. Odor emissions: A public health concern for health risk perception. Environ. Res. 2022, 204, 112121. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S. Odour Regulation and Policies. Odour Impact Assessment Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Bokowa, A.; Diaz, C.; Koziel, J.A.; McGinley, M.; Barclay, J.; Schauberger, G.; Guillot, J.-M.; Sneath, R.; Capelli, L.; Zorich, V.; et al. Summary and overview of the odour regulationsworldwide. Atmosphere 2021, 12, 206. [Google Scholar] [CrossRef]
- Cai, B.; Wang, J.; Long, Y.; Li, W.; Liu, J.; Ni, Z.; Bo, X.; Li, D.; Wang, J.; Chen, X.; et al. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach. J. Environ. Manag. 2015, 164, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Dinçer, F.; Dinçer, F.K.; Sarı, D.; Ceylan, Ö.; Ercan, Ö. Dispersion modeling and air quality measurements to evaluate the odor impact of a wastewater treatment plant in İzmir. Atmos. Pollut. Res. 2020, 11, 2119–2125. [Google Scholar] [CrossRef]
- Varela-Bruce, C.; Antileo, C. Assessment of odour emissions by the use of a dispersion model in the context of the proposed new law in Chile. J. Environ. Manag. 2021, 295, 113208. [Google Scholar] [CrossRef] [PubMed]
- Barbulescu, A.; Barbes, L. Modeling the carbon monoxide dissipation in Timisoara, Romania. J. Environ. Manag. 2017, 204, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Dourado, H.; Santos, J.M.; Reis, N.C.; Mavroidis, I. Development of a fluctuating plume model for odour dispersion around buildings. Atmos. Environ. 2014, 89, 148–157. [Google Scholar] [CrossRef]
- Geng, X.; Xie, Z.; Zhang, L. Influence of emission rate on atmospheric dispersion modeling of the Fukushima Daiichi Nuclear Power Plant accident. Atmos. Pollut. Res. 2017, 8, 439–445. [Google Scholar] [CrossRef]
- Holnicki, P.; Kałuszko, A.; Trapp, W. An urban scale application and validation of the CALPUFF model. Atmos. Pollut. Res. 2016, 7, 393–402. [Google Scholar] [CrossRef]
- Ionov, D.V.; Makarova, M.V.; Kostsov, V.S.; Foka, S.C. Assessment of the NOX integral emission from the St. Petersburg megacity by means of mobile DOAS measurements combined with dispersion modelling. Atmos. Pollut. Res. 2022, 13, 101598. [Google Scholar] [CrossRef]
- Lateb, M.; Meroney, R.N.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M.C. On the use of numerical modelling for near-field pollutant dispersion in urban environments—A review. Environ. Pollut. 2016, 208, 271–283. [Google Scholar] [CrossRef]
- Li, R.; Yuan, J.; Li, X.; Zhao, S.; Lu, W.; Wang, H.; Zhao, Y. Health risk assessment of volatile organic compounds (VOCs) emitted from landfill working surface via dispersion simulation enhanced by probability analysis. Environ. Pollut. 2023, 316, 120535. [Google Scholar] [CrossRef]
- Milazzo, M.F.; Ancione, G.; Lisi, R. Emissions of volatile organic compounds during the ship-loading of petroleum products: Dispersion modelling and environmental concerns. J. Environ. Manag. 2017, 204, 637–650. [Google Scholar] [CrossRef]
- de Ferreyro Monticelli, D.; Santos, J.M.; Dourado, H.O.; Moreira, D.M.; Reis, N.C. Assessing particle dry deposition in an urban environment by using dispersion models. Atmos. Pollut. Res. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Invernizzi, M.; Brancher, M.; Sironi, S.; Capelli, L.; Piringer, M.; Schauberger, G. Odour impact assessment by considering short-term ambient concentrations: A multi-model and two-site comparison. Environ. Int. 2020, 144, 105990. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Otto, C.; Reeves, D. Performing CALPUFF Analyses with Pseudo-Station Data Derived from MM5 Data. 2000. Available online: https://d3pcsg2wjq9izr.cloudfront.net/files/3783/articles/5161/tp_perform_calpuff.pdf (accessed on 13 May 2023).
