A Comprehensive Review of the Nutritional Composition and Toxicological Profile of Date Seed Coffee (Phoenix dactylifera)
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Compositional Data on Date Seeds and Date Seed Coffee Products
3.1. Macronutrients
3.1.1. Protein
3.1.2. Carbohydrates
Material/Date Variety | Raw/Roasted | Carbohydrates (Fiber) | Ash | Fat | Protein | Reference |
---|---|---|---|---|---|---|
Date seeds 2,3 | Roasted | 84.3 (29.7) | 1.4 | 8.5 | 5.8 | [9] |
Hillawey (Iraq) 1 | Raw | 80.5 (29.1) | 1.5 | 5.7 | 6.4 | [29] |
Saidy (Egypt) 2 | Raw | 73.6 | 3.4 | 9.6 | 6.2 | [25] |
Degla-Baïdha and Tafezouine 1 | Raw | - | - | 5.5 | - | [30] |
Deglet Nour, Allig (Tunisia) 2 | Dried at 50 °C | 83.1; 81.0 | 1.1 | 10.2; 12.7 | 5.6; 5.2 | [11] |
Summary: 23 date varieties 1 | n.a. | 70.9–86.9 | 0.9–1.2 | 5.0–12.5 | 2.3–6.9 | [31] |
Red Sayer (Emirates) 2,3 | Roasted at 125 °C for 30 min | 78.5 | 1.2 | 7.3 | 8.6 | [32] |
Kabkab (Iran) 1 | Raw; Date seed flour | 77.3 (22.1) | 1.1 | 9.6 | 5.5 | [33] |
Soukari (Saudi Arabia) 1,3 | Raw; Roasted at 220 °C | - | 0.9; 1.0 | 8.6; 9.8 | 11.1; 8.8 | [24] |
P. canariensis (Emirates) 2 | Dried at 60 °C for 24 h | 72.6 | 1.2 | 10.4 | 5.7 | [23] |
Roasted seeds (Oman) 1,3 | Roasted at 220 °C for 15–20 min | 83.7 (21.4) | 1.0 | 8.1 | 7.1 | [2] |
Roasted date seeds (commodity: India) 1,3 | Roasted | 76 | 8.8 | 0.3 | 11.6 | [34] |
Roasted date seeds (Jordan) 2,3 | Roasted | 60.8 (6.7) | 17.2 | 0.8 | 11.7 | [35] |
Heated date seed powder (Tunisia) 2 | Oven- and sun-dried | 25.6; 33.8 | - | 17.4; 31.5 | 15; 26.5 | [36] |
3.1.3. Fiber
3.1.4. Fat
3.2. Minerals
3.3. Vitamins
3.4. Plant Secondary Metabolites
3.4.1. Phenolic Acids and Flavonoids
3.4.2. Phytosterols
3.4.3. Carotenoids
3.4.4. Caffeine
3.5. Contaminants
3.5.1. Metals
3.5.2. Toxins (Alkaloids and Mycotoxins)
3.5.3. Thermal Reaction and Degradation Products, Including Aldehydes, Furans, Furfurals, and Acrylamide
4. Consumption and Use of Date Seeds
4.1. Preparation of Date Seed Coffee
4.1.1. Processing of Date Seeds
4.1.2. Roasting
4.1.3. Grinding and Filtering
4.2. Date Seed Beverages
4.3. Target Consumers
4.4. Other Food Uses
4.5. Non-Food Use Possibilities
5. Toxicological Data
5.1. Acute Toxicological Data
5.2. Subchronic and Chronic Toxicological Data
5.3. Cytotoxic Activity
5.4. Other Animal Data
6. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Acrylamide |
Aβ | Beta amyloid |
AD | Alzheimer’s disease |
ALP | Alkaline phosphatase |
ALT | Alanine transaminase |
AST | Aspartate transaminase |
b.w. | Body weight |
CK | Creatine kinase |
CRP | C-reactive protein |
DS | Date seeds |
d.w. | Dry weight |
EFSA | European Food Safety Authority |
EU | European Union |
GAE | Gallic acid equivalent |
GC | Gas chromatography |
HbA1c | Glycated hemoglobin |
HCT-116 | Colon cancer cells |
HDL | High-density lipoprotein |
HMF | Hydroxymethylfurfural |
HPLC | High-performance liquid chromatography |
HSCAS | Hydrated sodium calcium aluminosilicate |
IARC | International Agency for Research on Cancer |
i.p. | Intraperitoneal |
µg | Microgram, corresponding to 10−3 mg |
LC | Liquid chromatography |
LD50 | Lethal dose, 50% |
LDH-P | Lactate dehydrogenase |
LDL | Low-density lipoprotein |
MCF-7 | Breast cancer cells |
MDA | Malondialdehyde |
mg | Milligram |
mL | Milliliter |
MOAHs | Mineral oil aromatic hydrocarbons |
MOSHs | Mineral oil saturated hydrocarbons |
MRC-5 | Human embryonal lung fibroblast |
MS | Mass spectrometry |
n.a. | Not applicable |
n.d. | Not detected |
NO | Nitric oxide |
NOAEL | No Observed Adverse Effect Level |
ORAC | Oxygen radical absorbance capacity |
PDA | Photodiode array |
SC-CO2 | Supercritical carbon dioxide (for supercritical fluid extraction (SFE)) |
sp., spp. | Biology, undefined species |
TGs | Triglycerides, total cholesterol |
TPC | Total phenolic content |
TWI | Tolerable weekly intake |
UAE | Ultrasonic-assisted extraction |
