Formulation and Characterization of Experimental Adhesive Systems Charged with Different Concentrations of Nanofillers: Physicomechanical Properties and Marginal Gap Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Experimental Adhesives
2.2. Physical Properties
2.2.1. Degree of Conversion (DC%)
2.2.2. Ultimate Tensile Strength (UTS)
2.2.3. Flexural Strength (FS) and Static Modulus of Elasticity (SME)
2.2.4. Dynamic Modulus of Elasticity (DME) and Glass Transition Temperature (Tg)
2.3. Adhesive Interface Analysis
2.4. Microtensile Bond Strength (µTBS) and Failure Pattern
2.5. Statistical Analysis
3. Results
3.1. Physical Properties
3.2. Adhesive Interface Analysis
3.3. Bond Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perdigão, J. Current perspectives on dental adhesion: (1) Dentin adhesion—Not there yet. Jpn. Dent. Sci. Rev. 2020, 56, 190–207. [Google Scholar] [CrossRef]
- Garcés-Ortíz, M.; Ledesma-Montes, C.; Reyes-Gasga, J. Scanning Electron Microscopic Study on the Fibrillar Structures within Dentinal Tubules of Human Dentin. J. Endod. 2015, 41, 1510–1514. [Google Scholar] [CrossRef]
- Giannini, M.; Carvalho, R.M.; Martins, L.R.; Dias, C.T.; Pashley, D.H. The influence of tubule density and area of solid dentin on bond strength of two adhesive systems to dentin. J. Adhes. Dent. 2001, 3, 315–324. [Google Scholar]
- Perdigão, J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent. Mater. 2010, 26, e24–e37. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Tjäderhane, L.; Manso, A.P.; Carrilho, M.R.; Carvalho, C.A.R. Dentin as a bonding substrate. Endod. Topics. 2012, 21, 62–88. [Google Scholar] [CrossRef]
- Weerakoon, A.T.; Cooper, C.; Meyers, I.A.; Condon, N.; Sexton, C.; Thomson, D.; Ford, P.J.; Symons, A.L.J. Does dentine mineral change with anatomical location, microscopic site and patient age? Struct. Biol. X 2022, 23, 100060. [Google Scholar] [CrossRef]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J.L. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef]
- Rodrigues, F.P.; Lima, R.G.; Muench, A.; Watts, D.C.; Ballester, R.Y. A method for calculating the compliance of bonded-interfaces under shrinkage: Validation for Class I cavities. Dent. Mater. 2014, 30, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Park, S.H. Incremental and bulk-fill techniques with bulk-fill resin composite in different cavity configurations. Oper. Dent. 2018, 43, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Boaro, L.C.C.; Gonçalves, F.; Guimarães, T.C.; Ferracne, J.L.; Versluis, V.; Braga, R.R. Polymerization stress, shrinkage and elastic modulus of current lowshrinkage restorative composites. Dent. Mater. 2010, 26, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, S.H. Measurement of the internal adaptation of resin composites using micro-CT and its correlation with polymerization shrinkage. Oper. Dent. 2014, 39, E57–E70. [Google Scholar] [CrossRef]
- Paganini, A.; Attin, T.; Tauböck, T.T. Margin integrity of bulk-fill composite restorations in primary teeth. Materials 2020, 13, 3802. [Google Scholar] [CrossRef]
- Van Ende, A.; De Munck, J.; Van Landuyt, K.; Van Meerbeek, B. Effect of bulk-filling on the bonding efficacy in occlusal Class I cavities. J. Adhes. Dent. 2016, 18, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Van Ende, A.; De Munck, J.; Lise, D.P.; Van Meerbeek, B. Bulk-Fill Composites: A review of the current literature. J. Adhes. Dent. 2017, 9, 95–109. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef]
- Conde, M.C.; Zanchi, C.H.; Rodrigues-Junior, S.A.; Carreño, N.L.; Ogliari, F.A.; Piva, E. Nanofiller loading level: Influence on selected properties of an adhesive resin. J. Dent. 2009, 37, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Belli, R.; Kreppel, S.; Petschelt, A.; Hornberger, H.; Boccaccini, A.R.; Lohbauer, U. Strengthening of dental adhesives via particle reinforcement. J. Mech. Behav. Biomed. Mater. 2014, 37, 100–108. [Google Scholar] [CrossRef]
