A Validated High-Performance Thin-Layer Chromatography Method for Analyzing Fat-Soluble Vitamins in Commercial Pharmaceutical Preparations
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Commercial Samples
2.3. Sample Preparation
2.3.1. Preparation of Stock Solutions and Mobile Phase
2.3.2. Preparation of Pharmaceutical Samples for HPTLC Analysis
2.4. HPTLC Method and Instruments
2.4.1. Application of Standards and Samples
2.4.2. Sample Development
2.5. Method Validation
2.5.1. Specificity
2.5.2. Linearity
2.5.3. Sensitivity
2.5.4. Precision
2.5.5. Accuracy
2.5.6. Repeatability (System Precision)
2.5.7. Robustness
3. Results and Discussion
3.1. Mobile Phase Selection
3.2. Evaluation of Visual Images and Selection of Quantification Method
3.3. Chromatographic Results and UV–Vis Spectra
3.4. Method Validation
3.4.1. Specificity
3.4.2. Linearity
3.4.3. Sensitivity (LOD and LOQ)
3.4.4. Accuracy
3.4.5. Precision
3.4.6. Repeatability
3.4.7. Robustness
4. Application of the Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khayat, S.; Fanaei, H.; Ghanbarzehi, A. Minerals in Pregnancy and Lactation: A Review Article. J. Clin. Diagn. Res. 2017, 11, Qe1–Qe5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, W.E.; Yan, J.Q.; Liu, M.; Zhou, Y.; Shen, X.; Ma, Y.L.; Feng, X.S.; Yang, J.; Li, G.H. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules 2018, 23, 1484. [Google Scholar] [CrossRef] [PubMed]
- Scientific, T.F. Determination of Water- and Fat-Soluble Vitamins by HPLC. In Knowledge Creation Diffusion Utilization; Thermo Fischer Scientific: Waltham, MA, USA, 2017; pp. 1–23. [Google Scholar]
- Atia, N.N.; Ahmed, S. A Validated High-Throughput Chromatographic Method for Simultaneous Determination of Vitamin K Homologues. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 486–498. [Google Scholar] [CrossRef]
- Ullah, Q.; Mohammad, A. Vitamins determination by TLC/HPTLC—A mini-review. JPC-J. Planar. Chromat. 2020, 33, 429–437. [Google Scholar] [CrossRef]
- De Leenheer, A.P.; Lambert, W. Modern Chromatographic Analysis of Vitamins: Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2000; Volume 84. [Google Scholar]
- Dialameh, G.H.; Olson, R.E. Gas-Liquid Chromatography of Phytyl Ubiquinone, Vitamin-E, Vitamin-K1, and Homologs of Vitamin-K2. Anal. Biochem. 1969, 32, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Po, E.S.M.; Ho, J.W.; Gong, B.Y. Simultaneous chromatographic analysis of eight fat-soluble vitamins in plasma. J. Biochem. Bioph. Meth. 1997, 34, 99–106. [Google Scholar]
