A Multiuser, Multisite, and Platform-Independent On-the-Cloud Framework for Interactive Immersion in Holographic XR
Abstract
:1. Introduction
2. Materials and Methods
2.1. High-Level System Design
2.2. Cloud Deployment
2.3. Hypervisor
2.4. Public Interface
2.5. Security
3. Results
3.1. Experimental Design
3.2. Multidimensional Models for Experiments
3.3. Infrastructure Location
3.4. Evaluation Metrics
3.4.1. Processor Utilization
3.4.2. Memory Usage
3.4.3. Network Bandwidth Utilization
3.5. Experiments and Evaluation Scenarios
3.5.1. First Evaluation Scenario: Single Client Connection to the Holo-Cloud
3.5.2. Second Evaluation Scenario: Multiple Clients Simultaneously Interact with the Holo-Cloud
3.5.3. Third Evaluation Scenario: Multiple Clients Sequentially Connect to the Holo-Cloud
3.5.4. Fourth Evaluation Scenario: Multiuser Collaboration
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capecchi, I.; Bernetti, I.; Borghini, T.; Caporali, A. CaldanAugmenty—Augmented Reality and Serious Game App for Urban Cultural Heritage Learning. In Proceedings of the Extended Reality: International Conference, XR Salento 2023, Lecce, Italy, 6–9 September 2023; pp. 339–349. [Google Scholar] [CrossRef]
- Ayoub, A.; Pulijala, Y. The Application of Virtual Reality and Augmented Reality in Oral & Maxillofacial Surgery. BMC Oral Health 2019, 19, 238. [Google Scholar] [CrossRef]
- Geyer, M. BMW Group Starts Global Rollout of NVIDIA Omniverse. Available online: https://blogs.nvidia.com/blog/bmw-group-nvidia-omniverse/ (accessed on 25 December 2023).
- Kukla, P.; Maciejewska, K.; Strojna, I.; Zapał, M.; Zwierzchowski, G.; Bąk, B. Extended Reality in Diagnostic Imaging—A Literature Review. Tomography 2023, 9, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Daher, M.; Ghanimeh, J.; Otayek, J.; Ghoul, A.; Bizdikian, A.J.; EL Abiad, R. Augmented Reality and Shoulder Replacement: A State-of-the-Art Review Article. JSES Rev. Rep. Tech. 2023, 3, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.; Hadadgar, A.; Masiello, I.; Zary, N. Augmented Reality in Healthcare Education: An Integrative Review. PeerJ 2014, 2, e649. [Google Scholar] [CrossRef]
- Eckert, M.; Volmerg, J.S.; Friedrich, C.M. Augmented Reality in Medicine: Systematic and Bibliographic Review. JMIR Mhealth Uhealth 2019, 7, e10967. [Google Scholar] [CrossRef]
- Curran, V.R.; Xu, X.; Aydin, M.Y.; Meruvia-Pastor, O. Use of Extended Reality in Medical Education: An Integrative Review. Med. Sci. Educ. 2023, 33, 275–286. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, V.; Khanduja, V. The Impact of Extended Reality on Surgery: A Scoping Review. Int. Orthop. 2023, 47, 611–621. [Google Scholar] [CrossRef]
- Arpaia, P.; De Benedetto, E.; De Paolis, L.; D’errico, G.; Donato, N.; Duraccio, L. Performance and Usability Evaluation of an Extended Reality Platform to Monitor Patient’s Health during Surgical Procedures. Sensors 2022, 22, 3908. [Google Scholar] [CrossRef]
- Longo, U.G.; De Salvatore, S.; Candela, V.; Zollo, G.; Calabrese, G.; Fioravanti, S.; Giannone, L.; Marchetti, A.; De Marinis, M.G.; Denaro, V. Augmented Reality, Virtual Reality and Artificial Intelligence in Orthopedic Surgery: A Systematic Review. Appl. Sci. 2021, 11, 3253. [Google Scholar] [CrossRef]
- Kim, J.C.; Laine, T.H.; Åhlund, C. Multimodal Interaction Systems Based on Internet of Things and Augmented Reality: A Systematic Literature Review. Appl. Sci. 2021, 11, 1738. [Google Scholar] [CrossRef]
