Enhancing Brioche Bread with Emulsified Seed and Nut Oils: Nutritional and Sustainable Benefits
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Material
2.2. Oil Extraction
2.3. Emulsion and Brioche Formulation
2.4. Determination of Oil Quality
2.5. The Physical Parameters of the Brioche Samples
2.6. Proximate Composition
2.7. Profile of Fatty Acids, Vitamin E, and Thiobarbutic Acid (TBA)
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Oil Quality
3.2. Physical Determinations of Brioche Bread
3.3. Nutritional Composition
3.4. Lipid Profile, Vitamin E, and TBA
3.5. Sensory Analysis
3.6. Prospects, Novelty, and Necessity of the Research
3.7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Choo, K.Y.; Lee, M.Y.; Kim, K.W. Optimization of oil-in-water emulsions for improving the quality and shelf-life of reduced-fat baked goods. J. Food Sci. Technol. 2020, 57, 821–828. [Google Scholar]
- Tang, Y.R.; Ghosh, S. Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. RSC Adv. 2021, 11, 25141–25157. [Google Scholar] [CrossRef]
- Mamat, H.; Hill, S.E. Effect of fat types on the structural and textural properties of dough and semi-sweet biscuit. J. Food Sci. Technol. 2014, 51, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Orthoefer, F.; Kim, D. Applications of Emulsifiers in Baked Foods. In Food Emulsifiers and Their Applications; Hasenhuettl, G., Hartel, R., Eds.; Springer: Chamonix, Switzerland, 2019; pp. 299–321. [Google Scholar]
- Mazzocchi, A.; De Cosmi, V.; Risé, P.; Milani, G.P.; Turolo, S.; Syrén, M.L.; Agostoni, C. Bioactive compounds in edible oils and their role in oxidative stress and inflammation. Front. Physiol. 2021, 12, 659551. [Google Scholar] [CrossRef] [PubMed]
- Polmann, G.; Badia, V.; Danielski, R.; Ferreira, S.R.S.; Block, J.M. Nuts and nut-based products: A meta-analysis from intake health benefits and functional characteristics from recovered constituents. Food Rev. Int. 2023, 39, 5021–5047. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Kuipers, R.S.; De Graaf, D.J.; Luxwolda, M.F.; Muskiet, M.H.A.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Saturated fat, carbohydrates and cardiovascular. Complex Acute Med. 2011, 353, 372. [Google Scholar]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef]
- Kromhout, D.; Giltay, E.J.; Geleijnse, J.M. n–3 Fatty acids and cardiovascular events after myocardial infarction. N. Engl. J. Med. 2010, 363, 2015–2026. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Messina, V.; Rowland, I.; Frankowska, A.; Bradbury, J.; Smetana, S.; Medici, E. Plant-based dairy alternatives contribute to a healthy and sustainable diet. Nutrients 2023, 15, 3393. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food Agriculture Organization United Nation: Rome, Italy, 2019. [Google Scholar]
- Finnegan, W.; Goggins, J.; Clifford, E.; Zhan, X. Environmental impacts of milk powder and butter manufactured in the Republic of Ireland. Sci. Total Environ. 2017, 579, 159–168. [Google Scholar] [CrossRef]
- Ziarno, M.; Derewiaka, D.; Florowska, A.; Szymańska, I. Comparison of the spreadability of butter and butter substitutes. Appl. Sci. 2023, 13, 2600. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, X.; Zhao, Q.; Zhou, F.; Zhao, M. Recent Progress, Application, and Quality Evaluation of Plant-Based Double Emulsions in Low-Fat Foods. Food Bioprocess Technol. 2024, 17, 1–21. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, Y.J.; Lee, S.H.; Park, S.H. Development of Oleogel-Based Fat Replacer and Its Application in Pan Bread Making. Foods 2024, 13, 1678. [Google Scholar] [CrossRef] [PubMed]
- Dewidar, O.; El-Kherbawy, G. Nutritional Evaluation of Brioche Bread Made from Egyptian Wheat and Enriched with Garden Cress Seeds (GCS) Powder to be Used as a Functional Food. J. Food Sci. 2021, 6, 27–41. [Google Scholar]
- Martínez, E.; García-Martínez, R.; Álvarez-Ortí, M.; Rabadán, A.; Pardo-Giménez, A.; Pardo, J.E. Elaboration of gluten-free cookies with defatted seed flours: Effects on technological, nutritional, and consumer aspects. Foods 2021, 10, 1213. [Google Scholar] [CrossRef]
- MAPA. Métodos Oficiales de Análisis en la Unión Europea; Tomo, I., Ed.; Ministerio de Agricultura, Pesca y Alimentación; Secretaría General Técnica: Madrid, Spain, 1998; p. 495.