UV | Ultraviolet |
References
- Mrabet, A.; Jiménez-Araujo, A.; Guillén-Bejarano, R.; Rodríguez-Arcos, R.; Sindic, M. Date Seeds: A Promising Source of Oil with Functional Properties. Foods 2020, 9, 787. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kasapis, S.; Al-Kharusi, N.S.Z.; Al-Marhubi, I.M.; Khan, A.J. Composition Characterisation and Thermal Transition of Date Pits Powders. J. Food Eng. 2007, 80, 1–10. [Google Scholar] [CrossRef]
- Faostat. Statistical Databases (2018–2019). Available online: https://www.fao.org/faostat/en/#home (accessed on 21 January 2024).
- Ghnimi, S.; Almansoori, R. Quality Evaluation of Coffee-Like Beverage from Date Seeds (Phoenix dactylifera L.). J. Food Process. Technol. 2015, 6, 525. [Google Scholar] [CrossRef]
- Najjar, Z.; Stathopoulos, C.; Chockchaisawasdee, S. Utilization of Date By-Products in the Food Industry. Emir. J. Food Agric. 2020, 32, 808–815. [Google Scholar] [CrossRef]
- Niazmand, R. Date Wastes and By-Products. In Handbook of Fruit Wastes and By-Products; CRC Press: Boca Raton, FL, USA, 2022; pp. 55–72. [Google Scholar] [CrossRef]
- Seçmeler, Ö.; Sevimli, Y. Recipes for the Valorization of Culinary By-Products and Leftovers. In Gastronomy and Food Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 165–192. [Google Scholar] [CrossRef]
- Hanausek, T.F. Dattelkerne als Kaffeesurrogat. Chem. Ztg. 1886, 10, 701–702. [Google Scholar]
- Beythien, A.; Griebel, C.; Grünhut, L.; Scholl, A.; Spieckermann, A.; Thienemann, A.; Tillmans, J.; Windisch, K. Kaffee-Ersatzstoffe. In Untersuchung von Nahrungs-, Genussmitteln und Gebrauchsgegenständen: 3. Teil: Die Genussmittel, Wasser, Luft, Gebrauchsgegenstände, Geheimmittel und ähnliche Mittel; König, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1918; pp. 196–231. [Google Scholar] [CrossRef]
- Khider, M.; Ahmed, N.; Metry, W.A. Functional Ice Cream with Coffee-Related Flavor. Food Nutr. Sci. 2021, 12, 826–847. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Drira, N.-E.; Attia, H. Date Seeds: Chemical Composition and Characteristic Profiles of the Lipid Fraction. Food Chem. 2004, 84, 577–584. [Google Scholar] [CrossRef]
- Abdillah, L.A.; Andriani, M. Friendly Alternative Healthy Drinks through the Use of Date Seeds as Coffee Powder. In Proceedings of the International Conference on Entrepreneurship and Business Management (ICEBM) 2012, Jakarta, Indonesia; 2012; pp. 80–87. [Google Scholar] [CrossRef]
- Sirisena, S.; Ng, K.; Ajlouni, S. The Emerging Australian Date Palm Industry: Date Fruit Nutritional and Bioactive Compounds and Valuable Processing By-Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 813–823. [Google Scholar] [CrossRef]
- Sarraf, M.; Jemni, M.; Kahramanoğlu, I.; Artés, F.; Shahkoomahally, S.; Namsi, A.; Ihtisham, M.; Brestic, M.; Mohammadi, M.; Rastogi, A. Commercial Techniques for Preserving Date Palm (Phoenix dactylifera) Fruit Quality and Safety: A Review. Saudi J. Biol. Sci. 2021, 28, 4408–4420. [Google Scholar] [CrossRef]
- Trillich, H. Über Malzkaffee und Kaffeesurrogate. Z. Angew. Chem. 1891, 4, 540–547. [Google Scholar] [CrossRef]
- Anon. Ueber die Dattelkerne. Arch. Pharm. Pharm. Med. Chem. 1881, 219, 376–377. [Google Scholar] [CrossRef]
- Frerichs, G.; Arends, G.; Zörnig, H. Phoenix. In Hagers Handbuch der Pharmazeutischen Praxis; Springer: Berlin/Heidelberg, Germany, 1927; pp. 425–426. [Google Scholar] [CrossRef]
- Mayerhofer, E.; Pirquet, C. Lexikon der Ernährungskunde; Springer: Vienna, Austria, 1925. [Google Scholar] [CrossRef]
- Al-Dossary, S.A.A. Verfahren zur Herstellung eines Kaffeeartigen Getränks aus Dattelkernen—Dattelkaffee. German Patent DE3931504A1, 21 September 1989. [Google Scholar]
- Cohen, S.; Haberman, G.; Kshuk, H.; Gendler, S. Date Kernel Preparation. U.S. Patent US20110143001A1, 16 June 2011. [Google Scholar]
- Kbhar, T.; Amsterdam, The Netherlands; Daffee, B.V.; Amsterdam, The Netherlands. Personal Communication, 2023.