- Schäfer, A.; Reis, G.; Reis, G. A Survey on Synchronous Augmented, Virtual and Mixed Reality Remote Collaboration Systems. ACM Comput. Surv. 2023, 55, 1–27. [Google Scholar] [CrossRef]
- Suh, A.; Prophet, J. The State of Immersive Technology Research: A Literature Analysis. Comput. Hum. Behav. 2018, 86, 77–90. [Google Scholar] [CrossRef]
- Sugimoto, M.; Sueyoshi, T. Development of Holoeyes Holographic Image-Guided and Telemedicine System: Clinical Benefits of Extended Reality (Virtual Reality, Augmented Reality, Mixed Reality), The Metaverse, and Artificial Intelligence in Surgery with a Systematic Review. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Morimoto, T.; Hirata, H.; Ueno, M.; Fukumori, N.; Sakai, T.; Sugimoto, M.; Kobayashi, T.; Tsukamoto, M.; Yoshihara, T.; Toda, Y.; et al. Digital Transformation Will Change Medical Education and Rehabilitation in Spine Surgery. Medicina 2022, 58, 508. [Google Scholar] [CrossRef] [PubMed]
- Prange, A.; Chikobava, M.; Poller, P.; Barz, M.; Sonntag, D. A Multimodal Dialogue System for Medical Decision Support in Virtual Reality. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, Saarbrücken, Germany, 15–17 August 2017; pp. 23–26. [Google Scholar] [CrossRef]
- Sutherland, J.; Belec, J.; Sheikh, A.; Chepelev, L.; Althobaity, W.; Chow, B.J.W.; Mitsouras, D.; Christensen, A.; Rybicki, F.J.; La Russa, D.J. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. J. Digit. Imaging 2019, 32, 38–53. [Google Scholar] [CrossRef]
- Zhao, Z.; Poyhonen, J.; Chen Cai, X.; Sophie Woodley Hooper, F.; Ma, Y.; Hu, Y.; Ren, H.; Song, W.; Tsz Ho Tse, Z. Augmented Reality Technology in Image-Guided Therapy: State-of-the-Art Review. Proc. Inst. Mech. Eng. H 2021, 235, 1386–1398. [Google Scholar] [CrossRef]
- Luxenburger, A.; Prange, A.; Moniri, M.M.; Sonntag, D. MedicaLVR. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; ACM: New York, NY, USA, 2016; pp. 321–324. [Google Scholar] [CrossRef]
- Venkatesan, M.; Mohan, H.; Ryan, J.R.; Schürch, C.M.; Nolan, G.P.; Frakes, D.H.; Coskun, A.F. Virtual and Augmented Reality for Biomedical Applications. Cell Rep. Med. 2021, 2, 100348. [Google Scholar] [CrossRef] [PubMed]
- Uppot, R.N.; Laguna, B.; McCarthy, C.J.; De Novi, G.; Phelps, A.; Siegel, E.; Courtier, J. Implementing Virtual and Augmented Reality Tools for Radiology Education and Training, Communication, and Clinical Care. Radiology 2019, 291, 570–580. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, W.; Li, S.; Chen, K. Augmented and Virtual Reality (AR/VR) for Education and Training in the AEC Industry: A Systematic Review of Research and Applications. Buildings 2022, 12, 1529. [Google Scholar] [CrossRef]
- Josephng, P.S.; Gong, X. Technology Behavior Model—Impact of Extended Reality on Patient Surgery. Appl. Sci. 2022, 12, 5607. [Google Scholar] [CrossRef]
- Morimoto, T.; Kobayashi, T.; Hirata, H.; Otani, K.; Sugimoto, M.; Tsukamoto, M.; Yoshihara, T.; Ueno, M.; Mawatari, M. XR (Extended Reality: Virtual Reality, Augmented Reality, Mixed Reality) Technology in Spine Medicine: Status Quo and Quo Vadis. J. Clin. Med. 2022, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- López-Ojeda, W.; Hurley, R.A. Extended-Reality Technologies: An Overview of Emerging Applications in Medical Education and Clinical Care. J. Neuropsychiatry Clin. Neurosci. 2021, 33, A4–A177. [Google Scholar] [CrossRef] [PubMed]