- Kim, S.; Cho, B.; Lee, I.; Um, C.; Lim, B.; Oh, M.; Chang, C.; Son, H. Effect of the hydrophilic nanofill loading on the mechanical properties and the microtensile bond strength of an ethanol-based one-bottle dentin adhesive. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 284–291. [Google Scholar] [CrossRef]
- Azad, E.; Atai, M.; Zandi, M.; Shokrollahi, P.; Solhi, L. Structure–properties relationships in dental adhesives: Effect of initiator, matrix monomer structure, and nano-filler incorporation. Dent. Mater. 2018, 34, 1263–1270. [Google Scholar] [CrossRef]
- Giannini, M.; Mettenburg, D.; Arrais, C.A.; Rueggeberg, F.A. The effect of filler addition on biaxial flexure strength and modulus of commercial dentin bonding systems. Quintessence Int. 2011, 42, e39–e43. [Google Scholar] [PubMed]
- Di Hipólito, V.; Reis, A.F.; Mitra, S.B.; de Goes, M.F. Interaction morphology and bond strength of nanofilled simplified-step adhesives to acid etched dentin. Eur. J. Dent. 2012, 6, 349–360. [Google Scholar] [CrossRef]
- Solhi, L.; Atai, M.; Nodehi, A.; Imani, M. A novel dentin bonding system containing poly (methacrylic acid) grafted nanoclay: Synthesis, characterization and properties. Dent. Mater. 2012, 28, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Ferracane, J.L. Alternatives in polymerization contraction stress management. J. Appl. Oral. Sci. 2004, 15, 176–184. [Google Scholar] [CrossRef]
- Kemp-Scholte, C.M.; Davidson, C.L. Complete marginal seal of class V resin composite restorations effected by increased flexibility. J. Dent. Res. 1990, 69, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.K.; Condon, J.R.; Ferracane, J.L. The effects of adhesive thickness on polymerization contraction stress of composite. J. Dent. Res. 2000, 79, 812–817. [Google Scholar] [CrossRef]
- Mesquita, R.V.; Geis-Gerstorfer, J. Influence of temperature on the visco-elastic properties of direct and indirect dental composite resins. Dent. Mater. 2008, 24, 623–632. [Google Scholar] [CrossRef]
- Maktabi, H.; Ibrahim, M.; Alkhubaizi, Q.; Weir, M.; Xu, H.; Strassler, H.; Fugolin, A.P.P.; Pfeifer, C.S.; Melo, M. Underperforming light curing procedures trigger detrimental irradiance-dependent biofilm response on incrementally placed dental composites. J. Dent. 2019, 88, 103110. [Google Scholar] [CrossRef]
- Tichy, A.; Hosaka, K.; Abdou, A.; Nakajima, M.; Tagami, J. Degree of Conversion Contributes to Dentin Bonding Durability of Contemporary Universal Adhesives. Oper. Dent. 2020, 45, 556–566. [Google Scholar] [CrossRef]
- Faria-e-Silva, A.L.; Lima, A.F.; Moraes, R.R.; Piva, E.; Martins, L.R. Degree of conversion of etch-and-rinse and self-etch adhesives light-cured using QTH or LED. Oper. Dent. 2010, 35, 649–655. [Google Scholar] [CrossRef]
- Pongprueksa, P.; Miletic, V.; Janssens, H.; Van Landuyt, K.L.; De Munck, J.; Godderis, L.; Van Meerbeek, B. Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dent. Mater. 2014, 30, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Alhenaki, A.M.; Attar, E.A.; Alshahrani, A.; Farooq, I.; Vohra, F.; Abduljabbar, T. Dentin bond integrity of filled and unfilled resin adhesive enhanced with silica nanoparticles-An SEM, EDX, micro-raman, FTIR and micro-tensile bond strength study. Polymers 2021, 13, 1093. [Google Scholar] [CrossRef]