- Tagliaferri, F.; Invernizzi, M.; Capelli, L. A sensitivity analysis applied to SPRAY and CALPUFF models when simulating dispersion from industrial fires. Atmos. Pollut. Res. 2022, 13, 101249. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, Y.; Wang, L.; Lin, C.-J.; Jang, C.; Zhou, Q.; Yu, B.; Wang, S.; Xing, J.; Yu, L. Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China. Environ. Pollut. 2019, 250, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Brancher, M.; Hieden, A.; Baumann-Stanzer, K.; Schauberger, G.; Piringer, M. Performance evaluation of approaches to predict sub-hourly peak odour concentrations. Atmos. Environ. X 2020, 7, 100076. [Google Scholar] [CrossRef]
- Hernández-Garces, A.; Cécé, R.; Ferrer, A.; Bernard, D.; Jauregui-Haza, U.; Zahibo, N.; González, J.A. Intercomparison of FLEXPART and CALPUFF dispersion models. An application over a small tropical island. Atmósfera 2020, 34, 337–355. [Google Scholar] [CrossRef]
- Tagliaferri, F.; Facagni, L.; Invernizzi, M.; Sironi, S. Variability in odour impact assessment due to different cloud cover estimation approaches: A northern Italy case study. Case Stud. Chem. Environ. Eng. 2023, 8, 100492. [Google Scholar] [CrossRef]
- Mistry, M.N.; Schneider, R.; Masselot, P.; Royé, D.; Armstrong, B.; Kyselý, J.; Orru, H.; Sera, F.; Tong, S.; Lavigne, É.; et al. Comparison of weather station and climate reanalysis data for modelling temperature-related mortality. Sci. Rep. 2022, 12, 5178. [Google Scholar] [CrossRef]
- Velázquez-Zapata, J.A. Comparing meteorological data sets in the evaluation of climate change impact on hydrological indicators: A case study on a Mexican basin. Water 2019, 11, 2110. [Google Scholar] [CrossRef]
- Murguia, W.; Pagans, E.; Barclay, J.; Scire, J. Case study: A comparison of predicted Odour exposure levels in Barcelona using CALPUFF lite, CALPUFF NoObs and CALPUFF Hybrid model. Chem. Eng. Trans. 2014, 40, 31–36. [Google Scholar] [CrossRef]
- Lombardia, D.G.R. n.IX/3018. Determinazioni Generali in Merito Alla Caratterizzazione delle Emissioni Gassose in Atmosfera Derivanti da Attività a Forte Impatto Odorigeno. 2012, pp. 18–49. Available online: https://www.regione.lombardia.it/wps/wcm/connect/1008c34a-79b9-4185-8557-6ffd65eb7e86/DGR+3018_2012.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-1008c34a-79b9-4185-8557-6ffd65eb7e86-nK1Rz2t (accessed on 13 May 2023).
- Scire, J.S.; Strimaitis, D.G.; Yamartino, R.J. A User’s Guide for the CALPUFF Dispersion Model; Earth Tech, Inc.: Concord, MA, USA, January 2000; p. 521. Available online: http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf (accessed on 17 April 2023).
- US-EPA. Meteorological Monitoring Guidance for Regulatory Modeling Applications; Epa-454/R-99-005. 2000; p. 171. Available online: http://www.epa.gov/scram001/guidance/met/mmgrma.pdf (accessed on 15 April 2023).
- US-EPA. Appendix W: Revisions to the Guideline on Air Quality Models: Enhancements to the AERMOD Dispersion Modeling System and Incorporation of Approaches to Address Ozone and Fine Particulate Matter. 2017. Available online: https://www.federalregister.gov/documents/2017/01/17/2016-31747/revisions-to-the-guideline-on-air-quality-models-enhancements-to-the-aermod-dispersion-modeling (accessed on 15 March 2023).