- Santos, J.; Mendiola, J.A.; Oliveira, M.B.; Ibáñez, E.; Herrero, M. Sequential determination of fat-and water-soluble vitamins in green leafy vegetables during storage. J. Chromatogr. A 2012, 1261, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Phinney, K.W.; Rimmer, C.A.; Thomas, J.B.; Sander, L.C.; Sharpless, K.E.; Wise, S.A. Isotope dilution liquid chromatography—Mass spectrometry methods for fat- and water-soluble vitamins in nutritional formulations. Anal. Chem. 2011, 83, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Monakhova, Y.B.; Mushtakova, S.P.; Kolesnikova, S.S.; Astakhov, S.A. Chemometrics-assisted spectrophotometric method for simultaneous determination of vitamins in complex mixtures. Anal. Bioanal. Chem. 2010, 397, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. A validated method for the quantitative determination of sugars in honey using high-performance thin-layer chromatography. JPC-J. Planar. Chromat. 2020, 33, 489–499. [Google Scholar] [CrossRef]
- Sikdar, K.Y.K.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Locher, C. Development and Validation of a Quantitative Analysis of Water-Soluble Vitamins Using High-Performance Thin-Layer Chromatography and its Application to the Analysis of Nutraceuticals. Separations 2024, 11, 207. [Google Scholar] [CrossRef]
- Gill, B.D.; Abernethy, G.A.; Green, R.J.; Indyk, H.E. Analysis of vitamin D2 and vitamin D3 in fortified milk powders and infant and nutritional formulas by liquid chromatography–tandem mass spectrometry: Single-laboratory validation, first action 2016.05. J. AOAC Int. 2016, 99, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.H.; Shakeel, F.; Foudah, A.I.; Aljarba, T.M.; Alam, A.; Alshehri, S.; Alam, P. Comparison of Validation Parameters for the Determination of Vitamin D3 in Commercial Pharmaceutical Products Using Traditional and Greener HPTLC Methods. Separations 2022, 9, 301. [Google Scholar] [CrossRef]
- Kartsova, L.A.; Koroleva, O.A. Simultaneous determination of water-and fat-soluble vitamins by high-performance thin-layer chromatography using an aqueous micellar mobile phase. J. Anal. Chem. 2007, 62, 255–259. [Google Scholar] [CrossRef]
- Pyka, A.; Sliwiok, J. Chromatographic separation of tocopherols. J. Chromatogr. A 2001, 935, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Chavan, J.D.; Khatri, J.M. Determination of retinol and α-tocopherol in human plasma by HPTLC. J. Planar Chromatogr. Morden TLC 1992, 5, 280–282. [Google Scholar]
- Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Sugar profiling of honeys for authentication and detection of adulterants using high-performance thin layer chromatography. Molecules 2020, 25, 5289. [Google Scholar] [CrossRef]
- ICH. Harmonized Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology Q2(R1). In Proceedings of the International Conference on Harmonization (ICH), Geneva, Switzerland, 10 November 2005. [Google Scholar]
- Koll, K.; Reich, E.; Blatter, A.; Veit, M. Validation of standardized high-performance thin-layer chromatographic methods for quality control and stability testing of herbals. J. AOAC Int. 2003, 86, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hypponen, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
