Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine
Abstract
:1. Introduction
2. Chemical Composition of Chlorella vulgaris
2.1. Proteins
2.2. Lipids
2.3. Carbohydrates and Fibres
2.4. Pigments
2.5. Vitamins and Minerals
2.6. Nucleotides
2.7. Secondary Metabolites
3. Bioactivity of Chlorella vulgaris Compounds
3.1. Antioxidant Activity
3.1.1. Non-Enzyme-Promoted Antioxidants
3.1.2. Enzyme-Promoted Antioxidants
3.2. Anti-Inflammatory Effects
3.3. Immunomodulatory Activity
3.4. Antiviral and Antimicrobial Activity
3.5. Anticancer Activity
3.6. Antidiabetic Effects
3.7. Lipid-Lowering and Cardiovascular Effects
3.8. Neuroprotective Effects
3.9. Detoxification and Heavy Metal Chelation
4. Applications of Chlorella vulgaris in Food, Feed, and Medicine
4.1. Applications in Food
4.2. Applications in Feed
4.3. Applications in Medicine
5. Potential Side Effects
6. Future Perspectives and Research Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beijerinck, M.W. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Bot. Ztg. 1890, 47, 725–739. [Google Scholar]
- United Nations. Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 28 August 2024).
- Panahi, Y.; Darvishi, B.; Jowzi, N.; Beiraghdar, F.; Sahebkar, A. Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties. Curr. Pharm. Des. 2016, 22, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.W. Microalgae: Biotechnology and Microbiology; Cambridge University Press: Cambridge, UK, 2007; pp. 1–293. [Google Scholar]
- Mahajan, P.; Kaushal, J.; Upmanyu, A.; Bhatti, J. Assessment of phytoremediation potential of Chara vulgaris to treat toxic pollutants of textile effluent. J. Toxicol. 2019, 8351272. [Google Scholar] [CrossRef]
- Ahammed, M.; Baten, M.; Ali, M.; Mahmud, S.; Islam, M.; Thapa, B.; Islam, A.; Miah, A.; Tusher, T. Comparative evaluation of Chlorella vulgaris and Anabaena variabilis for phycoremediation of polluted river water: Spotlighting heavy metals detoxification. Biology 2023, 12, 675. [Google Scholar] [CrossRef]
- Velankanni, P.; Go, S.-H.; Jin, J.B.; Park, J.-S.; Park, S.; Lee, S.-B.; Kwon, H.-K.; Pan, C.-H.; Cha, K.H.; Lee, C.-C. Chlorella vulgaris modulates gut microbiota and induces regulatory t cells to alleviate colitis in mice. Nutrients 2023, 15, 3293. [Google Scholar] [CrossRef]
- Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551–578. [Google Scholar] [CrossRef] [PubMed]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Xie, J.; Chen, X.; Wu, J.; Zhang, Y.; Zhou, Y.; Zhang, L.; Tang, T.-J.; Wei, D. Antihypertensive effects, molecular docking study, and isothermal titration calorimetry assay of angiotensin i-converting enzyme inhibitory peptides from Chlorella vulgaris. J. Agric. Food Chem. 2018, 66, 1359–1368. [Google Scholar] [CrossRef]
- Berliner, M.D. Proteins in Chlorella vulgaris. Microbios 1986, 46, 199–203. [Google Scholar]
- Aryee, A.N.A.; Agyei, D.; Akanbi, T.O. Recovery and utilization of seaweed pigments in food processing. Curr. Opin. Food Sci. 2018, 19, 113–119. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chao, P.-Y.; Hu, S.-P.; Yang, C.-M. The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Milledge, J.J. Microalgae—Commercial potential for fuel, food and feed. Food Sci. Technol. 2012, 26, 26–28. [Google Scholar]
- Yusof, Y.; Saad, S.; Makpol, S.; Shamaan, N.; Ngah, W. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis. Clinics 2010, 65, 1371–1377. [Google Scholar] [CrossRef]
- Panahi, Y.; Jalalian, H.R.; Pishgoo, B.; Mohammadi, E.; Taghipour, H.; Sahebkar, A.; Abolhasani, E. Investigation of the effects of Chlorella vulgaris as an adjunctive therapy for dyslipidemia: Results of a randomised open-label clinical trial. Nutr. Diet. 2012, 69, 13–19. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Guil-Guerrero, J.L. Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem. 2008, 108, 1023–1026. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Orusmurzaeva, Z.; Maslova, A.; Tambieva, Z.; Sadykova, E.; Askhadova, P.; Umarova, K.; Merzhoeva, A.; Albogachieva, K.; Ulikhanyan, K.; Povetkin, S. Investigation of the Chemical Composition and Physicochemical Properties of Chlorella vulgaris Biomass Treated with Pulsed Discharges Technology for Potential Use in the Food Industry. Potravin. Slovak J. Food Sci. 2022, 16, 777–789. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and medical applications of spirulina microalgae. Biotechnol. Mol. Biol. Rev. 2013, 13, 1231–1237. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, H.J.; Kim, M.K. Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high-fat diet. Nutr. Res. Pract. 2008, 2, 204–210. [Google Scholar] [CrossRef]
- Panahi, Y.; Yari Khosroushahi, A.; Sahebkar, A.; Heidari, H.R. Impact of Cultivation Condition and Media Content on Chlorella vulgaris Composition. Adv. Pharm. Bull. 2019, 9, 182–194. [Google Scholar] [CrossRef]