- FAO. Food Analysis: General Techniques, Additives, Contaminants, and Composition. In FAO Food and Nutrition Paper; FAO: Rome, Italy, 1986; Volume 14, pp. 105–109. [Google Scholar]
- ANKOM. Crude fiber analysis in feeds by filter bag technique. In ANKOM Technology Method 7, AOCS Approved Procedure Ba6a-05; ANKOM Technology: Macedon, NY, USA, 2008; p. 3. [Google Scholar]
- Sullivan, D.M. Proximate and Mineral Analysis. In Analysis of Nutrition Labeling; Sullivan, D.M., Carpenter, D.E., Eds.; AOAC International, Springer: Arlington, VA, USA, 1993; pp. 105–109. [Google Scholar]
- Mansour, E.H.; Khalid, A.L. Characteristics of low-fat beefburger as influenced by various types of wheat fibers. Food Res. Int. 1997, 30, 199–205. [Google Scholar] [CrossRef]
- Mendoza, L.G.; Gonzalez-Alvarez, J.; Gonzalo, C.F.; Arias-Abrodo, P.; Altava, B.; Luis, S.V.; Gutiérrez-Álvarez, M.D. Gas chromatographic analysis of fatty acid methyl esters of milk fat by an ionic liquid derived from L-phenylalanine as the stationary phase. Talanta 2015, 143, 212–218. [Google Scholar] [CrossRef]
- Alves, R.C.; Casal, S.; Oliveira, M. Determination of vitamin E in coffee beans by HPLC using a micro-extraction method. Food Sci. Technol. Int. 2009, 15, 57–63. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.; Tahmouzi, S.; Razavi, S.; Triki, M.; Rodríguez-Salas, L.; Samcová, K.; Jiménez-Colmenero, F. Properties of reformulated hot dog sausage without added nitrites during chilled storage. Food Sci. Technol. Int. 2014, 22, 21–30. [Google Scholar] [CrossRef]
- Cohen, D.; Farley, T.A. Eating as an automatic behavior. Prev. Chronic Dis. 2007, 5, A23. [Google Scholar]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Maestri, D.M.; Diehl, B.W.; Nolasco, S.M.; Tomás, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Irnawati, I.; Riyanto, S.; Martono, S.; Windarsih, A.; Rohman, A. Physicochemical properties and antioxidant activities of pumpkin seed oil as affected by different origins and extraction methods. J. Appl. Pharm. Sci. 2022, 12, 1–6. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, J.; Hernández-Santos, B.; Herman-Lara, E.; Gómez-Aldapa, C.A.; Garcia, H.S.; Martínez-Sánchez, C.E. Effect of some variables on oil extraction yield from Mexican pumpkin seeds. CyTA-J. Food 2014, 12, 9–15. [Google Scholar] [CrossRef]
- Mallek-Ayadi, B.; Bahloul, N.; Kechaou, N. Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Saf. Environ. Prot. 2018, 113, 68–77. [Google Scholar] [CrossRef]
- Rabadán, A.; Gallardo-Guerrero, L.; Gandul-Rojas, B.; Álvarez-Ortí, M.; Pardo, J.E. Effect of roasting conditions on pigment composition and some quality parameters of pistachio oil. Food Chem. 2018, 264, 49–57. [Google Scholar] [CrossRef]
- Savage, G.P.; Dutta, P.C.; McNeil, D.L. Fatty acid and tocopherol contents and oxidative stability of walnut oils. J. Am. Oil Chem. Soc. 1999, 76, 1059–1063. [Google Scholar] [CrossRef]
- Roncero, J.M.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Gómez, R.; Rabadán, A.; Pardo, J.E. Virgin almond oil: Extraction methods and composition. Grasas y Aceites 2016, 67, e143. [Google Scholar]
- Catalan, L.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Gómez, R.; Rabadán, A.; Pardo, J.E. Pistachio oil: A review on its chemical composition, extraction systems, and uses. Eur. J. Lipid Sci. Technol. 2017, 119, 1600126. [Google Scholar] [CrossRef]