- European Food Safety Authority. Macronutrient. Available online: https://www.efsa.europa.eu/en/glossary/macronutrient (accessed on 21 January 2024).
- Nehdi, I.; Omri, S.; Khalil, M.I.; Al-Resayes, S.I. Characteristics and Chemical Composition of Date Palm (Phoenix canariensis) Seeds and Seed Oil. Ind. Crop. Prod. 2010, 32, 360–365. [Google Scholar] [CrossRef]
- Babiker, E.E.; Atasoy, G.; Özcan, M.M.; Juhaimi, F.A.; Ghafoor, K.; Ahmed, I.A.M.; Almusallam, I.A. Bioactive Compounds, Minerals, Fatty Acids, Color, and Sensory Profile of Roasted Date (Phoenix dactylifera L.) Seed. J. Food Process. Preserv. 2020, 44, e14495. [Google Scholar] [CrossRef]
- Kelany, M.; Yemiş, O. Improving the Functional Performance of Date Seed Protein Concentrate by High-Intensity Ultrasonic Treatment. Molecules 2022, 28, 209. [Google Scholar] [CrossRef] [PubMed]
- Al Juhaimi, F.; Özcan, M.M.; Adiamo, O.Q.; Alsawmahi, O.N.; Ghafoor, K.; Babiker, E.E. Effect of Date Varieties on Physico-Chemical Properties, Fatty Acid Composition, Tocopherol Contents, and Phenolic Compounds of Some Date Seed and Oils. J. Food Process. Preserv. 2018, 42, e13584. [Google Scholar] [CrossRef]
- Wehmer, C. Fam. Palmae (Palmen). Die Pflanzenstoffe, Botanisch-Systematisch Bearbeitet: Chemische Bestandteile und Zusammensetzung der Einzelnen Pflanzenarten, Rohstoffe und Produkte, Phanerogamen; Verlag von Gustav Fischer: Jena, Germany, 1911; pp. 68–70. [Google Scholar]
- Alharbi, K.L.; Raman, J.; Shin, H.-J. Date Fruit and Seed in Nutricosmetics. Cosmetics 2021, 8, 59. [Google Scholar] [CrossRef]
- Elmadfa, I.; Domke, I. Wirkung von Dattelkernmehl und Cellulose auf Wachstum, Futterverwertung und Lipidstoffwechselparameter wachsender und ausgewachsener Ratten. Z. Ernährungswiss. 1978, 17, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Boukouada, M.; Ghiaba, Z.; Gourine, N.; Bombarda, I.; Saidi, M.; Yousfi, M. Chemical Composition and Antioxidant Activity of Seed Oil of Two Algerian Date Palm Cultivars (Phoenix dactylifera). Nat. Prod. Commun. 2014, 9, 1777–1780. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Waly, M.; Singh, V.; Sequeira, V.; Rahman, M. Chemical Compositions of Date-Pits and Its Potential for Developing Value-Added Product—A Review. Pol. J. Food Nutr. Sci. 2014, 64, 215–226. [Google Scholar] [CrossRef]
- Warnasih, S.; Mulyati, A.H.; Widiastuti, D.; Subastian, Z.; Ambarsari, L.; Sugita, P. Chemical Characteristics, Antioxidant Activity, Total Phenol, and Caffeine Contents in Coffee of Date Seeds (Phoenix dactylifera L.) of Red Sayer Variety. J. Pure Appl. Chem. Res. 2019, 8, 179–184. [Google Scholar] [CrossRef]
- Habibi Najafi, M.B.; Pourfarzad, A.; Zahedi, H.; Ahmadian-Kouchaksaraie, Z.; Haddad Khodaparast, M.H. Development of Sourdough Fermented Date Seed for Improving the Quality and Shelf Life of Flat Bread: Study with Univariate and Multivariate Analyses. J. Food Sci. Technol. 2016, 53, 209–220. [Google Scholar] [CrossRef]