- Ferreira, G.F.; Pinto, L.F.R.; Filho, R.M.; Fregolente, L.V. Effects of cultivation conditions on Chlorella vulgaris and Desmodesmus sp. grown in sugarcane agro-industry residues. Bioresour. Technol. 2021, 342, 125949. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Parra, J.; Fuentes-Grünewald, C.; Gonzalez, D. Therapeutic Potential of Microalgae-Derived Bioactive Metabolites Is Influenced by Different Large-Scale Culture Strategies. Mar. Drugs 2022, 20, 627. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Effect of Selected Mechanical/Physical Pre-Treatments on Chlorella vulgaris Protein Solubility. Agriculture 2023, 13, 1309. [Google Scholar] [CrossRef]
- Ho, K.K.H.Y.; Redan, B.W. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit. Rev. Food Sci. Nutr. 2022, 62, 508–526. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2014, 136, 228–231. [Google Scholar] [CrossRef]
- Alattar, O.; Fayed, H.; Farag, A. Sds-page electrophoresis and solubility characteristics of casein–Chlorella vulgaris protein isolate co-precipitate mixtures. J. Product. Dev. 2022, 27, 263–279. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Sousa, I.; Raymundo, A.; Bandarra, N.M. Microalgae in Novel Food Products. In Microalgae as Source of Biochemicals and Functional Ingredients, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2018; pp. 1–65. [Google Scholar]
- Wang, Y.; Tibbetts, S.M.; Berrue, F.; McGinn, P.J.; MacQuarrie, S.P.; Puttaswamy, A.; Patelakis, S.; Schmidt, D.; Melanson, R.; MacKenzie, S.E. A rat study to evaluate the protein quality of three green microalgal species and the impact of mechanical cell wall disruption. Foods 2020, 9, 1531. [Google Scholar] [CrossRef]
- Canelli, G.; Tarnutzer, C.; Carpine, R.; Neutsch, L.; Bolten, C.; Dionisi, F.; Mathys, A. Biochemical and nutritional evaluation of Chlorella and Auxenochlorella biomasses relevant for food application. Front. Nutr. 2020, 7, 565996. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae: A review. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.M.; Spínola, M.P.; Alves, V.D.; Prates, J.A.M. Improving protein extraction and peptide production from Chlorella vulgaris using combined mechanical/physical and enzymatic pre-treatments. Heliyon 2024, 10, e32704. [Google Scholar] [CrossRef] [PubMed]
- Maurício, T.; Couto, D.; Lopes, D.; Conde, T.; Pais, R.; Batista, J.; Melo, T.; Pinho, M.; Moreira, A.S.P.; Trovão, M.; et al. Differences and Similarities in Lipid Composition, Nutritional Value, and Bioactive Potential of Four Edible Chlorella vulgaris Strains. Foods 2023, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Conde, T.A.; Neves, B.F.; Couto, D.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, P.; Domingues, M.R. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar. Drugs 2021, 19, 357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sun, B.; She, X.; Zhao, F.; Cao, Y.; Ren, D.; Lu, J. Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: Photoautotrophic, heterotrophic, and pure and mixed conditions. Ann. Microbiol. 2014, 64, 1239–1246. [Google Scholar] [CrossRef]
- Souza, M.P.; Sanchez-Barrios, A.; Rizzetti, T.M.; Benitez, L.B.; Hoeltz, M.; Schneider, R.C.S.; Neves, F.F. Concepts and Trends for Extraction and Application of Microalgae Carbohydrates; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, G.; Li, F.; Fang, S.; Zhou, S.; Ishiwata, A.; Tonevitsky, A.G.; Shkurnikov, M.; Cai, H.; Ding, F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023, 15, 1615. [Google Scholar] [CrossRef]
- Ray, S.; Pujol, C.A.; Damonte, E.B.; Ray, B. Additionally sulfated xylomannan sulfates from scinaia hatei and their antiviral activities. Carbohydr. Polym. 2015, 131, 315–321. [Google Scholar] [CrossRef]
- Bello-Morales, R.; Andreu, S.; Ruiz-Carpio, V.; Ripa, I.; López-Guerrero, J.A. Extracellular polymeric substances: Still promising antivirals. Viruses 2022, 14, 1337. [Google Scholar] [CrossRef]
- Faccin-Galhardi, L.C.; Yamamoto, K.A.; Ray, S.; Ray, B.; Linhares, R.E.C.; Nozawa, C. The in vitro antiviral property of azadirachta indica polysaccharides for poliovirus. J. Ethnopharmacol. 2012, 142, 86–90. [Google Scholar] [CrossRef]
- Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef]
- Bozbulut, R.; Sanlier, N. Promising effects of β-glucans on glyceamic control in diabetes. Trends Food Sci. Technol. 2019, 83, 159–166. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophyll and its derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Madhavan, J.; Chandrasekharan, S.; Priya, M.; Godavarthi, A. Modulatory effect of carotenoid supplement constituting lutein and zeaxanthin (10:1) on anti-oxidant enzymes and macular pigments level in rats. Pharmacogn. Mag. 2018, 14, 268. [Google Scholar] [CrossRef]
- Johra, F.; Bepari, A.; Bristy, A.; Reza, H. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef]
- Khoo, H.; Ng, H.; Yap, W.; Goh, H.; Yim, H. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants 2019, 8, 85. [Google Scholar] [CrossRef]
- Agarwal, R.; Hong, H.T.; Hayward, A.; Harper, S.; Mitter, N.; O’Hare, T.J. Carotenoid Profiling of Orange-Coloured Capsicums: In Search of High-Zeaxanthin Varieties for Eye Health. Proceedings 2021, 70, 84. [Google Scholar] [CrossRef]