- Blasi, F.; Chiesi, C.; Spogli, R.; Cossignani, L.; Nocchetti, M. Oxidative stability of long-chain fatty acids with different unsaturation degrees into layered double hydroxides. Appl. Sci. 2021, 11, 7035. [Google Scholar] [CrossRef]
- Copolovici, D.; Bungau, S.; Boscencu, R.; Tit, D.M.; Copolovici, L.J.R.C. The fatty acids composition and antioxidant activity of walnut cold press oil. Rev. Chim. 2017, 68, 507–509. [Google Scholar] [CrossRef]
- Tarjuelo, L.; Rabadán, A.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Pardo, J.E. Analysis of nutritional characteristics and willingness to pay of consumers for dry-cured sausages (Salchichón) made with textured seed oils. Foods 2023, 12, 3118. [Google Scholar] [CrossRef]
- Martínez, E.; Vieira Júnior, W.G.; Álvarez-Ortí, M.; Rabadán, A.; Pardo, J.E. Use of different O/W or W/O emulsions as functional ingredients to reduce fat content and improve lipid profile in Spanish cured processed meat product (‘Chorizo’). Foods 2024, 13, 2262. [Google Scholar] [CrossRef]
- Martínez, E.; Pardo, J.E.; Rabadán, A.; Álvarez-Ortí, M. Effects of animal fat replacement by emulsified melon and pumpkin seed oils in deer burgers. Foods 2023, 12, 1279. [Google Scholar] [CrossRef]
- Fellows, P.J. Food Processing Technology: Principles and Practice; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar]
- Fernandes, S.S.; Mellado, M.D.L.M.S. Development of mayonnaise with substitution of oil or egg yolk by the addition of chia (Salvia hispanica L.) mucilage. J. Food Sci. 2018, 83, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Patel, K.N.; Modi, R.B.; Patel, H.G.; Aparnathi, K.D. Browning, its chemistry and implications in dairy products: A review. Indo Am. J. Agric. Vet. Sci. 2013, 1, 1–12. [Google Scholar]
- Wang, Q.; Espert, M.; Salvador, A.; Sanz, T. Shortening replacement by emulsion and foam template hydroxypropyl methylcellulose (HPMC)-based oleogels in puff pastry dough. Rheological and texture properties. Curr. Res. Food Sci. 2023, 7, 100558. [Google Scholar] [CrossRef] [PubMed]
- Espert, M.; Salvador, A.; Sanz, T.; Hernández, M.J. Replacing solid fat in croissant dough using xanthan gum-based oleogels. Impact on rheological properties and final product quality. Food Hydrocoll. 2024, 157, 110472. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Silow, C.; Zannini, E.; Axel, C.; Belz, M.C.; Arendt, E.K. Optimization of fat-reduced puff pastry using response surface methodology. Foods 2017, 6, 15. [Google Scholar] [CrossRef]
- Caggia, C.; Palmeri, R.; Russo, N.; Timpone, R.; Randazzo, C.L.; Todaro, A.; Barbagallo, S. Employ of citrus by-product as fat replacer ingredient for bakery confectionery products. Front. Nutr. 2020, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Noviello, M.; De Angelis, D.; Porfido, C.; Terzano, R.; Caponio, F. Emulsion filled gels based on inulin and dry-fractionated pulse proteins to produce low-fat baked goods. LWT 2024, 207, 116620. [Google Scholar] [CrossRef]
- World Health Organization (WHO); Consultation, F.E. Diet, nutrition and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar]
- U.S. Department of Agriculture & U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Government Printing Office: Washington, DC, USA, 2020.