Vitamins | Mobile Phases | Solvent | Stationary Phase | Number of Development Steps | Detection | LOD and LOQ (ng/band) | Type of Sample | References |
---|---|---|---|---|---|---|---|---|
D3 | Chloroform: Diethyl ether (90:10, v/v) | Methanol | 60F254S (20 × 10 cm) | 1 | Densitometry | 17.54 and 52.62 | Pharmaceutical products | [15] |
D3 | Ethanol: Water (70:30, v/v) | Methanol | RP-60F254S (20 × 10 cm) | 1 | Densitometry | 8.47 and 25.41 | Pharmaceutical products | [15] |
A and E | Benzene and a 0.02 M aqueous micellar solution of sodium dodecyl sulfate (SDS) | Methanol | High-performance Sorbfil plates | 2 | Optical densitometer and densitometry | - | Standards | [16] |
A and E | Chloroform: Cyclohexane (55:45, v/v) | Methanol and n-heptane | Silica gel 60F254 (20 × 10 cm and 10 × 10 cm) | 1 | Densitometry | 0.16 and 1.2; 0.89 and 5.71 | Human plasma | [18] |
α-, β-, γ-, and δ-Tocopherols | Ethanol-water (10:0; 9.5:0.5; 9.0:1, v/v) | Chloroform | RP-18-HPTLC (10 × 10 cm) | 1 | Dipyridyl iron reagent | - | Various biological samples | [17] |
K1 | Methanol: Ethanol: Isopropanol: Water (75:5:5:15, v/v/v/v) | Ethanol | Silica gel 60F254 (20 × 10 cm) | 1 | Densitometry | 0.19–0.85 and 0.57–2.50 | Pharmaceutical products, vegetables, and fruits | [4] |
Sample ID | Details of Products | Content Declared |
---|---|---|
S1 | Hard Gelatine Capsules | Vitamin D2 (75 µg), Protein (47 mg), Fat (3 mg), Carbohydrates (40 mg), Sodium (0.009 mg), Sugars (0.15 mg) |
S2 | Soft Gelatine Capsules | Vitamin D3 (175 µg), Soya oil, Gelatine, Glycerol, Fractionated coconut oil, Opacode monogramming ink S1-1-17823 Black and Purified water |
S3 | Soft Gelatine Capsules | Vitamin E (335.6 mg), Gelatine glycerol, Purified water, Sorbitol solution (70%), Soya oil |
S4 | IV Solution | Vitamin K1 (2 mg), Glycocholic acid (10.92 mg), Sodium hydroxide (0.92 mg), Lecithin (15.12 mg), Hydrochloric acid 25% (0.02 mg) and Water for injection (0.2 mL) |
MP No. | Mobile Phases | Solvent Composition (v/v) | Remarks | References |
---|---|---|---|---|
1 | Chloroform: Diethyl ether | 90:10 | Vitamins were not adequately separated | [15] |
2 | Ethanol: Water | 70:30 | Vitamins were not adequately separated | [15] |
3 | Toluene: Ethyl Acetate: Formic Acid | 6:5:1 | Vitamins were not adequately separated | [19] |
4 | Ethanol: Water | 19:1 | Vitamin D2 could be separated from the other vitamins but the band was not sharp | [17] |
5 | Chloroform: Cyclohexane | 55:45 | Vitamins were separated but D2 and D3 had an identical Rf value | [18] |
Vitamins | RF | Run | Linearity Range (ng/band) | Regression Equation | Correlation Coefficient (r2) | Slope (Average) | y-Intercept (SD) | LOD (ng) | LOQ (ng) |