- Korobelnik, J.-F.; Rougier, M.-B.; Delyfer, M.-N.; Bron, A.; Merle, B.M.J.; Savel, H.; Chêne, G.; Delcourt, C.; Creuzot-Garcher, C. Effect of dietary supplementation with lutein, zeaxanthin, and ω-3 on macular pigment. JAMA Ophthalmol. 2017, 135, 1259. [Google Scholar] [CrossRef] [PubMed]
- Amengual, J.; Lobo, G.P.; Golczak, M.; Li, H.N.; Klimova, T.; Hoppel, C.L.; Wyss, A.; Palczewski, K.; von Lintig, J. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011, 25, 948–959. [Google Scholar] [CrossRef]
- Rémond, D.; Shahar, D.R.; Gille, D.; Pinto, P.; Kachal, J.; Peyron, M.A.; Dos Santos, C.N.; Walther, B.; Bordoni, A.; Dupont, D.; et al. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget 2015, 6, 13858–13898. [Google Scholar] [CrossRef]
- Bishop, W.M.; Zubeck, H.M. Evaluation of Microalgae for use as Nutraceuticals and Nutritional Supplements. J. Nutr. Food Sci. 2012, 2, 147. [Google Scholar] [CrossRef]
- Hyun, K.; Kang, S.; Kim, C.; Um, B.; Na, Y.; Pan, C. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 4756–4761. [Google Scholar] [CrossRef]
- Wu, J.; Liu, C.; Lu, Y. Preparative separation of phytosterol analogues from green alga Chlorella vulgaris using recycling counter-current chromatography. J. Sep. Sci. 2017, 40, 2326–2334. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; Reina, G.G.-B.; Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT-Food Sci. Technol. 2012, 46, 245–253. [Google Scholar] [CrossRef]
- Salem, O.M.; El Assi, R.K.; Saleh, M.A. Bioactive constituents of three algal species extracts and their anticancer activity against human cancer cell lines. Egypt. J. Phycol. 2020, 21, 1–18. [Google Scholar] [CrossRef]
- Chen, P.B.; Wang, H.-C.; Lium, Y.-W.; Lin, S.-H.; Chou, H.-N.; Sheen, L.-Y. Immunomodulatory activities of polysaccharides from Chlorella pyrenoidosa in a mouse model of Parkinson’s disease. J. Funct. Foods 2014, 11, 103–113. [Google Scholar] [CrossRef]
- Amato, A.; Terzo, S.; Mulè, F. Natural Compounds as Beneficial Antioxidant Agents in Neurodegenerative Disorders: A Focus on Alzheimer’s Disease. Antioxidants 2019, 8, 608. [Google Scholar] [CrossRef]
- Putri, T.W.; Raya, I.; Natsir, H.; Mayasari, E. Chlorella sp: Extraction of fatty acid by using avocado oil as solvent and its application as an anti-ageing cream. J. Phys. Conf. Ser. 2018, 979, 012009. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Abdullah, M.; Mavrommatis, A.; Chatzikonstantinou, M.; Skliros, D.; Sotirakoglou, Κ.; Flemetakis, E.; Labrou, N.E.; Zervas, G. The effect of dietary Chlorella vulgaris inclusion on goat’s milk chemical composition, fatty acids profile and enzymes activities related to oxidation. J. Anim. Physiol. Anim. Nutr. 2017, 102, 142–151. [Google Scholar] [CrossRef]
- Sikiru, A.; Arunachalam, A.; Alemede, I.; Egena, S.; Ippala, J.; Bhatta, R. Effects of dietary supplementation of Chlorella vulgaris on oxidative stress attenuation and serum biochemical profile of pregnant new zealand white rabbits. Indian J. Anim. Sci. 2021, 90, 1292–1295. [Google Scholar] [CrossRef]
- Panahi, Y.; Mostafazadeh, B.; Abrishami, A.; Saadat, A.; Beiraghdar, F.; Tavana, S.; Pishgoo, B.; Parvin, S.; Sahebkar, A. Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers. Clin. Lab. 2013, 59, 579–587. [Google Scholar] [CrossRef]
- Kwak, J.H.; Baek, S.H.; Woo, Y.; Han, J.K.; Kim, B.G.; Kim, O.Y.; Lee, J.H. Beneficial immunostimulatory effect of short-term Chlorella supplementation: Enhancement of Natural Killer cell activity and early inflammatory response (Randomized, double-blinded, placebo-controlled trial). Nutr. J. 2012, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F.; Becker, C.; Barbulescu, K. Role of NF-κB in immune and inflammatory responses in the gut. Gut 1998, 43, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.F.; Chen, L.C.; Cherng, J.Y. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability. Mar. Drugs 2013, 11, 3861–3874. [Google Scholar] [CrossRef] [PubMed]
- Barghchi, H.; Dehnavi, Z.; Nattagh-Eshtivani, E.; Alwaily, E.R.; Almulla, A.F.; Kareem, A.K.; Barati, M.; Ranjbar, G.; Mohammadzadeh, A.; Rahimi, P.; et al. The effects of Chlorella vulgaris on cardiovascular risk factors: A comprehensive review on putative molecular mechanisms. Biomed. Pharmacother. 2023, 162, 114624. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.; Shaw, O.; Appleton, I. Possible anti-inflammatory role of COX-2-derived prostaglandins: Implications for inflammation research. Curr. Opin. Investig. Drugs 2005, 6, 461–466. [Google Scholar]
- Chaudhari, S.P.; Baviskar, D.T. Anti-inflammatory Activity of Chlorella vulgaris in Experimental models of Rats. Int. J. Pharm. Investig. 2021, 11, 358–361. [Google Scholar] [CrossRef]
- Michel, T.; Feron, O. Nitric oxide synthases: Which, where, how, and why? J. Clin. Investig. 1997, 100, 2146–2152. [Google Scholar] [CrossRef]