- Katan, M.B.; Zock, P.L.; Mensink, R.P. Effects of fats and fatty acids on blood lipids in humans: An overview. Am. J. Clin. Nutr. 1994, 60, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Utzschneider, K.M.; Bayer-Carter, J.L.; Arbuckle, M.D.; Tidwell, J.M.; Richards, T.L.; Craft, S. Beneficial effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older subjects. Br. J. Nutr. 2013, 109, 1096–1104. [Google Scholar] [CrossRef]
- Van den Bremt, K.; Müllendorff, K.; Arnaut, F. Balancing functional and nutritional quality of oils and fats: Current requirements and future trends. Oléagineux Corp. Gras Lipides 2012, 19, 83–88. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, K.; Astiasarán, I.; Ansorena, D. Gels as fat replacers in bakery products: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3768–3781. [Google Scholar] [CrossRef]
- Daglioglu, O.; Tasan, M.; Gecgel, U.; Daglioglu, F. Changes in oxidative stability of selected bakery products during shelf life. Food Sci. Technol. Res. 2004, 10, 464–468. [Google Scholar] [CrossRef]
- Kairam, N.; Kandi, S.; Sharma, M. Development of functional bread with flaxseed oil and garlic oil hybrid micro-capsules. LWT 2021, 136, 110300. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.B. The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J. Nutr. 2002, 132, 1062–1101. [Google Scholar] [CrossRef]
- González, C.A.; Salas-Salvadó, J. The potential of nuts in the prevention of coronary heart disease. Br. J. Nutr. 2006, 96, S87–S94. [Google Scholar] [CrossRef]
- Nanditha, B.; Prabhasankar, P. Antioxidants in bakery products: A review. Crit. Rev. Food Sci. Nutr. 2008, 49, 1–27. [Google Scholar] [CrossRef]
- Delicato, C.; Schouteten, J.J.; Dewettinck, K.; Gellynck, X.; Tzompa-Sosa, D.A. Consumers’ perception of bakery products with insect fat as partial butter replacement. Food Qual. Prefer. 2020, 79, 103755. [Google Scholar] [CrossRef]
- Day, G.; LeBouf, R.; Grote, A.; Pendergrass, S.; Cummings, K.; Kreiss, K.; Kullman, G. Identification and measurement of diacetyl substitutes in dry bakery mix production. J. Occup. Environ. Hyg. 2011, 8, 93–103. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Utilization of chestnut flour in gluten-free bread formulations. J. Food Eng. 2010, 101, 329–336. [Google Scholar] [CrossRef]
Parameters | Poppy | Chia | Pumpkin | Melon | Almond | Pistachio | Walnut |
---|---|---|---|---|---|---|---|
Oil yield (%) | 23.98 ± 1.08 c | 20.07 ± 1.19 c | 7.94 ± 0.33 e | 16.07 ± 0.92 d | 32.65 ± 1.08 b | 28.84 ± 1.19 b | 58.02 ± 0.33 a |
Oil quality | - | - | - | - | - | - | - |