---|---|---|---|---|---|---|---|---|---|
D2 | 0.20 | Run 1 | 100–300 | y = 5 × 10−6x − 6 × 10−5 | 0.9944 | 6.53 × 10−6 | 6.11 × 10−5 | 30.86 | 93.52 |
Run 2 | 100–300 | y = 8 × 10−6x − 2 × 10−5 | 0.9928 | ||||||
Run 3 | 100–300 | y = 7 × 10−6x − 1 × 10−4 | 0.9969 | ||||||
D3 | 0.20 | Run 1 | 100–300 | y = 8 × 10−6x + 1 × 10−4 | 0.9977 | 7.07 × 10−6 | 4.16 × 10−5 | 19.44 | 58.92 |
Run 2 | 100–300 | y = 5 × 10−6x + 8 × 10−5 | 0.9959 | ||||||
Run 3 | 100–300 | y = 7 × 10−6x + 2 × 10−4 | 0.9978 | ||||||
E | 0.46 | Run 1 | 100–300 | y = 3 × 10−4x + 3.5 × 10−3 | 0.9984 | 3.07 × 10−4 | 1.32 × 10−3 | 14.17 | 42.95 |
Run 2 | 100–300 | y = 3 × 10−4x + 9 × 10−4 | 0.9929 | ||||||
Run 3 | 100–300 | y = 3 × 10−4x + 2.7 × 10−3 | 0.9888 | ||||||
K1 | 0.68 | Run 1 | 20–60 | y = 1.1 × 10−3x + 2.9 × 10−2 | 0.9931 | 1.37 × 10−3 | 3.58 × 10−4 | 0.86 | 2.61 |
Run 2 | 20–60 | y = 1.6 × 10−3x + 3 × 10−3 | 0.9978 | ||||||
Run 3 | 20–60 | y = 1.4 × 10−3x + 3 × 10−3 | 0.9973 |
Theoretical Amount (ng/band) | Run 1 | Run 2 | Run 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Amount Recovered (ng/band) | % Recovery | % Mean Recovery | Amount Recovered (ng/band) | % Recovery | % Mean Recovery | Amount Recovered (ng/band) | % Recovery | % Mean Recovery | |
Vitamin D2 | |||||||||
150 | 146.52 | 97.68 | 157.30 | 104.87 | 155.70 | 103.80 | |||
200 | 198.60 | 99.30 | 99.37 | 193.00 | 96.50 | 99.75 | 203.60 | 101.80 | 101.53 |
250 | 252.86 | 101.14 | 244.70 | 97.88 | 247.50 | 99.00 | |||
Vitamin D3 | |||||||||
150 | 157.70 | 105.13 | 150.80 | 100.53 | 153.40 | 102.27 | |||
200 | 198.30 | 99.15 | 101.51 | 201.30 | 100.65 | 101.15 | 201.60 | 100.80 | 100.89 |
250 | 250.60 | 100.24 | 255.70 | 102.28 | 249.00 | 99.60 | |||
Vitamin E | |||||||||
150 | 152.10 | 101.40 | 148.50 | 99.00 | 158.30 | 105.53 | |||
200 | 200.57 | 100.28 | 99.67 | 202.40 | 101.20 | 100.51 | 198.40 | 99.20 | 102.51 |
250 | 243.30 | 97.32 | 253.30 | 101.32 | 257.00 | 102.80 | |||
Vitamin K1 | |||||||||
30 | 29.9 | 99.67 | 29.24 | 97.47 | 30.40 | 101.33 | |||
40 | 41.04 | 102.60 | 102.18 | 39.53 | 98.83 | 97.64 | 38.98 | 97.45 | 100.64 |
50 | 52.14 | 104.28 | 48.32 | 96.64 | 51.57 | 103.14 |
Theoretical Amount (ng/band) | Precision of the Method (Intra-Day) | |||||
---|---|---|---|---|---|---|
Run 1 Measured Amount (ng/band) | Run 2 Measured Amount (ng/band) | Run 3 Measured Amount (ng/band) | Mean (ng/band) | SD | %RSD | |
Vitamin D2 | ||||||
150 | 156.80 | 153.60 | 150.70 | 153.70 | 3.05 | 1.99 |
200 | 203.30 | 195.53 | 205.47 | 201.43 | 5.22 | 2.59 |
250 | 245.43 | 248.43 | 252.53 | 248.80 | 3.56 | 1.43 |
Vitamin D3 | ||||||
150 | 156.57 | 150.90 | 160.35 | 155.94 | 4.76 | 3.05 |
200 | 204.90 | 197.40 | 209.00 | 203.77 | 5.88 | 2.89 |
250 | 253.30 | 255.05 | 258.95 | 255.77 | 2.89 | 1.13 |
Vitamin E | ||||||
150 | 154.10 | 148.40 | 147.33 | 149.94 | 3.64 | 2.43 |