- Ruyter, I.E.; Oysaed, H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol. Scand. 1982, 40, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Mazloom-Jalali, A.; Taromi, F.A.; Atai, M.; Solhi, L. Dual modified nanosilica particles as reinforcing fillers for dental adhesives: Synthesis, characterization, and properties. J. Mech. Behav. Biomed. Mater. 2020, 110, 103904. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.S.; Lee, Y.D.; Nicolella, D.P.; Furman, B.R.; Wellinghoff, S.; Rawls, H.R. Improving fracture toughness of dental nanocomposites byinterface engineering and micromechanics. Eng. Fract. Mech. 2007, 74, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Feng, X.; Lauke, B.; Mai, Y. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Sabbagh, J.; Vreven, J.; Leloup, G. Dynamic and static moduli of elasticity of resin-based materials. Dent. Mater. 2002, 18, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.; Palin, W.M.; Mullier, T.; Devaux, J.; Vreven, J.; Leloup, G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J. Oral. Rehabil. 2010, 37, 364–376. [Google Scholar] [CrossRef]
- Braem, M.; Lambrechts, P.; Van Doren, V.; Vanherle, G. The impact of composite structure on its elastic response. J. Dent. Res. 1986, 65, 648–653. [Google Scholar] [CrossRef]
- Brandt, W.C.; Silva, C.G.; Frollini, E.; Souza-Junior, E.J.; Sinhoreti, M.A. Dynamic mechanical thermal analysis of composite resins with CQ and PPD as photo-initiators photoactivated by QTH and LED units. J. Mech. Behav. Biomed. Mater. 2013, 24, 21–29. [Google Scholar] [CrossRef]
- Pomès, B.; Behin, P.; Jordan, L.; Legoff, S.; Stoclet, G.; Richaud, E.; Nguyen, J.F. Influence of polymerization pressure and post-cure treatment on conversion degree and viscoelastic properties of polymer infiltrated ceramic network. J. Mech. Behav. Biomed. Mater. 2021, 115, 104286. [Google Scholar] [CrossRef]
- Nima, G.; Cavalli, V.; Bacelar-Sá, R.; Ambrosano, G.M.B.; Giannini, M. Effects of sodium hypochlorite as dentin deproteinizing agent and aging media on bond strength of two conventional adhesives. Microsc. Res. Tech. 2020, 83, 186–195. [Google Scholar] [CrossRef]
- Augusto, M.G.; Torres, C.; Pucci, C.R.; Schlueter, N.; Borges, A.B. Bond Stability of a Universal Adhesive System to Eroded/Abraded Dentin After Deproteinization. Oper. Dent. 2018, 43, 291–300. [Google Scholar] [CrossRef]
- Saikaew, P.; Matsumoto, M.; Chowdhury, A.; Carvalho, R.M.; Sano, H. Does Shortened Application Time Affect Long-Term Bond Strength of Universal Adhesives to Dentin? Oper. Dent. 2018, 43, 549–558. [Google Scholar] [CrossRef]
- Osorio, E.; Toledano, M.; Aguilera, F.S.; Tay, F.R.; Osorio, R. Ethanol wet-bonding technique sensitivity assessed by AFM. J. Dent. Res. 2010, 89, 1264–1269. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R.; Ferracane, J.L. Factors involved in mechanical fatigue degradation of dental resin composites. J. Dent. Res. 2013, 92, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Cesar, P.F.; Gonzaga, C.C. Tensile bond strength of filled and unfilled adhesives to dentin. Am. J. Dent. 2000, 13, 73–76. [Google Scholar] [PubMed]
- Can Say, E.; Nakajima, M.; Senawongse, P.; Soyman, M.; Ozer, F.; Ogata, M.; Tagami, J. Microtensile bond strength of a filled vs unfilled adhesive to dentin using self-etch and total-etch technique. J. Dent. 2006, 34, 283–291. [Google Scholar] [CrossRef]
- Silva, J.D.S.; Freitas, L.A.S.; Silva, V.A.S.E.; Firmiano, T.C.; Tantbirojn, D.; Versluis, A.; Veríssimo, C. Using a professional DSLR camera to measure total shrinkage of resin composites. Braz. Oral. Res. 2022, 36, e009. [Google Scholar] [CrossRef] [PubMed]
- França, F.M.; Tenuti, J.G.; Broglio, I.P.; Paiva, L.E.; Basting, R.T.; Turssi, C.P.; do Amaral, F.L.; Reis, A.F.; Vieira-Junior, W.F. Low- and high-viscosity bulk-fill resin composites: A comparison of microhardness, microtensile bond strength, and fracture strength in restored molars. Acta Odontol. Latinoam. 2021, 34, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Mandava, J.; Vegesna, D.P.; Ravi, R.; Boddeda, M.R.; Uppalapati, L.V.; Ghazanfaruddin, M.D. Microtensile bond strength of bulk-fill restorative composites to dentin. J. Clin. Exp. Dent. 2017, 9, e1023–e1028. [Google Scholar] [CrossRef] [PubMed]