Oxidative stability (h) | 8.78 ± 0.97 b | 2.39 ± 0.13 c | 22.57 ± 1.05 a | 9.61 ± 0.93 | 25.94 ± 1.90 a | 28.65 ± 1.31 a | 7.32± 1.10 b |
Viscosity (Cp) | 57.12 ± 0.43 b | 43.27 ± 0.35 c | 71.69 ± 1.10 a | 63.9 ± 1.02 b | 46.71 ± 0.43 c | 45.84 ± 0.35 c | 45.84 ± 1.10 c |
Color | - | - | - | - | - | - | - |
L* | 92.87 ± 1.23 a | 95.49 ± 0.41 a | 45.32 ± 0.37 c | 89.06 b ± 2.58 | 92.87± 1.23 a | 65.01 ± 0.41 b | 93.32 ± 0.37 a |
a* | −4.66 ± 0.08 d | −7.10 ± 0.11 e | 41.93 ± 0.45 a | −5.55 ± 0.04 | −3.33 ± 0.46 c | 3.00 ± 0.11 b | −2.88 ± 0.86 c |
b* | 23.69 ± 0.54 c | 27.51 ± 0.16 c | 76.28 ± 1.17 a | 69.24 ± 1.10 a | 17.41 ± 0.80 d | 49.98 ± 0.16 b | 22.03 ± 1.20 c |
ID | Before Fermenting | After Fermenting | After Baking | |||
---|---|---|---|---|---|---|
Wide (mm) | High (mm) | Wide (mm) | High (mm) | Wide (mm) | High (mm) | |
Control | 57.71 ± 1.73 ab | 39.3 ± 5.61 a | 92.13 ± 2.72 ab | 43.00 ± 3.84 c | 90.40 ± 3.27 bc | 40.87 ± 3.67 c |
Almond 50% | 59.29 ± 2.81 ab | 40.11 ± 1.27 ab | 94.05 ± 3.30 ab | 44.97 ± 1.51 c | 92.32 ± 0.95 b | 49.11 ± 2.06 bc |
Pistachio 50% | 56.78 ± 1.77 ab | 40.96 ± 2.47 ab | 86.82 ± 1.79 b | 56.02 ± 2.32 b | 90.69 ± 2.08 bc | 56.47 ± 2.26 b |
Walnut 50% | 55.36 ± 1.19 b | 42.32 ± 1.92 ab | 88.98 ± 3.10 b | 59.64 ± 2.50 ab | 92.02 ± 1.89 b | 57.90 ± 1.83 b |
Poppy seed 50% | 60.14 ± 0.60 ab | 39.00 ± 1.47 ab | 86.98 ± 1.79 b | 54.52 ± 2.52 b | 93.92 ± 2.93 b | 54.33 ± 1.83 b |
Chia seed 50% | 57.91 ± 1.17 ab | 39.65 ± 1.84 ab | 88.98 ± 3.10 b | 56.89 ± 2.81 b | 97.06 ± 2.61 a | 55.87 ± 2.21 b |
Melon seed 50% | 60.73 ± 1.62 a | 39.73 ± 0.58 ab | 86.72 ± 3.78 b | 52.05 ± 3.04 b | 90.00 ± 3.62 bc | 56.03 ± 2.83 b |
Pumpkin seed 50% | 58.27 ± 1.62 b | 37.61 ± 4.9 b | 81.72 ± 2.16 c | 51.86 ± 3.72 b | 88.21 ± 3.27 c | 62.02 ± 1.75 ab |
Almond 100% | 58.95 ± 0.81 ab | 45.96 ± 3.39 a | 92.06 ± 1.34 ab | 54.39 ± 3.18 b | 95.12 ± 3.46 ab | 65.22 ± 3.48 ab |
Pistachio 100% | 58.36 ± 1.08 ab | 44.46 ± 1.65 a | 95.35 ± 2.79 a | 55.67 ± 1.83 b | 99.57 ± 3.15 a | 67.46 ± 1.90 a |
Walnut 100% | 58.28 ± 0.95 ab | 38.33 ± 1.81 ab | 93.2 ± 1.40 ab | 58.45 ± 2.87 ab | 97.05 ± 2.84 a | 68.56 ± 3.62 a |
Poppy seed 100% | 60.71 ± 1.87 a | 39.45 ± 1.43 ab | 96.35 ± 3.78 a | 57.05 ± 3.77 ab | 95.44 ± 4.62 ab | 66.20 ± 3.71 ab |
Chia seed 100% | 59.42 ± 2.46 ab | 36.01 ± 0.69 b | 89.21 ± 1.4 b | 64.31 ± 2.98 a | 90.70 ± 1.15 bc | 62.91 ± 2.70 ab |
Melon seed 100% | 59.15 ± 0.99 ab | 41.33 ± 0.93 ab | 82.68 ± 0.27 c | 53.48 ± 0.39 b | 96.65 ± 1.73 a | 69.59 ± 2.76 a |
Pumpkin seed 100% | 55.75 ± 3.64 b | 42.93 ± 1.96 ab | 87.61 ± 1.36 b | 56.56 ± 1.36 b | 97.65 ± 2.41 a | 69.91 ± 2.21 a |