- Sibi, G.; Rabina, S. Inhibition of pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacogn. Res. 2016, 8, 118–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Qiu, M.; Xu, W.; Gao, Z.; Shao, R.; Qi, Z. Effects of Dietary Administration of Chlorella on the Immune Status of Gibel Carp, Carassius Auratus Gibelio. Ital. J. Anim. Sci. 2014, 13, 3168. [Google Scholar] [CrossRef]
- Park, M.H.; Hong, J.T. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016, 5, 15. [Google Scholar] [CrossRef]
- Ramírez-Coronel, A.A.; Jasim, S.A.; Zadeh, A.H.A.; Jawad, M.A.; Al-Awsi, G.R.L.; Adhab, A.H.; Kodirov, G.; Soltanifar, Z.; Mustafa, Y.F.; Norbakhsh, M. Dietary Chlorella vulgaris mitigated the adverse effects of imidacloprid on the growth performance, antioxidant, and immune responses of common carp (Cyprinus carpio). Ann. Anim. Sci. 2023, 23, 845–857. [Google Scholar] [CrossRef]
- Tanaka, K.; Konishi, F.; Himeno, K.; Taniguchi, K.; Nomoto, K. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris. Cancer Immunol. Immunother. 1984, 17, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Konishi, F.; Tanaka, K.; Himeno, K.; Taniguchi, K.; Nomoto, K. Antitumor effect induced by a hot water extract of Chlorella vulgaris (CE): Resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes. Cancer Immunol. Immunother. 1985, 19, 73–78. [Google Scholar] [CrossRef]
- Tanaka, K.; Tomita, Y.; Tsuruta, M.; Konishi, F.; Okuda, M.; Himeno, K.; Nomoto, K. Oral administration of Chlorella vulgaris augments concomitant antitumor immunity. Immunopharmacol. Immunotoxicol. 1990, 12, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Koga, T.; Konishi, F. Augmentation of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia coli infection. Infect. Immun. 1986, 53, 267–271. [Google Scholar] [CrossRef]
- Hasegawa, T.; Tanaka, K.; Ueno, K. Augmentation of the resistance against Escherichia coli by oral administration of a hot water extract of Chlorella vulgaris in rats. Int. J. Immunopharmacol. 1989, 11, 971–976. [Google Scholar] [CrossRef]
- Hasegawa, T.; Okuda, M.; Nomoto, K.; Yoshikai, Y. Augmentation of the resistance against Listeria monocytogenes by oral administration of a hot water extract of Chlorella vulgaris in mice. Immunopharmacol. Immunotoxicol. 1994, 16, 191–202. [Google Scholar] [CrossRef]
- Hasegawa, T.; Okuda, M.; Makino, M.; Hiromatsu, K.; Nomoto, K.; Yoshikai, Y. Hot water extracts of Chlorella vulgaris reduce opportunistic infection with Listeria monocytogenes in C57BL/6 mice infected with LP-BM5 murine leukemia viruses. Int. J. Immunopharmacol. 1995, 17, 505–512. [Google Scholar] [CrossRef]
- Hasegawa, T.; Ito, K.; Ueno, S.; Kumamoto, S.; Ando, Y.; Yamada, A.; Nomoto, K.; Yasunobu, Y. Oral administration of hot water extracts of Chlorella vulgaris reduces IgE production against milk casein in mice. Int. J. Immunopharmacol. 1999, 21, 311–323. [Google Scholar] [CrossRef]
- Shaima, A.F.; Yasin, N.H.M.; Ibrahim, N.; Takriff, M.S.; Gunasekaran, D.; Ismaeel, M.Y.Y. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J. Biol. Sci. 2022, 29, 1043–1052. [Google Scholar] [CrossRef]
- Zielinski, D.; Fraczyk, J.; Debowski, M.; Zielinski, M.; Kaminski, Z.J.; Kregiel, D.; Jacob, C.; Kolesinska, B. Biological activity of hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize silage. Molecules 2020, 25, 1790. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.-A.; Hussein, M.H.; Shaaban-Dessuuki, S.A.; Dalal, S.R. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci. Rep. 2020, 10, 3011. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicol. 2008, 17, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Hyun, K.; Koo, S.; Lee, D. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J. Agric. Food Chem. 2008, 56, 10521–10526. [Google Scholar] [CrossRef]
- Serra, A.; Silva, S.; Gouveia, L.; Alexandre, A.; Pereira, C.; Pereira, A.; Partidário, A.C.; Silva, N.E.; Bohn, T.; Gonçalves, V.S.S.; et al. A single dose of marine Chlorella vulgaris increases plasma concentrations of lutein, β-carotene and zeaxanthin in healthy male volunteers. Antioxidants 2021, 10, 1164. [Google Scholar] [CrossRef]
- Sibi, G.; Yadav, S.; Bansal, S.; Chaithra, M.L. Assessment of optimal growth conditions for specific carotenoids production by Chlorella vulgaris. J. Appl. Nat. Sci. 2020, 12, 550–555. [Google Scholar] [CrossRef]
- Khairunnisa, K. Chlorophyll content of Chlorella vulgaris (beijerinck, 1890) on different light intensity. Bul. Oseanografi Mar. 2024, 13, 107–112. [Google Scholar] [CrossRef]
- Kitada, K.; Machmudah, S.; Sasaki, M.; Goto, M.; Nakashima, Y.; Kumamoto, S.; Hasegawa, T. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J. Chem. Technol. Biotechnol. 2008, 84, 657–661. [Google Scholar] [CrossRef]
- Pereira, L.; Valado, A. Algae-Derived Natural Products in Diabetes and Its Complications—Current Advances and Future Prospects. Life 2023, 13, 1831. [Google Scholar] [CrossRef]