- Nandhini, K.R.; Sathiya, V. Formulation, Standardisation, Proximate Composition and Shelf Life Analysis of Palm Date Seeds (Phoenix dactylifera) Coffee Powder. Int. J. Home Sci. 2022, 8, 27–31. [Google Scholar] [CrossRef]
- Mohd Jamil, N.A.; Al-Obaidi, J.; Mohd Saleh, N.; Jambari, N.N. Comparative Nutritional and Toxicity Analyses of Beverages from Date Seed and Barley Powders as Caffeine-Free Coffee Alternatives. Int. Food Res. J. 2022, 29, 786–795. [Google Scholar] [CrossRef]
- Wahini, M. Exploration of Making Date Seed’s Flour and Its Nutritional Contents Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2016, 128, 012031. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of Phenolics and Dietary Fibre Extraction from Date Seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef]
- EFSA; Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Carbohydrates and Dietary Fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef]
- Mrabet, A.; Jiménez-Araujo, A.; Fernández-Prior, Á.; Bermúdez-Oria, A.; Fernández-Bolaños, J.; Sindic, M.; Rodríguez-Gutiérrez, G. Date Seed: Rich Source of Antioxidant Phenolics Obtained by Hydrothermal Treatments. Antioxidants 2022, 11, 1914. [Google Scholar] [CrossRef]
- Golshan Tafti, A.; Solaimani Dahdivan, N.; Yasini Ardakani, S.A. Physicochemical Properties and Applications of Date Seed and Its Oil. Int. Food Res. J. 2017, 24, 1399–1406. [Google Scholar]
- Farag, M.A.; Otify, A.M.; El-Sayed, A.M.; Michel, C.G.; ElShebiney, S.A.; Ehrlich, A.; Wessjohann, L.A. Sensory Metabolite Profiling in a Date Pit Based Coffee Substitute and in Response to Roasting as Analyzed via Mass Spectrometry Based Metabolomics. Molecules 2019, 24, 3377. [Google Scholar] [CrossRef]
- Ali-Mohamed, A.Y.; Khamis, A.S.H. Mineral Ion Content of the Seeds of Six Cultivars of Bahraini Date Palm (Phoenix dactylifera). J. Agric. Food Chem. 2004, 52, 6522–6525. [Google Scholar] [CrossRef]
- Bundesinstitut für Risikobewertung Nickel: Schätzung der Langfristigen Aufnahme über Lebensmittel auf Grundlage der BfR-MEAL-Studie. 2022. Available online: https://www.bfr.bund.de/cm/343/nickel-schaetzung-der-langfristigen-aufnahme-ueber-lebensmittel-auf-grundlage-der-bfr-meal-studie.pdf (accessed on 21 January 2024).
- Souda, B.; Rami, R.; Jalloul, B.; Mohamed, D. Roasted Date Palm Seeds (Phoenix dactylifera) as an Alternative Coffee: Chemical Composition and Bioactive Properties. Biomass Conv. Bioref. 2022, 12, 3771–3781. [Google Scholar] [CrossRef]
- European Food Safety Authority. Overview on Tolerable Upper Intake Levels as Derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2018. Available online: https://www.efsa.europa.eu/sites/default/files/2023-11/ul_summary_tables-version-8.pdf (accessed on 21 January 2024).