- Rzeszutek, M. Parameterization and evaluation of the CALMET/CALPUFF model system in near-field and complex terrain–Terrain data, grid resolution and terrain adjustment method. Sci. Total Environ. 2019, 689, 31–46. [Google Scholar] [CrossRef]
- Scire, J.; Robe, F.; Fernau, M.; Yamartino, R. A User’s Guide for the CALMET Meteorological Model; Earth Tech, Inc.: Concord, MA, USA, 2000. [Google Scholar]
- Rood, A.S. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos. Environ. 2014, 89, 707–720. [Google Scholar] [CrossRef]
- Varela, A.; Carnesoltas, M. Condiciones que favorecen el desarrollo de tornados en las provincias occidentales de Cuba en los períodos lluvioso y poco lluvioso. Rev. Cuba. De Meteorol. 2017, 23, 312–327. [Google Scholar]
- Roque, A.; Pérez, D.; Rivero, I.; Muñiz, L.; Báez, R. Estudio del contenido integral del vapor de agua en la zona tropical comprendida entre los 17? y 25? latitud norte y los 66? y 97? longitud oeste. Rev. Cuba. De Meteorol. 2002, 9, 3–11. [Google Scholar]
- Gandin, L.S. The Planning of Meteorological Station Networks; WMO Technical Note: Geneva, Switzerland, 2017. [Google Scholar]
- Kitchen, M. Representativeness errors for radiosonde observations. Q. J. R. Meteorol. Soc. 1989, 115, 673–700. [Google Scholar] [CrossRef]
- US-EPA. Documentation of the Evaluation of CALPUFF and Other Long Range Transport Models Using Tracer Field Experiment Data; ENVIRON International Corporation: Novato, CA, USA, 2012; pp. 1–147. Available online: http://www.epa.gov/scram001/reports/EPA-454_R-12-003.pdf (accessed on 12 February 2023).
- Hernández-Garces, A.; González, J.A.; Casares, J.; Turtos, L.; Alvarez, L.; Jauregui-Haza, U. Caso de estudio en la bahía de jagua al sur de Cuba mediante un acoplamiento WRF/CALMET. Rev. Bras. Meteorol. 2017, 32, 659–667. [Google Scholar] [CrossRef]
- The, J.L.; Lee, R.F. The Effect of the CALMET Surface Layer Weighting Parameter R1 on the Accuracy of CALMET at Other Nearby Sites: A Case Stud. 2003. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5765d4a68fa1c3038a71d47e194fd88412e2a5a3 (accessed on 17 April 2023).
- Dresser, A.L.; Huizer, R.D. CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. J. Air Waste Manag. Assoc. 2011, 61, 647–659. [Google Scholar] [CrossRef] [PubMed]
- US-EPA. User’s Guide for the AMS/EPA Regulatory Model (AERMOD); Epa-454/B-18-001; Air Quality Assessment Division: Research Triangle Park, NC, USA, 2018; Volume EPA-454/B-, pp. 1–137. Available online: http://www.epa.gov/scram001/7thconf/aermod/aermodugb.pdf (accessed on 5 March 2023).
- Lucernoni, F. The evaluation of the Odour Emission Rate for passive area sources: A new approach. Chem. Eng. Trans. 2015, 43, 2149–2154. [Google Scholar] [CrossRef]
- Tagliaferri, F.; Invernizzi, M.; Sironi, S. Experimental evaluation on liquid area sources: Influence of wind velocity and temperature on the wind tunnel sampling of VOCs emissions from wastewater treatment plants. Chemosphere 2023, 312, 137337. [Google Scholar] [CrossRef]
- Tagliaferri, F.; Invernizzi, M.; Sironi, S. Influence of wind velocity on the emission rate of acetone aqueous solution at different concentrations. Chem. Eng. Trans. 2021, 12, 5178. [Google Scholar] [CrossRef]
- Gustafson, W.I.; Yu, S. Generalized approach for using unbiased symmetric metrics with negative values: Normalized mean bias factor and normalized mean absolute error factor. Atmos. Sci. Lett. 2012, 13, 262–267. [Google Scholar] [CrossRef]