- Vecina, J.F.; Oliveira, A.G.; Araujo, T.G.; Baggio, S.R.; Torello, C.O.; Saad, M.J.A.; Queiroz, M.L.S. Chlorella modulates insulin signalling pathway and prevents high-fat diet-induced insulin resistance in mice. Life Sci. 2014, 95, 45–52. [Google Scholar] [CrossRef]
- Bocanegra, A.; Macho-González, A.; Garcimartín, A.; Benedí, J.; Sánchez-Muniz, F.J. Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 3816. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, F. Evaluation of the green alga Chlorella pyrenoidosa for management of diabetes. J. Food Drug Anal. 2012, 20, 28. [Google Scholar] [CrossRef]
- Shibata, S.; Natori, Y.; Nishihara, T.; Tomisaka, K.; Matsumoto, K.; Sansawa, H.; Nguyen, V.C. Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. J. Nutr. Sci. Vitaminol. 2003, 49, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Ghamarchehreh, M.E.; Beiraghdar, F.; Zare, R.; Jalalian, H.R.; Sahebkar, A. Investigation of the effects of Chlorella vulgaris supplementation in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Hepato-Gastroenterol. 2012, 59, 2099–2103. [Google Scholar] [CrossRef]
- Abdella, A.; Abou-Elazm, F.; El-Far, S. Pharmacological effects of lactobacillus casei atcc 7469 fermented soybean and green microalgae, Chlorella vulgaris, on diabetic rats. Microbiol. Res. 2023, 14, 614–626. [Google Scholar] [CrossRef]
- Sikiru, A.; Arunachalam, A.; Alemede, I.; Guvvala, P.R.; Egena, S.S.A.; Ippala, J.R.; Bhatta, R. Chlorella vulgaris supplementation effects on performances, oxidative stress and antioxidant genes expression in liver and ovaries of new zealand white rabbits. Heliyon 2019, 5, e02470. [Google Scholar] [CrossRef]
- Aizzat, O.; Yap, S.; Sopiah, H.; Madiha, M.M.; Hazreen, M.; Shailah, A.; Junizam, W.Y.; Syaidah, A.N.; Srijit, D.; Musalmah, M.; et al. Modulation of oxidative stress by Chlorella vulgaris in streptozotocin (stz) induced diabetic sprague-dawley rats. Adv. Med. Sci. 2010, 55, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Okumura, E.; Fujishima, M. Potential of Chlorella as a dietary supplement to promote human health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef] [PubMed]
- Chovanèíková, M.; Šimek, V. Effects of high-fat and Chlorella vulgaris feeding on changes in lipid metabolism in mice. Biologia 2001, 56, 661–666. [Google Scholar]
- Ryu, N.H.; Lim, Y.; Park, J.E.; Kim, J.; Kim, J.Y.; Kwon, S.W.; Kwon, O. Impact of daily Chlorella consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: A double-blinded, randomized, placebo-controlled study. Nutr. J. 2014, 13, 57. [Google Scholar] [CrossRef]
- Sherafati, N.; Bideshki, M.V.; Behzadi, M.; Mobarak, S.; Asadi, M.; Sadeghi, O. Effect of supplementation with Chlorella vulgaris on lipid profile in adults: A systematic review and dose-response meta-analysis of randomized controlled trials. Complement. Ther. Med. 2022, 66, 102822. [Google Scholar] [CrossRef] [PubMed]
- Karima, F.; Sarto, M. The effect of Chlorella vulgaris on lipid profile wistar strain rats (rattus norvegicus berkenhout, 1769) under induced stress. Biog. J. Ilm. Biol. 2019, 7, 44. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Neuroprotective Effects of Marine Algae. Mar. Drugs 2011, 9, 803–818. [Google Scholar] [CrossRef]
- Panahi, Y.; Badeli, R.; Karami, G.R.; Badeli, Z.; Sahebkar, A. A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complement. Ther. Med. 2015, 23, 598–602. [Google Scholar] [CrossRef]
- Panahi, Y.; Tavana, S.; Sahebkar, A.; Masoudi, H.; Madanchi, N. Impact of adjunctive therapy with Chlorella vulgaris extract on antioxidant status, pulmonary function, and clinical symptoms of patients with obstructive pulmonary diseases. Sci. Pharm. 2012, 80, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Iriani, D.; Hasan, B.; Putra, H.S.; Ghazali, T.M. Optimization of Culture Conditions on Growth of Chlorella sp. Newly Isolated from Bagansiapiapi Waters Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 934, 012097. [Google Scholar] [CrossRef]
- Chugh, M.; Kumar, L.; Shah, M.P.; Bharadvaja, N. Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022, 7, 100129. [Google Scholar] [CrossRef]
- Abdelbaky, S.A.; Zaky, Z.M.; Yahia, D.; Kotob, M.H.; Ali, M.A.; Aufy, M.; Sayed, A.E.-D.H. Impact of Chlorella vulgaris Bioremediation and Selenium on Genotoxicity, Nephrotoxicity and Oxidative/Antioxidant Imbalance Induced by Polystyrene Nanoplastics in African Catfish (Clarias gariepinus). Fishes 2024, 9, 76. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, V.; Sandal, N.; Chauhan, M.K. Quantitative evaluation of Chlorella vulgaris for removal of toxic metals from body. J. Appl. Phycol. 2022, 34, 2743–2754. [Google Scholar] [CrossRef]