ID | Hardness | Elasticity | Cohesiveness | Chewiness |
---|---|---|---|---|
Control | 74.50 ± 4.98 a | 0.82 ± 0.02 b | 0.36 ± 0.02 b | 30.13 ± 4.07 a |
Almond 50% | 50.66 ± 3.54 b | 0.87 ± 0.01 ab | 0.45 ± 0.02 ab | 19.73 ± 0.01 b |
Pistachio 50% | 49.52 ± 0.36 b | 0.88 ± 0.01 ab | 0.52 ± 0.01 a | 18.21 ± 1.88 b |
Walnut 50% | 47.90 ± 2.25 b | 0.91 ± 0.03 a | 0.53 ± 0.01 a | 17.31 ± 1.16 b |
Poppy seed 50% | 46.80 ± 4.38 b | 0.87 ± 0.01 ab | 0.49 ± 0.01 a | 19.84 ± 1.73 b |
Chia seed 50% | 42.00 ± 1.31 b | 0.87 ± 0.05 ab | 0.53 ± 0.02 a | 17.12 ± 1.15 b |
Melon seed 50% | 46.10 ± 3.01 b | 0.90 ± 0.01 a | 0.54 ± 0.02 a | 18.52 ± 1.32 b |
Pumpkin seed 50% | 42.23 ± 1.17 b | 0.89 ± 0.02 ab | 0.52 ± 0.01 a | 17.48 ± 0.87 b |
Almond 100% | 20.49 ± 1.15 cd | 0.89 ± 0.03 ab | 0.53 ± 0.03 a | 9.73 ± 1.60 c |
Pistachio 100% | 19.33 ± 1.45 d | 0.88 ± 0.03 ab | 0.51 ± 0.02 a | 8.78 ±1.05 c |
Walnut 100% | 18.33 ± 1.34 d | 0.89 ± 0.03 ab | 0.54 ± 0.02 a | 7.43 ±1.05 c |
Poppy seed 100% | 23.80 ± 1.83 cd | 0.86 ± 0.01 ab | 0.51 ± 0.01 a | 10.01 ± 49.51 b |
Chia seed 100% | 19.98 ± 0.99 d | 0.88 ± 0.01 ab | 0.48 ± 0.03 a | 8.89 ± 125.69 c |
Melon seed 100% | 20.92 ± 1.28 d | 0.85 ± 0.01 ab | 0.47 ± 0.01 a | 8.39 ± 1.32 c |
Pumpkin seed 100% | 25.41 ± 2.73 c | 0.85 ± 0.02 ab | 0.49 ± 0.03 a | 10.56 ± 1.84 c |
ID | Moisture | Ashes | Protein | Carbohydrates | Fat | Energy Value |
---|---|---|---|---|---|---|
Control | 23.6 ± 0.05 c | 0.76 ± 0.03 c | 9.98 ± 0.10 b | 61.58 ± 0.50 d | 27.69 ± 0.30 a | 535 ± 5.0 a |
Almond 50% | 26.4 ± 0.07 b | 0.83 ± 0.03 b | 9.63 ± 0.10 b | 69.12 ± 0.55 c | 20.42 ± 0.24 b | 498.78 ± 5.0 bc |
Pistachio 50% | 34.6 ± 0.07 ab | 0.76 ± 0.03 c | 10.77 ± 0.11 ab | 67.37 ± 0.55 c | 21.10 ± 0.25 b | 502.46 ± 5.0 b |
Walnut 50% | 35.8 ± 0.08 a | 0.84 ± 0.03 b | 11.91 ± 0.13 ab | 67.72 ± 0.55 c | 19.53 ± 0.24 c | 494.29 ± 4.9 c |
Poppy seed 50% | 31.0 ± 0.06 ab | 0.77 ± 0.03 c | 12.08 ± 0.16 ab | 70.11 ± 0.60 bc | 17.04 ± 0.20 e | 482.12 ± 4.5 d |
Chia seed 50% | 32.0 ± 0.06 ab | 0.82 ± 0.03 bc | 12.03 ± 0.12 ab | 70.74 ± 0.60 bc | 16.41 ± 0.18 e | 478.77 ± 4.5 d |
Melon seed 50% | 33.8 ± 0.07 ab | 0.80 ± 0.03 bc | 11.74 ± 0.11 ab | 69.20 ± 0.55 bc | 18.26 ± 0.22 d | 488.10 ± 4.8 cd |
Pumpkin seed 50% | 33.6 ± 0.07 ab | 0.81 ± 0.03 bc | 12.03 ± 0.12 ab | 68.28 ± 0.55 bc | 18.88 ± 0.23 cd | 491.16 ± 4.9 c |
Almond 100% | 37.4 ± 0.07 a | 0.88 ± 0.03 b | 13.00 ± 0.13 a | 73.45 ± 0.60 b | 12.67 ± 0.15 f | 459.83 ± 4.6 d |
Pistachio 100% | 36.1 ± 0.09 a | 0.95 ± 0.04 a | 13.00 ± 0.13 a | 73.43 ± 0.60 b | 12.62 ± 0.15 f | 459.30 ± 4.6 d |