- Chandler, T.; Cordeil, M.; Czauderna, T.; Dwyer, T.; Glowacki, J.; Goncu, C.; Klapperstueck, M.; Klein, K.; Marriott, K.; Schreiber, F.; et al. Immersive Analytics. In Proceedings of the 2015 Big Data Visual Analytics (BDVA), Hobart, Australia, 22–25 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Pi, D.; Liu, J.; Wang, Y. Review of Computer-Generated Hologram Algorithms for Color Dynamic Holographic Three-Dimensional Display. Light Sci. Appl. 2022, 11, 231. [Google Scholar] [CrossRef]
- Huzaifa, M.; Desai, R.; Grayson, S.; Jiang, X.; Jing, Y.; Lee, J.; Lu, F.; Pang, Y.; Ravichandran, J.; Sinclair, F.; et al. Exploring Extended Reality with ILLIXR: A New Playground for Architecture Research. arXiv 2020, arXiv:2004.04643. [Google Scholar]
- Parmar, V.; Kingra, S.K.; Shakib Sarwar, S.; Li, Z.; De Salvo, B.; Suri, M. Fully-Binarized Distance Computation Based On-Device Few-Shot Learning for XR Applications. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 4502–4508. [Google Scholar]
- Velazco-Garcia, J.D.; Shah, D.J.; Leiss, E.L.; Tsekos, N.V. A Modular and Scalable Computational Framework for Interactive Immersion into Imaging Data with a Holographic Augmented Reality Interface. Comput. Methods Programs Biomed. 2021, 198, 105779. [Google Scholar] [CrossRef]
- Molina, G.; Velazco-Garcia, J.D.; Shah, D.; Becker, A.T.; Seimenis, I.; Tsiamyrtzis, P.; Tsekos, N.V. Automated Segmentation and 4D Reconstruction of the Heart Left Ventricle from CINE MRI. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 1019–1023. [Google Scholar]
- Hirzle Florian Müller Fiona Draxler, T.; Schmitz, M.; Knierim, P.; Hornbaek, K.; Hirzle, T.; Müller, F.; Draxler, F. When XR and AI Meet-A Scoping Review on Extended Reality and Artifcial Intelligence. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–45. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, H.; Gao, Y.; Zhuang, X. BayeSeg: Bayesian Modeling for Medical Image Segmentation with Interpretable Generalizability. Med. Image Anal. 2023, 89, 102889. [Google Scholar] [CrossRef] [PubMed]
- Prange, A.; Barz, M.; Sonntag, D. Medical 3D Images in Multimodal Virtual Reality. In Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion, Tokyo, Japan, 7–11 March 2018; ACM: New York, NY, USA, 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Morales Mojica, C.M.; Velazco-Garcia, J.D.; Pappas, E.P.; Birbilis, T.A.; Becker, A.; Leiss, E.L.; Webb, A.; Seimenis, I.; Tsekos, N.V. A Holographic Augmented Reality Interface for Visualizing of MRI Data and Planning of Neurosurgical Procedures. J. Digit. Imaging 2021, 34, 1014–1025. [Google Scholar] [CrossRef]
- Velazco Garcia, J.D.; Navkar, N.V.; Gui, D.; Morales, C.M.; Christoforou, E.G.; Ozcan, A.; Abinahed, J.; Al-Ansari, A.; Webb, A.; Seimenis, I.; et al. A Platform Integrating Acquisition, Reconstruction, Visualization, and Manipulator Control Modules for MRI-Guided Interventions. J. Digit. Imaging 2019, 32, 420–432. [Google Scholar] [CrossRef]
- The Metaverse Is the Future of Digital Connection|Meta. Available online: https://about.meta.com/metaverse/ (accessed on 26 December 2023).
- NVIDIA Omniverse the Platform for Connecting and Developing OpenUSD Applications. Available online: https://www.nvidia.com/en-us/omniverse/ (accessed on 26 December 2023).