- Islam, M.S.; Maamoun, I.; Falyouna, O.; Eljamal, O.; Saha, B.B. Arsenic removal from contaminated water utilizing novel green composite Chlorella vulgaris and nano zero-valent iron. J. Mol. Liq. 2023, 370, 121005. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, D.; Soni, V. Impact of mercury on photosynthetic performance of Lemna minor: A chlorophyll fluorescence analysis. Sci. Rep. 2023, 13, 12181. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.L.; da Rocha, M.C.; Torello, C.O.; Queiroz, J.S.; Bincoletto, C.; Morgano, M.A.; Romano, M.R.; Paredes-Gamero, E.J.; Barbosa, C.M.; Calgarotto, A.K. Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice. Food Chem. Toxicol. 2011, 49, 2934–2941. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M.; Mahdy, E.A.A.; El-Hady, E.; Abou-Zeid, S.M.; Mawed, S.A.; Azzam, M.M.; Crescenzo, G.; Abo-Elmaaty, A.M.A. Benefits of Chlorella vulgaris against Cadmium Chloride-Induced Hepatic and Renal Toxicities via Restoring the Cellular Redox Homeostasis and Modulating Nrf2 and NF-KB Pathways in Male Rats. Biomedicines 2023, 11, 2414. [Google Scholar] [CrossRef]
- Om, A.-S.; Shin, H.-S.; Shim, J.-Y.; Han, J.-G.; Kim, J.-H. Chlorella vulgaris May Excrete Dioxin-like PCB-138,-153 via Urine of Rats. Mol. Cell. Toxicol. 2009, 5, 88–92. [Google Scholar]
- Morita, K.; Matsueda, T.; Iida, T.; Hasegawa, T. Chlorella Accelerates Dioxin Excretion in Rats. J. Nutr. 1999, 129, 1731–1736. [Google Scholar] [CrossRef]
- Andrade, L.M.; Andrade, C.J.; Dias, M.; Nascimento, C.A.O.; Mendes, M.A. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process. Technol. 2018, 6, 45–58. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Illiyanasafa, N.; Jaya, D.E.C.; Darmokoesoemo, H.; Putra, N.R. Utilization of the microalga Chlorella vulgaris for mercury bioremediation from wastewater and biomass production. Sustain. Chem. Pharm. 2024, 37, 101346. [Google Scholar] [CrossRef]
- Fang, Y.; Cai, Y.; Zhang, Q.; Ruan, R.; Zhou, T. Research status and prospects for bioactive compounds of Chlorella species: Composition, extraction, production, and biosynthesis pathways. Process Saf. Environ. Prot. 2024, 191, 345–359. [Google Scholar] [CrossRef]
- Georgiopoulou, I.; Tzima, S.; Pappa, G.D.; Louli, V.; Voutsas, E.; Magoulas, K. Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction. Molecules 2021, 27, 29. [Google Scholar] [CrossRef]
- Fallah, A.A.; Sarmast, E.; Dehkordi, S.H.; Engardeh, J.; Mahmoodnia, L.; Khaledifar, A.; Jafari, T. Effect of Chlorella supplementation on cardiovascular risk factors: A meta-analysis of randomized controlled trials. Clin. Nutr. 2018, 37 Pt A, 1892–1901. [Google Scholar] [CrossRef]
- Świderska-Kołacz, G.; Jefimow, M.; Klusek, J.; Rączka, N.; Zmorzyński, S.; Wojciechowska, A.; Stanisławska, I.; Łyp, M.; Czerwik-Marcinkowska, J. Influence of Algae Supplementation on the Concentration of Glutathione and the Activity of Glutathione Enzymes in the Mice Liver and Kidney. Nutrients 2021, 13, 1996. [Google Scholar] [CrossRef] [PubMed]
- Korcz, E.; Kerényi, Z.; Varga, L. Dietary fibres, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018, 9, 3057–3068. [Google Scholar] [CrossRef] [PubMed]
- Goff, H.D.; Repin, N.; Fabek, H.; Khoury, D.E.; Gidley, M.J. Dietary fibre for glycaemia control: Towards a mechanistic understanding. Bioact. Carbohydr. Diet. Fibre 2018, 14, 39–53. [Google Scholar] [CrossRef]
- Valente, L.M.; Cabrita, A.; Maia, M.R.; Valente, I.; Engrola, S.; Fonseca, A.J.; Ribeiro, D.M.; Lordelo, M.; Martins, C.F.; Falcão e Cunha, L.; et al. Microalgae as feed ingredients for livestock production and aquaculture. In Microalgae: Cultivation, Recovery of Compounds and Applications; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA; Elvesier: Amsterdam, The Netherlands, 2021; pp. 239–312. [Google Scholar]
- Martins, C.F.; Pestana, J.M.; Alfaia, C.M.; Costa, M.; Ribeiro, D.M.; Coelho, D.; Lopes, P.A.; Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Effects of Chlorella vulgaris as a feed ingredient on the quality and nutritional value of weaned piglets’ meat. Foods 2021, 10, 1155. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Pestana, J.M.; Rodrigues, M.; Coelho, D.; Aires, M.J.; Ribeiro, D.M.; Major, V.T.; Martins, C.F.; Santos, H.; Lopes, P.A.; et al. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poult. Sci. 2021, 100, 926–937. [Google Scholar] [CrossRef]
- Albaqami, N.M. Chlorella vulgaris as unconventional protein source in fish feed: A review. Aquaculture 2025, 594, 741404. [Google Scholar] [CrossRef]
- Coelho, D.F.M.; Alfaia, C.M.R.P.M.; Assunção, J.M.P.; Costa, M.; Pinto, R.M.A.; Fontes, C.M.G.A.; Lordelo, M.M.; Prates, J.A.M. Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers. BMC Vet. Res. 2021, 17, 229. [Google Scholar] [CrossRef] [PubMed]
- Panaite, T.D.; Cornescu, G.M.; Predescu, N.C.; Cismileanu, A.; Turcu, R.P.; Saracila, M.; Soica, C. Microalgae (Chlorella vulgaris and Spirulina platensis) as a Protein Alternative and Their Effects on Productive Performances, Blood Parameters, Protein Digestibility, and Nutritional Value of Laying Hens’ Egg. Appl. Sci. 2023, 13, 10451. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Mousa, M.A.; Mamoon, A.; Abdelghany, M.F.; Abdel-Hamid, E.A.; Abdel-Razek, N.; Ali, F.S.; Shady, S.H.H.; Gewida, A.G.A. Dietary Chlorella vulgaris modulates the performance, antioxidant capacity, innate immunity, and disease resistance capability of Nile tilapia fingerlings fed on plant-based diets. Anim. Feed. Sci. Technol. 2022, 283, 115181. [Google Scholar] [CrossRef]