200 | 193.40 | 196.00 | 204.10 | 197.83 | 5.58 | 2.82 |
250 | 248.00 | 250.20 | 255.80 | 251.33 | 4.02 | 1.60 |
Vitamin K1 | ||||||
30 | 30.78 | 30.12 | 29.45 | 30.12 | 0.66 | 2.20 |
40 | 41.00 | 39.85 | 41.17 | 40.67 | 0.72 | 1.77 |
50 | 52.70 | 49.78 | 49.47 | 50.65 | 1.78 | 3.52 |
Theoretical Amount (ng/band) | Precision of the Method (Inter-Day) | |||||
---|---|---|---|---|---|---|
Run 1 Measured Amount (ng/band) | Run 2 Measured Amount (ng/band) | Run 3 Measured Amount (ng/band) | Mean (ng/band) | SD | %RSD | |
Vitamin D2 | ||||||
150 | 154.30 | 152.30 | 144.30 | 150.30 | 5.29 | 3.52 |
200 | 196.90 | 199.97 | 201.80 | 199.56 | 2.48 | 1.24 |
250 | 257.96 | 247.00 | 253.20 | 252.72 | 5.50 | 2.17 |
Vitamin D3 | ||||||
150 | 156.20 | 152.00 | 145.35 | 151.18 | 5.47 | 3.62 |
200 | 202.50 | 198.80 | 200.43 | 200.58 | 1.85 | 0.92 |
250 | 260.70 | 249.50 | 253.75 | 254.65 | 5.65 | 2.22 |
Vitamin E | ||||||
150 | 156.37 | 153.70 | 158.90 | 156.32 | 3.68 | 2.35 |
200 | 191.63 | 206.90 | 204.80 | 201.11 | 8.27 | 4.11 |
250 | 248.00 | 243.30 | 251.10 | 247.47 | 3.93 | 1.59 |
Vitamin K1 | ||||||
30 | 31.00 | 30.07 | 31.30 | 30.79 | 0.64 | 2.09 |
40 | 42.13 | 39.63 | 39.33 | 40.36 | 1.54 | 3.81 |
50 | 49.42 | 48.80 | 50.57 | 49.60 | 0.90 | 1.81 |
D2 Theoretical Amount (ng/band) | D2 Measured Amount (ng/band) | D3 Theoretical Amount (ng/band) | D3 Measured Amount (ng/band) | E Theoretical Amount (ng/band) | E Measured Amount (ng/band) | K1 Theoretical Amount (ng/band) | K1 Measured Amount (ng/band) |
---|---|---|---|---|---|---|---|
200 | 203.20 | 200 | 199.20 | 200 | 195.40 | 40 | 40.96 |
200 | 195.50 | 200 | 201.50 | 200 | 198.30 | 40 | 41.84 |
200 | 197.80 | 200 | 205.80 | 200 | 197.40 | 40 | 40.37 |
200 | 208.30 | 200 | 197.80 | 200 | 205.90 | 40 | 39.36 |
200 | 197.40 | 200 | 199.03 | 200 | 197.90 | 40 | 39.17 |
Average | 200.44 | Average | 200.67 | Average | 198.98 | Average | 40.34 |
SD | 5.24 | SD | 3.17 | SD | 4.03 | SD | 1.11 |
%RSD | 2.62 | %RSD | 1.58 | %RSD | 2.02 | %RSD | 2.76 |
Mobile Phase Volume | D2 | D3 | E | K1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | |
8 mL | 150 | 101.33 | 0.20 ± 0.01 | 150 | 102.00 | 0.20 ± 0.03 | 150 | 96.93 | 0.46 ± 0.04 | 30 | 101.03 | 0.68 ± 0.03 |
200 | 97.15 | 200 | 102.90 | 200 | 102.75 | 40 | 103.43 | |||||
250 | 98.72 | 250 | 104.72 | 250 | 100.68 | 50 | 101.82 | |||||
12 mL | 150 | 102.73 | 0.20 ± 0.03 | 150 | 98.33 | 0.20 ± 0.03 | 150 | 100.07 | 0.46 ± 0.05 | 30 | 99.37 | 0.68 ± 0.02 |
200 | 99.10 | 200 | 102.35 | 200 | 100.40 | 40 | 104.40 | |||||
250 | 98.40 | 250 | 100.92 | 250 | 99.24 | 50 | 98.60 |
Saturation Time (Min) | D2 | D3 | E | K1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | |
15 | 150 | 105.60 | 0.20 ± 0.02 | 150 | 100.87 | 0.20 ± 0.05 | 150 | 100.07 | 0.46 ± 0.04 | 30 | 101.67 | 0.68 ± 0.03 |