- All-in-One Medical Imaging Solution for Analysis, 3D Modeling and Digital Twin. Available online: https://medicalip.com/medip/ (accessed on 26 December 2023).
- Raith, A.; Kamp, C.; Stoiber, C.; Jakl, A.; Wagner, M. Augmented Reality in Radiology for Education and Training—A Design Study. Healthcare 2022, 10, 672. [Google Scholar] [CrossRef]
- Driver, J.; Groff, M.W. Navigation in Spine Surgery: An Innovation Here to Stay. J. Neurosurg. Spine 2022, 36, 347–349. [Google Scholar] [CrossRef] [PubMed]
- White, E. Migrating Azure VM to AWS Using AWS SMS Connector for Azure. Available online: https://aws.amazon.com/blogs/compute/migrating-azure-vm-to-aws-using-aws-sms-connector-for-azure/ (accessed on 17 December 2023).
- Amazon AWS. Amazon EC2. Available online: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html (accessed on 17 December 2023).
- Amazon AWS. Amazon Machine Images (AMI). Available online: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html (accessed on 17 December 2023).
- Cerf, V.G.; Icahn, R.E. A Protocol for Packet Network Intercommunication. ACM SIGCOMM Comput. Commun. Rev. 2005, 35, 71–82. [Google Scholar] [CrossRef]
- Duan, Q. Cloud Service Performance Evaluation: Status, Challenges, and Opportunities—A Survey from the System Modeling Perspective. Digit. Commun. Netw. 2017, 3, 101–111. [Google Scholar] [CrossRef]
- USD at NVIDIA. Available online: https://developer.nvidia.com/usd (accessed on 28 December 2023).
- Tran, K.Q.; Neeli, H.; Tsekos, N.V.; Velazco-Garcia, J.D. Immersion into 3D Biomedical Data via Holographic AR Interfaces Based on the Universal Scene Description (USD) Standard. In Proceedings of the 2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE), Dayton, OH, USA, 4–6 December 2023; pp. 354–358. [Google Scholar] [CrossRef]
- Li, Z.; O’Brien, L.; Zhang, H.; Cai, R. On a Catalogue of Metrics for Evaluating Commercial Cloud Services. In Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing, Beijing, China, 20–23 September 2012; pp. 164–173. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; O’brien, L.; Cai, R.; Flint, S. On Evaluating Commercial Cloud Services: A Systematic Review. J. Syst. Softw. 2013, 86, 2371–2393. [Google Scholar] [CrossRef]
- Brummett, T.; Sheinidashtegol, P.; Sarkar, D.; Galloway, M. Performance Metrics of Local Cloud Computing Architectures. In Proceedings of the 2nd IEEE International Conference on Cyber Security and Cloud Computing, CSCloud 2015—IEEE International Symposium of Smart Cloud, IEEE SSC 2015, New York, NY, USA, 3–5 November 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 25–30. [Google Scholar] [CrossRef]
- Atas, G.; Gungor, V.C. Performance Evaluation of Cloud Computing Platforms Using Statistical Methods. Comput. Electr. Eng. 2014, 40, 1636–1649. [Google Scholar] [CrossRef]
- Kumar, S.; Maurya, V.; Gupta, R. A Distributed Load Balancing Technique for Multitenant Edge Servers with Bottleneck Resources. IEEE Trans. Reliab. 2023, 1–13. [Google Scholar] [CrossRef]
- Velkoski, G.; Simjanoska, M.; Ristov, S.; Gusev, M. CPU Utilization in a Multitenant Cloud. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 242–249. [Google Scholar] [CrossRef]
- Tarra, H. Understanding Processor (% Processor Time) and Process (% Processor Time). Available online: https://social.technet.microsoft.com/wiki/contents/articles/12984.understanding-processor-processor-time-and-process-processor-time.aspx (accessed on 17 December 2023).