- Belitz, H.D.; Grosch, W.; Schieberle, P. Minerals. In Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 421–428. [Google Scholar] [CrossRef]
- European Food Safety Authority. Safety of Aluminium from Dietary Intake—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA J. 2008, 6, 754. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations. Codex Alimentarius Commission: Procedural Manual, 27th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131099-1. [Google Scholar]
- Kowalczyk, E.; Givelet, L.; Amlund, H.; Sloth, J.J.; Hansen, M. Risk Assessment of Rare Earth Elements, Antimony, Barium, Boron, Lithium, Tellurium, Thallium and Vanadium in Teas. EFSA J. 2022, 20, e200410. [Google Scholar] [CrossRef]
- EFSA; Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risk for Public Health Related to the Presence of Mercury and Methylmercury in Food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- Felemban, S.; Hamouda, A.F. A Pilot Study of the Effects of Ajwa Date Seed Extract in a Diabetic Animal with Parallel Observations on Human Subjects. J. Pharm. Res. Int. 2022, 34, 23–33. [Google Scholar] [CrossRef]
- European Food Safety Authority. Cadmium in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [Google Scholar] [CrossRef]
- Weißenborn, A.; Bakhiya, N.; Demuth, I.; Ehlers, A.; Ewald, M.; Niemann, B.; Richter, K.; Trefflich, I.; Ziegenhagen, R.; Hirsch-Ernst, K.I.; et al. Höchstmengen für Vitamine und Mineralstoffe in Nahrungsergänzungsmitteln. J. Consum. Prot. Food Saf. 2018, 13, 25–39. [Google Scholar] [CrossRef]
- Radfar, R.; Farhoodi, M.; Ghasemi, I.; Mousavi Khaneghah, A.; Shahraz, F.; Hosseini, H. Assessment of Phenolic Contents and Antioxidant and Antibacterial Activities of Extracts from Four Varieties of Iranian Date Palm (Phoenix dactylifera L.) Seeds. Appl. Food Biotechnol. 2019, 6, 173–184. [Google Scholar] [CrossRef]
- Sirisena, S.; Ken, N.G. Antioxidant Activities and Inhibitory Effects of Free and Bound Polyphenols from Date (Phoenix dactylifera L.) Seeds on Starch Digestive Enzymes. J. Food Sci. 2016, 5, 212–223. [Google Scholar] [CrossRef]
- Sirisena, S.; Zabaras, D.; Ng, K.; Ajlouni, S. Characterization of Date (Deglet Nour) Seed Free and Bound Polyphenols by High-Performance Liquid Chromatography-Mass Spectrometry. J. Food Sci. 2017, 82, 333–340. [Google Scholar] [CrossRef]
- Hilary, S. Study of In Vitro Bioaccessibility and In Vivo Bioavailability of Khalas Variety Date Seed Polyphenols for Functional Application in the Human Diet. Food Science Dissertations. Ph.D. Thesis, United Arab Emirates University, Emirates, United Arab Emirates, 2020. [Google Scholar]
- Fikry, M.; Yusof, Y.; Al-Awaadh, A.; Rahman, R.; Chin, N.; Mousa, E.; Chang, L. Effect of the Roasting Conditions on the Physicochemical, Quality and Sensory Attributes of Coffee-Like Powder and Brew from Defatted Palm Date Seeds. Foods 2019, 8, 61. [Google Scholar] [CrossRef]
- Brouk, M.; Fishman, A. Antioxidant Properties and Health Benefits of Date Seeds. In Functional Properties of Traditional Foods; Kristbergsson, K., Ötles, S., Eds.; Springer: Boston, MA, USA, 2016; pp. 233–240. [Google Scholar] [CrossRef]
- Mojrian Sharghi, F.; Moeenfard, M.; Farhoosh, R.; Mahdavian Mehr, H. Investigation of the Coffea Arabica Substitution with Roasted Date Seed on Physicochemical and Sensory Properties of Coffee Brew. Iran. Food Sci. Technol. Res. J. 2022, 18, 96–112. [Google Scholar] [CrossRef]
- Franca, A.S.; Mendonça, J.C.F.; Oliveira, S.D. Composition of Green and Roasted Coffees of Different Cup Qualities. LWT—Food Sci. Technol. 2005, 38, 709–715. [Google Scholar] [CrossRef]
- Tritsch, N.; Steger, M.C.; Segatz, V.; Blumenthal, P.; Rigling, M.; Schwarz, S.; Zhang, Y.; Franke, H.; Lachenmeier, D.W. Risk Assessment of Caffeine and Epigallocatechin Gallate in Coffee Leaf Tea. Foods 2022, 11, 263. [Google Scholar] [CrossRef]