- Meereis, C.T.W.; Münchow, E.A.; de Oliveira da Rosa, W.L.; da Silva, A.F.; Piva, E. Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of composition strategies. J. Mech. Behav. Biomed. Mater. 2018, 82, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.; Kim, Y.J.; Choi, N.S.; Lee, I.B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef] [PubMed]
Primer (wt%) | Bond (wt%) | Experimental Adhesives |
---|---|---|
HEMA (20%), TEGDMA (20%), PMGDM (20%), Ethanol (35%) and water (5%) | Bis-GMA (50%), TEGDMA (30%), HEMA (19%), camphorquinone (0.5%), EDMAB (0.5%) | EA0 |
Bis-GMA (50%), TEGDMA (30%), HEMA (19%), camphorquinone (0.5%), EDMAB (0.5%) + 7.5% of nanosized silica particles | EA7.5 | |
Bis-GMA (50%), TEGDMA (30%), HEMA (19%), camphorquinone (0.5%), EDMAB (0.5%) +15% of nanosized silica particles | EA15 |
Experimental Adhesives | Composite | Experimental Groups |
---|---|---|
EA0 | Conventional (Z100, 3MESPE, St. Paul, MN, USA) Bulk-fill (Opus Bulk Fill, FGM, Brazil) | EA0CON EA0OBF |
EA7.5 | Conventional (Z100, 3MESPE, USA) Bulk-fill (Opus Bulk Fill, FGM, Brazil) | EA7.5CON EA7.5OBF |
EA15 | Conventional (Z100, 3MESPE, USA) Bulk-fill (Opus Bulk Fill, FGM, Brazil) | EA15CON EA15OBF |
Physical Properties | Experimental Adhesives | ||
---|---|---|---|
EA0 | EA7.5 | EA15 | |
DC (%) | 84.16 (1.08) A | 82.46 (1.61) A | 78.45 (1.26) B |
UTS (MPa) | 36.96 (0.12) C | 41.09 (0.37) B | 51.13 (0.40) A |
FS (Mpa) | 49.60 (3.67) B | 63.60 (3.63) A | 64.00 (1.36) A |
SME (Gpa) | 1.74 (0.14) B | 2.07 (0.08) A | 2.11 (0.23) A |
DME (Gpa) | 2.23 (0.21) B | 2.56 (0.12) A | 2.61 (0.08) A |
Tg (°C) | 136.62 (3.13) A | 138.32 (3.31) A | 129.85 (4.69) B |
Marginal Gaps | Composites | Experimental Adhesives | ||
---|---|---|---|---|
EA0 | EA7.5 | EA15 | ||
Occlusal | OBF | 2.38 (0.67) a,A | 1.79 (0.54) a,A | 1.81 (0.34) a,A |
CON | 9.81 (1.62) a,B | 3.21 (0.88) b,A | 3.59 (0.53) b,B | |
Mesial | OBF | 1.74 (0.51) a,A | 1.24 (0.26) a,A | 1.11 (0.39) a,A |
CON | 3.49 (0.53) a,B | 1.73 (0.43) b,A | 2.01 (0.69) b,B |
Experimental Groups | µTBS | Eas | µTBS |
---|---|---|---|
EA0OBF | 34.63 (7.66) | EA0 | 35.19 (7.03) B |
EA7.5OBF | 46.56 (7.60) | ||
EA15OBF | 38.11 (4.10) | EA7.5 | 45.17 (6.11) A |
EA0CON | 35.75 (6.90) | ||
EA7.5CON | 43.78 (4.33) | EA15 | 41.68 (6.50) A |
EA15CON | 45.25 (6.71) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, C.R.P.; Poskus, L.T.; Guimarães, J.G.A.; Penelas, A.G.; Amaral, C.M.; da Silva Machado, R.F.; da Silva, E.M. Formulation and Characterization of Experimental Adhesive Systems Charged with Different Concentrations of Nanofillers: Physicomechanical Properties and Marginal Gap Formation. Appl. Sci. 2024, 14, 2057. https://doi.org/10.3390/app14052057
Correia CRP, Poskus LT, Guimarães JGA, Penelas AG, Amaral CM, da Silva Machado RF, da Silva EM. Formulation and Characterization of Experimental Adhesive Systems Charged with Different Concentrations of Nanofillers: Physicomechanical Properties and Marginal Gap Formation. Applied Sciences. 2024; 14(5):2057. https://doi.org/10.3390/app14052057
Chicago/Turabian StyleCorreia, Camila Rodrigues Paiva, Laiza Tatiana Poskus, José Guilherme Antunes Guimarães, Alice Gonçalves Penelas, Cristiane Mariote Amaral, Rayane Fernandes da Silva Machado, and Eduardo Moreira da Silva. 2024. "Formulation and Characterization of Experimental Adhesive Systems Charged with Different Concentrations of Nanofillers: Physicomechanical Properties and Marginal Gap Formation" Applied Sciences 14, no. 5: 2057. https://doi.org/10.3390/app14052057
APA StyleCorreia, C. R. P., Poskus, L. T., Guimarães, J. G. A., Penelas, A. G., Amaral, C. M., da Silva Machado, R. F., & da Silva, E. M. (2024). Formulation and Characterization of Experimental Adhesive Systems Charged with Different Concentrations of Nanofillers: Physicomechanical Properties and Marginal Gap Formation. Applied Sciences, 14(5), 2057. https://doi.org/10.3390/app14052057