Walnut 100% | 28.9 ± 0.07 b | 0.88 ± 0.03 b | 12.88 ± 0.13 a | 82.18 ± 0.70 a | 4.06 ± 0.07 g | 416.78 ± 4.1 e |
Poppy seed 100% | 36.2 ± 0.09 a | 0.93 ± 0.04 a | 13.05 ± 0.13 a | 82.70 ± 0.70 a | 3.32 ± 0.05 g | 412.88 ± 4.0 e |
Chia seed 100% | 35.0 ± 0.08 a | 0.85 ± 0.03 b | 12.94 ± 0.13 a | 83.34 ± 0.70 a | 2.87 ± 0.05 g | 410.95 ± 4.0 e |
Melon seed 100% | 37.2 ± 0.06 a | 0.95 ± 0.04 a | 12.94 ± 0.13 a | 81.51 ± 0.65 a | 4.60 ± 0.08 g | 419.20 ± 4.2 e |
Pumpkin seed 100% | 36.7 ± 0.07 a | 0.87 ± 0.03 b | 12.94 ± 0.13 a | 73.11 ± 0.60 b | 13.08 ± 0.15 f | 461.92 ± 4.6 d |
ID | Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | Linolenic Acid |
---|---|---|---|---|---|
Control | 38.9 ± 0.4 a | 10.8 ± 0.3 a | 27.0 ± 0.5 e | 4.75 ± 0.2 f | 0.27 ± 0.02 d |
Almond 50% | 29.3 ± 0.3 b | 8.07 ± 0.2 b | 40.5 ± 0.5 b | 9.41 ± 0.3 e | 0.18 ± 0.02 d |
Pistachio 50% | 31.3 ± 0.3 b | 7.84 ± 0.2 b | 35.2 ± 0.5 c | 12.5 ± 0.3 e | 0.29 ± 0.02 d |
Walnut 50% | 30.2 ± 0.3 b | 8.10 ± 0.2 b | 26.0 ± 0.4 e | 20.4 ± 0.4 d | 2.55 ± 0.05 cd |
Poppy seed 50% | 30.9 ± 0.3 b | 8.25 ± 0.2 b | 23.3 ± 0.4 f | 24.1 ± 0.5 d | 0.39 ± 0.03 d |
Chia seed 50% | 30.6 ± 0.3 b | 8.16 ± 0.2 b | 22.1 ± 0.3 f | 10.4 ± 0.3 e | 15.5 ± 0.4 b |
Melon seed 50% | 30.6 ± 0.2 b | 8.92 ± 0.2 b | 27.2 ± 0.4 e | 20.4 ± 0.4 d | 0.27 ± 0.02 d |
Pumpkin seed 50% | 32.0 ± 0.3 b | 9.59 ± 0.2 b | 30.7 ± 0.5 d | 14.6 ± 0.3 e | 0.34 ± 0.03 d |
Almond 100% | 10.6 ± 0.2 c | 3.33 ± 0.1 c | 65.2 ± 0.5 a | 19.0 ± 0.3 e | 0.20 ± 0.02 d |
Pistachio 100% | 15.2 ± 0.3 c | 3.54 ± 0.1 c | 51.3 ± 0.5 a | 27.3 ± 0.4 d | 0.32 ± 0.02 d |
Walnut 100% | 11.3 ± 0.2 c | 2.98 ± 0.1 c | 24.0 ± 0.4 f | 51.4 ± 0.5 b | 8.98 ± 0.3 c |
Poppy seed 100% | 12.0 ± 0.2 c | 7.77 ± 0.2 b | 18.6 ± 0.4 g | 65.3 ± 0.5 a | 0.50 ± 0.03 d |
Chia seed 100% | 10.7 ± 0.2 c | 3.56 ± 0.1 c | 12.9 ± 0.3 h | 20.2 ± 0.4 d | 51.3 ± 0.5 a |
Melon seed 100% | 12.9 ± 0.2 c | 5.66 ± 0.1 c | 28.2 ± 0.4 e | 51.9 ± 0.5 b | 0.24 ± 0.02 d |
Pumpkin seed 100% | 17.3 ± 0.3 c | 7.77 ± 0.2 b | 38.2 ± 0.5 c | 35.2 ± 0.4 c | 0.23 ± 0.02 d |
ID | SFA (%) | MUFA (%) | PUFA (%) | AI (%) | TI (%) | VIT E (mg/kg) | TBA (mg MDA/kg) |
---|---|---|---|---|---|---|---|
Control | 65.78 ± 0.5 a | 29.25 ± 0.4 e | 5.02 ± 0.2 f | 2.82 ± 0.05 a | 3.85 ± 0.05 a | 2.64 ± 0.10 c | 0.69 ± 0.01 a |
Almond 50% | 48.16 ± 0.5 b | 42.27 ± 0.5 b | 9.59 ± 0.3 g | 1.28 ± 0.04 b | 1.82 ± 0.05 b | 3.09 ± 0.09 b | 0.67 ± 0.04 b |
Pistachio 50% | 50.24 ± 0.5 b | 36.95 ± 0.5 c | 12.79 ± 0.3 f | 1.39 ± 0.04 b | 1.97 ± 0.05 b | 3.25 ± 0.11 b | 0.54 ± 0.08 b |