- Cabrita, A.R.J.; Guilherme-Fernandes, J.; Spínola, M.; Maia, M.R.G.; Yergaliyev, T.; Camarinha-Silva, A.; Fonseca, A.J.M. Effects of microalgae as dietary supplement on palatability, digestibility, fecal metabolites, and microbiota in healthy dogs. Front. Vet. Sci. 2023, 10, 1245790. [Google Scholar] [CrossRef] [PubMed]
- Salvia, S.; Novia, R.; Zudri, F. A Palatability Test of Cat Healthy Foods Containing Gambier (Uncaria gambir Roxb.) and Chlorella sp. In Proceedings of the 2nd Multidisciplinary International Conference, MIC 2022, Semarang, Central Java, Indonesia, 12 November 2022. [Google Scholar] [CrossRef]
- Kondzior, P.; Butarewicz, A. Effect of heavy metals (cu and zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris. J. Ecol. Eng. 2018, 19, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Bungudu, J.; Murphy, L. Determination and analysis of metals in freshwater microalgae (Chlorella vulgaris and Spirulina platensis) through total reflection x-ray fluorescence spectroscopy (txrf). Asian J. Appl. Chem. Res. 2021, 8, 32–38. [Google Scholar] [CrossRef]
- Bajguz, A. Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch. Environ. Contam. Toxicol. 2010, 60, 406–416. [Google Scholar] [CrossRef]
- Gbogbo, F.; Arthur-Yartel, A.; Bondzie, J.; Dorleku, W.; Dadzie, S.; Kwansa–Bentum, B.; Ewool, J.; Billah, M.K.; Lamptey, A.M. Risk of heavy metal ingestion from the consumption of two commercially valuable species of fish from the fresh and coastal waters of ghana. PLoS ONE 2018, 13, e0194682. [Google Scholar] [CrossRef]
- Lutnicka, H.; Fochtman, P.; Bojarski, B.; Ludwikowska, A.; Formicki, G. The influence of low concentration of cypermethrin and deltamethrin on phyto- and zooplankton of surface waters. Folia Biol. 2014, 62, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Zhou, Q.; Hu, X. The phases of ws2 nanosheets influence uptake, oxidative stress, lipid peroxidation, membrane damage, and metabolism in algae. Environ. Sci. Technol. 2018, 52, 13543–13552. [Google Scholar] [CrossRef]
- Tong, Y.; Feng, A.; Hou, X.; Zhou, Q.; Hu, X. Nanoholes regulate the phytotoxicity of single-layer molybdenum disulfide. Environ. Sci. Technol. 2019, 53, 13938–13948. [Google Scholar] [CrossRef] [PubMed]
- Latif, A.A.; Assar, D.H.; Elkaw, E.M.; Hamza, H.A.; Alkhalifah, D.H.; Hozzein, W.N.; Hamouda, R.A. Protective role of Chlorella vulgaris with thiamine against paracetamol induced toxic effects on haematological, biochemical, oxidative stress parameters and histopathological changes in wistar rats. Sci. Rep. 2021, 11, 3911. [Google Scholar] [CrossRef]
- Mulyati, M.; Yuliana, A.; Widiyanto, S. Kidney function test of female wistar rat (rattus norvegicus berkenhout, 1769) of subchronic toxicity test of Arthrospira maxima sp. and Chlorella vulgaris sp. J. Trop. Biodivers. Biotechnol. 2019, 4, 119. [Google Scholar] [CrossRef]
- Blas-Valdivia, V.; Ortiz-Butrón, R.; Pineda-Reynoso, M.; Hernández-García, A.; Cano-Europa, E. Chlorella vulgaris administration prevents hgcl2-caused oxidative stress and cellular damage in the kidney. J. Appl. Phycol. 2010, 23, 53–58. [Google Scholar] [CrossRef]
- Abreu, A.P.; Martins, R.; Nunes, J. Emerging Applications of Chlorella sp. And Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef] [PubMed]
- Day, J.G.; Gong, Y.; Hu, Q. Microzooplanktonic grazers–A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res. 2017, 27, 356–365. [Google Scholar] [CrossRef]
- Pantami, H.A.; Ahamad Bustamam, M.S.; Lee, S.Y.; Ismail, I.S.; Mohd Faudzi, S.M.; Nakakuni, M.; Shaari, K. Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris. Mar. Drugs 2020, 18, 367. [Google Scholar] [CrossRef] [PubMed]
- Hyršlová, I.; Krausova, G.; Smolova, J.; Stankova, B.; Branyik, T.; Malinska, H.; Huttl, M.; Kana, A.; Curda, L.; Doskocil, I. Functional Properties of Chlorella vulgaris, Colostrum, and Bifidobacteria, and Their Potential for Application in Functional Foods. Appl. Sci. 2021, 11, 5264. [Google Scholar] [CrossRef]
Compound(s) | Use | Bioactivity | Description | Reference(s) |
---|---|---|---|---|
Carotenoids (lutein, beta-carotene) | Food, Feed, Medicine | Antioxidant, Anti-inflammatory, Anticancer, Neuroprotective, Color enhancer | Neutralizes reactive oxygen species and protects cells from oxidative damage, particularly in the skin and eyes. Enhances the coloration of skin and egg yolks in poultry and other animals | [44,54,59,60,61,120] |
Chlorophyll | Food, Medicine | Antioxidant, Anticancer, Detoxification, Immune function | Scavenges free radicals, reduces oxidative stress, protects against chronic diseases, and aids in detoxifying carcinogens. | [4,13,25,39,120] |
Fatty Acids | Food, Medicine | Antimicrobial, Anti-inflammatory, Lipid-lowering effect | Inhibits bacterial and fungal growth, reduces inflammation, and lowers cholesterol and triglyceride levels. | [31,68,85,103,104] |