- Venkatachalam, C.D.; Sengottian, M. Study on Roasted Date Seed Non Caffeinated Coffee Powder as a Promising Alternative. South Asian J. Res. Soc. Sci. Human. 2016, 6, 1387. [Google Scholar] [CrossRef]
- Anusree, K.; Kousalya, L. Evaluation of Caffeine Content in Date Seed-an Alternative Source for Caffeinated Coffee. Int. J. Hum. Sci. 2021, 1, 191–194. [Google Scholar]
- European Parliament and Council of the European Union. Commission Regulation (EU) 2023/915 of 5 May 2023 Amending Regulation (EC) No 1881/2006. Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. EU 2023, L119, 103–157. [Google Scholar]
- Gherbawy, Y.A.; Elhariry, H.M.; Bahobial, A.A.S. Mycobiota and Mycotoxins (Aflatoxins and Ochratoxin) Associated with Some Saudi Date Palm Fruits. Foodborne Pathog. Dis. 2012, 9, 561–567. [Google Scholar] [CrossRef]
- Bhat, R.; Reddy, K.R.N. Challenges and Issues Concerning Mycotoxins Contamination in Oil Seeds and Their Edible Oils: Updates from Last Decade. Food Chem. 2017, 215, 425–437. [Google Scholar] [CrossRef]
- Amal, A.A.H.; Afaf, I.S.; Humaira, R.; Nadine, M.S.M.; Ali, A.A.; Anjana, M.; Gehan, E. Postharvest Fruit Spoilage Bacteria and Fungi Associated with Date Palm (Phoenix dactylifera L.) from Saudi Arabia. Afr. J. Microbiol. Res. 2014, 8, 1228–1236. [Google Scholar] [CrossRef]
- Almaghrabi, M.A. The Occurrence of Aflatoxins in Date Palm (Phoenix dactylifera L.) Worldwide. J. Food Qual. 2022, 2022, 1326861. [Google Scholar] [CrossRef]
- European Food Safety Authority. Update on Furan Levels in Food from Monitoring Years 2004–2010 and Exposure Assessment. EFSA J. 2011, 9, 2347. [Google Scholar] [CrossRef]
- Bundesinstitut für Risikobewertung. 5-HMF-Gehalte in Lebensmitteln Sind Nach Derzeitigem Wissenschaftlichen Kenntnisstand Gesundheitlich Unproblematisch—Stellungnahme Nr. 030/2011 des BfR vom 15. Mai 2011. Available online: https://www.bfr.bund.de/cm/343/5_hmf_gehalte_in_lebensmitteln_sind_nach_derzeitigem_wissenschaftlichen_kenntnisstand_gesundheitlich_unproblematisch.pdf (accessed on 21 January 2024).
- European Food Safety Authority; Benford, D.; Bignami, M.; Chipman, J.K.; Ramos Bordajandi, L. Assessment of the Genotoxicity of Acrylamide. EFSA J. 2022, 20, 7293. [Google Scholar] [CrossRef]
- European Food Safety Authority. Acrylamid. Available online: https://www.efsa.europa.eu/de/topics/topic/acrylamide (accessed on 21 January 2024).
- Austrian Agency for Health and Food Safety GmbH. Acrylamide. Available online: https://www.ages.at/en/human/nutrition-food/residues-contaminants-from-a-to-z/acrylamide (accessed on 21 January 2024).
- Khaloo Kermani, P.; Moeenfard, M.; Farhoosh, R.; Alves, A. Development of an Analytical Approach for Determination of Acrylamide Content in Roasted Date Seed Varieties. Food Sci. Technol. Res. J. 2022, 18, 543–559. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Schwarz, S.; Teipel, J.; Hegmanns, M.; Kuballa, T.; Walch, S.G.; Breitling-Utzmann, C.M. Potential Antagonistic Effects of Acrylamide Mitigation during Coffee Roasting on Furfuryl Alcohol, Furan and 5-Hydroxymethylfurfural. Toxics 2019, 7, 1. [Google Scholar] [CrossRef]
- EFSA; Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Acrylamide in Food. EFSA J. 2015, 13, 4104. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Commission Regulation (EU) 2017/2158 of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food. Off. J. EU 2017, L304, 24–44. [Google Scholar]
- Allam, S.O. Biological Evaluation of Coffee and Non-Coffee Materials. Egypt. J. Food Sci. 2009, 37, 1–16. [Google Scholar]
- Al-Agha, A.S. Study of Conversion Fresh Hyani Date to Dried Dates (Tamer) in Gaza. Master’s Thesis, Al-Azhar University, Gaza, Occupied Palestinian Territory, 2019. [Google Scholar]