Walnut 50% | 49.22 ± 0.5 b | 27.73 ± 0.4 f | 22.95 ± 0.4 d | 1.33 ± 0.04 b | 1.90 ± 0.05 b | 3.30 ± 0.12 b | 0.35 ± 0.10 b |
Poppy seed 50% | 50.33 ± 0.4 b | 25.11 ± 0.3 f | 24.49 ± 0.4 d | 1.40 ± 0.04 b | 1.99 ± 0.04 b | 3.17 ± 0.13 b | 0.45 ± 0.02 b |
Chia seed 50% | 50.46 ± 0.5 b | 23.71 ± 0.3 g | 25.90 ± 0.5 d | 1.39 ± 0.04 b | 1.98 ± 0.05 b | 4.37 ± 0.09 b | 0.59 ± 0.04 b |
Melon seed 50% | 50.52 ± 0.5 b | 28.89 ± 0.4 e | 20.67 ± 0.4 e | 1.37 ± 0.04b | 1.99 ± 0.05 b | 5.24 ± 0.02 ab | 0.38 ± 0.05 b |
Pumpkin seed 50% | 52.69 ± 0.5 b | 32.41 ± 0.5 d | 14.94 ± 0.3 f | 1.47 ± 0.04 b | 2.18 ± 0.05 b | 6.51 ± 0.05 a | 0.36 ± 0.05 b |
Almond 100% | 14.59 ± 0.3 c | 66.18 ± 0.5 a | 19.20 ± 0.3 e | 0.14 ± 0.03 c | 0.34 ± 0.03 c | 5.22 ± 0.07 ab | 0.95 ± 0.06 c |
Pistachio 100% | 19.50 ± 0.3 c | 52.86 ± 0.5 a | 27.62 ± 0.4 d | 0.21 ± 0.03 c | 0.48 ± 0.03 c | 5.27 ± 0.07 ab | 0.78 ± 0.01 c |
Walnut 100% | 14.86 ± 0.3 c | 24.78 ± 0.3 f | 60.38 ± 0.5 a | 0.15 ± 0.03 c | 0.34 ± 0.03 c | 5.82 ± 0.09 ab | 0.60 ± 0.11 c |
Poppy seed 100% | 15.26 ± 0.3 c | 19.04 ± 0.3 h | 65.80 ± 0.5 a | 0.15 ± 0.03 c | 0.36 ± 0.03 c | 5.05 ± 0.09 ab | 0.65 ± 0.02 c |
Chia seed 100% | 15.01 ± 0.3 c | 13.44 ± 0.3 i | 71.50 ± 0.5 a | 0.14 ± 0.03 c | 0.35 ± 0.03 c | 6.33 ± 0.11 a | 0.82 ± 0.03 c |
Melon seed 100% | 19.07 ± 0.3 c | 28.84 ± 0.4 e | 52.14 ± 0.5 b | 0.17 ± 0.03 c | 0.47 ± 0.03 c | 6.57 ± 0.10 a | 0.87 ± 0.04 c |
Pumpkin seed 100% | 25.91 ± 0.4 c | 38.71 ± 0.5 c | 35.43 ± 0.4 c | 0.25 ± 0.03 c | 0.69 ± 0.04 c | 7.24 ± 0.11 a | 0.91 ± 0.09 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, E.; Martínez-Navarro, M.E.; Pardo, J.E.; Rabadan, A.; Álvarez-Ortí, M. Enhancing Brioche Bread with Emulsified Seed and Nut Oils: Nutritional and Sustainable Benefits. Appl. Sci. 2024, 14, 11382. https://doi.org/10.3390/app142311382
Martínez E, Martínez-Navarro ME, Pardo JE, Rabadan A, Álvarez-Ortí M. Enhancing Brioche Bread with Emulsified Seed and Nut Oils: Nutritional and Sustainable Benefits. Applied Sciences. 2024; 14(23):11382. https://doi.org/10.3390/app142311382
Chicago/Turabian StyleMartínez, Elena, María Esther Martínez-Navarro, José E. Pardo, Adrian Rabadan, and Manuel Álvarez-Ortí. 2024. "Enhancing Brioche Bread with Emulsified Seed and Nut Oils: Nutritional and Sustainable Benefits" Applied Sciences 14, no. 23: 11382. https://doi.org/10.3390/app142311382
APA StyleMartínez, E., Martínez-Navarro, M. E., Pardo, J. E., Rabadan, A., & Álvarez-Ortí, M. (2024). Enhancing Brioche Bread with Emulsified Seed and Nut Oils: Nutritional and Sustainable Benefits. Applied Sciences, 14(23), 11382. https://doi.org/10.3390/app142311382