Proteins | Food, Feed, Medicine | Cell growth and repair, Immunomodulatory, Anticancer | Stimulates immune responses, including cytokine production (IFN-γ, IL-2), and enhances the activity of macrophages, NK cells, and T cells. | [20,65,67,73] |
Glycoproteins | Medicine | Detoxification | Binds and eliminates heavy metals (e.g., mercury, lead, cadmium) from the body and mitigates toxic effects of pollutants. | [111,112,116,117,121] |
Peptides | Food, Feed, Medicine | Antimicrobial, Cell growth and repair, | Inhibits the growth of various bacterial pathogens, including Staphylococcus aureus and E. coli. | [84] |
Nucleotides | Medicine | Immunomodulatory, Antioxidant, Anti-cancer Cell repair, | Cellular metabolism improves immune function and cell repair, and it contributes to DNA and RNA synthesis and participates in energy transfer. Improves growth performance and disease resistance. Anti-cancer cell’s proliferative effect. | [55,56,57,58] |
Polysaccharides | Food, Feed, Medicine | Antioxidant, Anti-inflammatory, Immunomodulatory, Antidiabetic, Antiviral, Antimicrobial, Detoxification | Enhances antioxidant defenses, suppresses pro-inflammatory cytokines, promotes immune cell activation, and regulates blood glucose levels. | [20,65,66,67] |
Dietary Fibres | Food, Feed, Medicine | Digestive health, Prebiotic effect, Cholesterol-lowering effect, Weight management | Promotes regular bowel movements, stimulates beneficial gut bacteria, binds with cholesterol, and provides a sense of satiety. | [3,7,17,45] |
Secondary Metabolites (e.g., polyphenols, phytosterols) | Medicine | Antioxidant, Anti-inflammatory, Anticancer, Cholesterol-lowering effects | Protects against oxidative damage, suppresses inflammation, reduces cholesterol absorption in the intestines, and promotes apoptosis in cancer cells. | [18,22,31] |
Sulphated Polysaccharides | Medicine | Antiviral | Prevents viral entry into host cells, effective against enveloped viruses such as HSV, hepatitis C, and HIV. | [41,42,43] |
Compound | Benefit | Reference(s) |
---|---|---|
Protein | Excellent plant-based protein source for dietary supplementation | [4] |
Amino Acids | Complete protein profile, supports muscle and tissue health | [4] |
Polyunsaturated Fatty Acids | Contribute to heart health and anti-inflammatory effects | [3] |
Polysaccharides | Immunomodulatory properties, antioxidant benefits, support gut health | [3,25] |
Vitamins (B-complex, beta-carotene) | Nutritional fortification supports energy metabolism, promotes eye health | [102] |
Minerals (iron, magnesium, calcium) | Enhances dietary intake, supports bone health and metabolic processes | [102] |
Chlorophyll | Antioxidant properties, acts as a natural food colorant, detoxifies carcinogens | [25] |
Carotenoids (lutein, beta-carotene) | Antioxidant benefits support skin and eye health, enhance cognitive function | [44,59] |
Dietary Fiber | Modulates glucose absorption, improves insulin sensitivity, enhances satiety | [3,7,127] |
Antioxidants (chlorophyll, carotenoids, polyphenols) | Neutralizes free radicals, reduces oxidative stress, extends food shelf life | [34] |
Antimicrobial Compounds (peptides, fatty acids) | Inhibits growth of harmful microorganisms, reduces reliance on synthetic preservatives | [21] |
Bioactive Compounds | Cholesterol management, improves glucose metabolism, potential anti-diabetic properties | [96,124] |
Compound | Benefit | Reference(s) |
---|---|---|
Chlorophyll | Antioxidant, reduces oxidative stress Neuroprotective effects | [4] |
Carotenoids (lutein, beta-carotene) | Induces apoptosis in cancer cells Neuroprotective effects | [18] |
Sulphated Polysaccharides | Antiviral activity against enveloped viruses | [41,42] |
Polysaccharides | Enhances immune function, boosts NK cell activity Anti-inflammatory properties Inhibits viral adsorption and replication Potential adjunct in cancer treatment Improves glycemic control in diabetes Blocks tumor proliferation Neuroprotective effects | [3,4,18,43,120,123] |
Lipids | Reduces total cholesterol, LDL, and triglycerides | [17] |
Bioactive compounds | Prevents infections and supports immune function | [21] |
Dietary Fiber | Lower lipid absorption Modulates cholesterol levels Enhances Gastrointestinal Motility | [3,7,40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. Appl. Sci. 2024, 14, 10810. https://doi.org/10.3390/app142310810
Mendes AR, Spínola MP, Lordelo M, Prates JAM. Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. Applied Sciences. 2024; 14(23):10810. https://doi.org/10.3390/app142310810
Chicago/Turabian StyleMendes, Ana R., Maria P. Spínola, Madalena Lordelo, and José A. M. Prates. 2024. "Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine" Applied Sciences 14, no. 23: 10810. https://doi.org/10.3390/app142310810
APA StyleMendes, A. R., Spínola, M. P., Lordelo, M., & Prates, J. A. M. (2024). Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. Applied Sciences, 14(23), 10810. https://doi.org/10.3390/app142310810