- Alalwan, T.A.; Mandeel, Q.A.; Al-Sarhani, L. Traditional Plant-Based Foods and Beverages in Bahrain. J. Ethn. Foods 2017, 4, 274–283. [Google Scholar] [CrossRef]
- EFSA; Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the Safety of Caffeine. EFSA J. 2015, 13, 4102. [Google Scholar] [CrossRef]
- Bouaziz, M.A.; Amara, W.B.; Attia, H.; Blecker, C.; Besbes, S. Effect of the Addition of Defatted Date Seeds on Wheat Dough Performance and Bread Quality. J. Texture Stud. 2010, 41, 511–531. [Google Scholar] [CrossRef]
- Najjar, Z.; Kizhakkayil, J.; Shakoor, H.; Platat, C.; Stathopoulos, C.; Ranasinghe, M. Antioxidant Potential of Cookies Formulated with Date Seed Powder. Foods 2022, 11, 448. [Google Scholar] [CrossRef]
- Benregga, F.Z.; Maghchiche, A.; Nasri, R.; Jraba, A. Valorization of Date Seeds for Preparation of Bio Activated Carbon. J. Fund. Appl. Sci. 2021, 13, 292–309. [Google Scholar] [CrossRef]
- Benmehdi, E.; Mebarki, R. Valorisation Des Noyaux de Dattes Par Production de Bioénergie Dans La Région d’Adrar. Master’s Thesis, Universite d’Adrar Faculte des Sciences et de la Technologie, Adrar, République Algérienne Démocratique et Populaire, 2019. [Google Scholar]
- Raza, M.; Inayat, A.; Al Jaberi, B.; Said, Z.; Ghenai, C. Simulation of the Pyrolysis Process Using Blend of Date Seeds and Coffee Waste as Biomass. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020; Volume 2020, pp. 1–5. [Google Scholar] [CrossRef]
- Mohamed, D.A.; Al-Okbi, S.Y. In Vivo Evaluation of Antioxidant and Anti-Inflammatory Activity of Different Extracts of Date Fruits in Adjuvant Arthritis. Pol. J. Food Nutr. Sci. 2004, 54, 397–402. [Google Scholar]
- Ali Zarie, A.; Osman, M.A.; Alshammari, G.M.; Hassan, A.B.; ElGasim Ahmed Yagoub, A.; Abdo Yahya, M. Saudi Date Cultivars’ Seed Extracts Inhibit Developing Hepatic Steatosis in Rats Fed a High-Fat Diet. Saudi J. Biol. Sci. 2023, 30, 103732. [Google Scholar] [CrossRef] [PubMed]
- Zidan, N.S.; Omran, A.M.E.; Rezk, S.M.; Atteia, H.H.; Sakran, M.I. Anti-Alzheimer’s Disease Potential of Arabian Coffee versus Date Palm Seed Extract in Male Rats. J. Food Biochem. 2022, 46, e14017. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Sattar, W.M.; Sadek, K.; Elbestawy, A.R.; Mourad, D. The Protective Role of Date Palm (Phoenix dactylifera Seeds) against Aflatoxicosis in Broiler Chickens Regarding Carcass Characteristics, Hepatic and Renal Biochemical Function Tests and Histopathology. World Vet. J. 2020, 9, 59–69. [Google Scholar] [CrossRef]
Fatty Acids | Composition (Range in %) | Reference | |
---|---|---|---|
Oleic acid, C18:1 | Monounsaturated | 39.2–50.1 | [2,11,23,24,26,30] |
Lauric acid, C12:0 | Saturated fatty acid | 5.8–38.8 | [2,11,23,24,26,30] |
Myristic acid, C14:0 | 3.1–12.8 | [11,23,24,26,30] | |
Palmitic acid, C16:0 | 7.8–15.1 | [2,11,23,24,26,30] | |
Stearic acid, C18:0 | 1.3–5.7 | [11,23,24,26,30] | |
Linoleic acid, C18:2 | Polyunsaturated | 6.1–21.0 | [2,11,23,24,26,30] |
Linolenic acid, C18:3 | 0.1–2.3 | [11,23,24,26,30] |
Minerals | [41] | Amount (Range in mg/kg) | Reference | Maximum Intake Levels |
---|---|---|---|---|
Sodium (Na) | Main elements and minerals | 8.8–268.7 | [2,4,11,23,24,42,44] | n.a. [45] |
Potassium (K) | 21.9–4857.6 | [2,4,10,11,23,24,42,44] | n.a. [45] | |
Calcium (Ca) | 27.1–1472 | [2,4,10,11,23,24,42,44] | 2500 mg/d * [45] | |
Magnesium (Mg) | 10–788.5 | [10,11,23,24,42,44] | 250 mg/d [45] | |
Copper (Cu) | Trace elements | 5.2–8.7 | [2,4,10,24,42] | 5 mg/d [45] |
Iron (Fe) | 0.9–150.5 | [2,4,10,11,23,24,42,44] | n.a. [45] | |
Manganese (Mn) | 6.2–17.9 | [2,4,10,24,42] | n.a. [45] | |
Zinc (Zn) | 0.7–18.4 | [2,4,10,24,42,44] | 25 mg/d [45] | |
Chromium (Cr) | <0.05–9.7 | [2,4,24] | n.a. [45] | |
Nickel (Ni) | 1.12 | [42] | 13 μg/kg/d (TDI) [42] | |
Tin (Sn) | Ultra-trace elements | 6.43 | [35] | 250 mg/kg [46] |