- Hanna, S.; Chang, J. Skyscraper rooftop tracer concentration observations in Manhattan and comparisons with urban dispersion models. Atmos. Environ. 2015, 106, 215–222. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
Site | Station Acronym | Type | Coordinates | Elevation ASL [m] | Distance Met Station–Domain Center [km] |
---|---|---|---|---|---|
Italy | LDR | Surface | 45.32° N, 9.27° E | 88 | 2 |
Italy | LIML | Upper | 45.43° N, 9.28° E | 101 | 13 |
Cuba | AGP | Surface | 22.37° N, 80.83° W | 24 | 2 |
Cuba | KW | Upper | 24.55° N, 81.75° W | 6 | 240 |
Parameters | ||
---|---|---|
TERRAD Italy | 3 | [km] |
TERRAD Cuba | 0.1 | [km] |
R1 | 5.7 | [km] |
R2 | 8.5 | [km] |
RMAX1 | 11.4 | [km] |
RMAX2 | 17 | [km] |
BIAS (for each vertical layer) | −1, −0.67, −0.33, 0, 0.2, 0.4, 0.6, 0.8, 1, 1 |
Point Source | ||
Height | 9 | [m] |
Diameter | 1.2 | [m] |
Odor Emission Rate (OER) | 2000 | [ouE/s] |
Exit temperature | 313 | [K] |
Exit velocity | 5.4 | [m/s] |
Area Source | ||
Height | 3 | [m] |
σz0 | 1.4 | [m] |
Odor Emission Rate (OER) | 3500 | [ouE/s] |
Specific Odor Emission Rate (SOER) | 1.39 | [ouE/m2/s] |
Length X | 42 | [m] |
Length Y | 60 | [m] |
NO-OBS | OBS | HYBRID | ||||
---|---|---|---|---|---|---|
Italy | Cuba | Italy | Cuba | Italy | Cuba | |
Domain | 6 km × 6 km (100 m mesh) | 6 km × 6 km (100 m mesh) | 6 km × 6 km (100 m mesh) | 6 km × 6 km (100 m mesh) | 6 km × 6 km (100 m mesh) | 6 km × 6 km (100 m mesh) |
Sources | Point + area | Point + area | Point + area | Point + area | Point + area | Point + area |
Topographic data | SRTM1 (Global—30 m) | SRTM1 (Global—30 m) | SRTM1 (Global—30 m) | SRTM1 (Global—30 m) | SRTM1 (Global—30 m) | SRTM1 (Global—30 m) |
Surface meteorological Data | WRF (1 km) | WRF (3 km) | Landriano Cascina Marianna Station (ARPA Lombardia) | Aguada de Pasajeros Station (Cienfuegos) | Landriano Cascina Marianna Station (ARPA Lombardia) | Aguada de Pasajeros Station (Cienfuegos) |
Upper meteorological Data | WRF (1 km) | WRF (3 km) | NOAA/ESRL Radiosonde Database, (Milano Linate Airport) | Key West (Florida) upper air station | WRF (1 km) | WRF (3 km) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliaferri, F.; Facagni, L.; Invernizzi, M.; Ferrer Hernández, A.L.; Hernández-Garces, A.; Sironi, S. Odor Impact Assessment via Dispersion Model: Comparison of Different Input Meteorological Datasets. Appl. Sci. 2024, 14, 2457. https://doi.org/10.3390/app14062457
Tagliaferri F, Facagni L, Invernizzi M, Ferrer Hernández AL, Hernández-Garces A, Sironi S. Odor Impact Assessment via Dispersion Model: Comparison of Different Input Meteorological Datasets. Applied Sciences. 2024; 14(6):2457. https://doi.org/10.3390/app14062457
Chicago/Turabian StyleTagliaferri, Francesca, Laura Facagni, Marzio Invernizzi, Adrian Luis Ferrer Hernández, Anel Hernández-Garces, and Selena Sironi. 2024. "Odor Impact Assessment via Dispersion Model: Comparison of Different Input Meteorological Datasets" Applied Sciences 14, no. 6: 2457. https://doi.org/10.3390/app14062457
APA StyleTagliaferri, F., Facagni, L., Invernizzi, M., Ferrer Hernández, A. L., Hernández-Garces, A., & Sironi, S. (2024). Odor Impact Assessment via Dispersion Model: Comparison of Different Input Meteorological Datasets. Applied Sciences, 14(6), 2457. https://doi.org/10.3390/app14062457