- Dittakavi, R.S.S. Deep Learning-Based Prediction of CPU and Memory Consumption for Cost-Efficient Cloud Resource Allocation. Sage Sci. Rev. Appl. Mach. Learn. 2021, 4, 45–58. [Google Scholar]
- Kumar, A.; Goswami, M. Performance Comparison of Instrument Automation Pipelines Using Different Programming Languages. Sci. Rep. 2023, 13, 18579. [Google Scholar] [CrossRef] [PubMed]
- Using Performance Monitor. Available online: https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc749115(v=ws.11)?redirectedfrom=MSDN (accessed on 14 February 2024).
- Ul Islam, S.; Khattak, H.A.; Pierson, J.M.; Din, I.U.; Almogren, A.; Guizani, M.; Zuair, M. Leveraging Utilization as Performance Metric for CDN Enabled Energy Efficient Internet of Things. Measurement 2019, 147, 106814. [Google Scholar] [CrossRef]
- Ookla. Introducing Speedtest® CLI. Available online: https://www.ookla.com/articles/introducing-speedtest-cli (accessed on 17 December 2023).
- Abolfazli, S.; Sanaei, Z.; Wong, S.Y.; Tabassi, A.; Rosen, S. Throughput Measurement in 4G Wireless Data Networks: Performance Evaluation and Validation. In Proceedings of the 2015 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Langkawi, Malaysia, 12–14 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 27–32. [Google Scholar] [CrossRef]
- Rajabzadeh, P. Monitoring Network Performance with Iperf; Politecnico di Milano: Milan, Italy, 2017. [Google Scholar]
- iperf. iperf3: A TCP, UDP, and SCTP Network Bandwidth Measurement Tool. Available online: https://github.com/esnet/iperf (accessed on 17 December 2023).
- Using the HoloLens Emulator. Available online: https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-hololens-emulator (accessed on 17 December 2023).
Item | Average Receive Speed (Kbps) | Average Send Speed (Kbps) |
---|---|---|
FI3D server internet | 272,830.00 | 947,620.00 |
Client software internet | 347,000.00 | 58,600.00 |
FI3D–client end-to-end speed | 28,800.00 | 28,800.00 |
Server network utilization | 1.63 | 743.01 |
Item | Average Receive Speed (Kbps) | Average Send Speed (Kbps) |
---|---|---|
FI3D server internet | 251,300.00 | 891,900.00 |
Client software internet | 242,800.00 | 201,260.00 |
FI3D-clients end-to-end speed | 41,900.00 | 41,900.00 |
Server network utilization | 1.63 | 1198.48 |
Item | Average Receive Speed (Kbps) | Average Send Speed (Kbps) |
---|---|---|
FI3D server internet | 275,900.00 | 981,470.00 |
Client software internet | 240,510.00 | 251,230.00 |
FI3D-client end-to-end speed | 40,200.00 | 43,700.00 |
Server network utilization | 0.81 | 38.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neeli, H.; Tran, K.Q.; Velazco-Garcia, J.D.; Tsekos, N.V. A Multiuser, Multisite, and Platform-Independent On-the-Cloud Framework for Interactive Immersion in Holographic XR. Appl. Sci. 2024, 14, 2070. https://doi.org/10.3390/app14052070
Neeli H, Tran KQ, Velazco-Garcia JD, Tsekos NV. A Multiuser, Multisite, and Platform-Independent On-the-Cloud Framework for Interactive Immersion in Holographic XR. Applied Sciences. 2024; 14(5):2070. https://doi.org/10.3390/app14052070
Chicago/Turabian StyleNeeli, Hosein, Khang Q. Tran, Jose Daniel Velazco-Garcia, and Nikolaos V. Tsekos. 2024. "A Multiuser, Multisite, and Platform-Independent On-the-Cloud Framework for Interactive Immersion in Holographic XR" Applied Sciences 14, no. 5: 2070. https://doi.org/10.3390/app14052070
APA StyleNeeli, H., Tran, K. Q., Velazco-Garcia, J. D., & Tsekos, N. V. (2024). A Multiuser, Multisite, and Platform-Independent On-the-Cloud Framework for Interactive Immersion in Holographic XR. Applied Sciences, 14(5), 2070. https://doi.org/10.3390/app14052070