Aluminum (Al) | 5–21.2 | [4] | 1 mg/kg b.w. (TWI) [47] | |
Arsenic (Ar) | 0.017 | [35] | 0.030 mg/kg ** [48] | |
Antimony (Sb) | 0.059 | [35] | Negligible risk [49] | |
Mercury (Hg) | 0.026 | [35] | 4 μg/kg b.w. (TWI) [50] | |
Cadmium (Cd) | n.a., <0.05–0.42 | [2,4,10,35,42,51] | 2.5 μg/kg b.w. (TWI) [52] | |
Lead (Pb) | n.a., <0.05–1.1 | [2,4,10,35,42,51] | 0.2 mg/kg (wheat) [48] |
Test Extracts (Increasing Polarity) | TPC (mg GAE/g Dry wt) | Antioxidant Activity (%) | Organic Compounds: Acids, Aldehydes, Alkanes, Phenols, and Sterols | |
---|---|---|---|---|
LC-MS (12) | GC-MS (13) | |||
Cyclohexane | n.d. | 1.4 | - | Undecane, 2-decenal, 2,4-decadienane, 6-methyl-octadecane, tetradecanoic acid, stearic acid, oleic acid, and β-sitosterol |
Dichloromethane | 6.5 | 4.9 | Flavonoid only, 4.10 mg/100 g: Catechin (2 mg), naringenin and apigenin (with each 1 mg) | Phenol, stearic acid, n-hexadecanoic acid, 9-hexadecenoic acid, and oleic acid |
Methanol | 56.7 | 94.4 | Three phenolic acids (quinic acid, protocatechuic acid, and caffeic acid); six flavonoids (catechin, epicatechin, quercetin-3-o-glucoside, luteolin-7-o-glucoside, naringenin, and luteolin) | Tetradecanoic acid, trans-13-octadecenoic acid, and stigmastan-3,5-diene |
Test Objective | Animal Species | Duration (h) | Outcome | Reference |
---|---|---|---|---|
Acute toxicity, oral | mouse | 24 | LD50 6.75 g/kg b.w. for mice | [88] |
Acute toxicity, oral | mouse | 24–72 | LD50 of 1877 ± 39 mg/kg i.p. | [41] |
Effect Assessed | Species | Dose Rate | Duration (d) | Outcome | Reference |
---|---|---|---|---|---|
Effects of DS extract on liver function, lipid profile, and heart function | rat | Basal diet, supplemented by 15–20 mL/d DS extract | 56 | Increase in serum lipids; decrease in CK-NAC, CK-MB, LDH-P; high ALP; normal histological brain structure and mucosal lining of the stomach | [79] |
Effects of DS extract on liver function and lipid profile | rat | (1) Feed: 1%, 5%, or 10% DS fiber (2) Feed: 5% or 10% DS fiber | 24 | Increase in serum lipids and cholesterol; overall weight gain | [29] |
Effects of DS extract on the NO concentration, MDA level, total cholesterol, triglycerides (TGs), AST, ALT, amyloid A, and C-reactive protein (CRP) | rat | Daily oral dose of DS extract at 200 mg/kg b.w. | 70 | No effect in DS extract group versus control | [51] |
Effects of DS extract in a high-fat diet on body and liver weight, glucose and insulin, total cholesterol, and TGs | rat | DS extracts of QT, BR, or RT variety; oral; 300 mg and 600 mg/kg | 56 | Improved hepatocytes and parenchymal structures, serum lipids, and lower body and liver weight | [89] |
Effects of DS extract on the NO concentration, MDA level, total cholesterol, TGs, AST, ALT, creatine, urea, urid acid, troponin T, HbA1c, amyloid A, and CRP | human (55 female, BMI ~30) | DS coffee beverage, 7 ± 0.5 g/d (DS) | 70 | Decrease in NO, MDA, LDL, TGs, AST, ALT, amyloid A, CRP, HbA1c, creatine, urea, urid acid, troponin T, and a slight increase in HDL | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiesler, R.; Franke, H.; Lachenmeier, D.W. A Comprehensive Review of the Nutritional Composition and Toxicological Profile of Date Seed Coffee (Phoenix dactylifera). Appl. Sci. 2024, 14, 2346. https://doi.org/10.3390/app14062346
Kiesler R, Franke H, Lachenmeier DW. A Comprehensive Review of the Nutritional Composition and Toxicological Profile of Date Seed Coffee (Phoenix dactylifera). Applied Sciences. 2024; 14(6):2346. https://doi.org/10.3390/app14062346
Chicago/Turabian StyleKiesler, Raphaela, Heike Franke, and Dirk W. Lachenmeier. 2024. "A Comprehensive Review of the Nutritional Composition and Toxicological Profile of Date Seed Coffee (Phoenix dactylifera)" Applied Sciences 14, no. 6: 2346. https://doi.org/10.3390/app14062346