200 | 102.25 | 200 | 102.45 | 200 | 98.05 | 40 | 103.08 | |||||
250 | 104.80 | 250 | 102.92 | 250 | 99.24 | 50 | 99.50 | |||||
25 | 150 | 101.93 | 0.20 ± 0.03 | 150 | 103.07 | 0.20 ± 0.03 | 150 | 103.93 | 0.46 ± 0.05 | 30 | 105.33 | 0.68 ± 0.04 |
200 | 104.25 | 200 | 98.55 | 200 | 102.55 | 40 | 103.75 | |||||
250 | 102.92 | 250 | 103.58 | 250 | 102.36 | 50 | 100.42 |
Mobile Phase Composition | D2 | D3 | E | K1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | Theoretical Amount (ng/band) | % Recovery | RF (Mean ± SD) | |
Chloroform: Cyclohexane (55:47) | 150 | 97.53 | 0.20 ± 0.02 | 150 | 103.27 | 0.20 ± 0.02 | 150 | 98.67 | 0.46 ± 0.04 | 30 | 104.87 | 0.69 ± 0.04 |
200 | 96.35 | 200 | 100.70 | 200 | 102.45 | 40 | 104.65 | |||||
250 | 98.24 | 250 | 102.56 | 250 | 100.32 | 50 | 98.44 | |||||
Chloroform: Cyclohexane (57:45) | 150 | 101.80 | 0.20 ± 0.03 | 150 | 100.60 | 0.20 ± 0.03 | 150 | 101.40 | 0.46 ± 0.02 | 30 | 103.30 | 0.69 ± 0.03 |
200 | 99.15 | 200 | 99.35 | 200 | 102.85 | 40 | 102.45 | |||||
250 | 100.16 | 250 | 103.48 | 250 | 100.36 | 50 | 100.20 |
Commercial Samples | Vitamins | Stated Content (mg) | Average Sample Mass (mg) | Calculated Content (mg) | Mean ± SD | % Stated Content | ||
---|---|---|---|---|---|---|---|---|
Run 1 | Run 2 | Run 3 | ||||||
S1 | D2 | 0.075 | 1200.00 | 0.069 | 0.076 | 0.073 | 0.073 ± 0.003 | 97.24 |
S2 | D3 | 0.175 | 750.00 | 0.164 | 0.181 | 0.177 | 0.174 ± 0.009 | 99.42 |
S3 | E | 335.60 | 30.00 | 344.97 | 348.66 | 348.94 | 347.52 ± 2.21 | 103.55 |
S4 | K1 | 2.00 | 200 | 1.96 | 1.92 | 1.78 | 1.89 ± 0.03 | 94.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikdar, K.M.Y.K.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Locher, C. A Validated High-Performance Thin-Layer Chromatography Method for Analyzing Fat-Soluble Vitamins in Commercial Pharmaceutical Preparations. Appl. Sci. 2024, 14, 11064. https://doi.org/10.3390/app142311064
Sikdar KMYK, Islam MK, Sostaric T, Lim LY, Locher C. A Validated High-Performance Thin-Layer Chromatography Method for Analyzing Fat-Soluble Vitamins in Commercial Pharmaceutical Preparations. Applied Sciences. 2024; 14(23):11064. https://doi.org/10.3390/app142311064
Chicago/Turabian StyleSikdar, K. M. Yasif Kayes, Md Khairul Islam, Tomislav Sostaric, Lee Yong Lim, and Cornelia Locher. 2024. "A Validated High-Performance Thin-Layer Chromatography Method for Analyzing Fat-Soluble Vitamins in Commercial Pharmaceutical Preparations" Applied Sciences 14, no. 23: 11064. https://doi.org/10.3390/app142311064
APA StyleSikdar, K. M. Y. K., Islam, M. K., Sostaric, T., Lim, L. Y., & Locher, C. (2024). A Validated High-Performance Thin-Layer Chromatography Method for Analyzing Fat-Soluble Vitamins in Commercial Pharmaceutical Preparations. Applied Sciences, 14(23), 11064. https://doi.org/10.3390/app142311064