A Treatise on Reconnoitering the Suitability of Fuzzy MARCOS for Assessment of Conceptual Designs
Abstract
:1. Introduction
2. Methodology
2.1. TFN and Membership Functions
2.2. Preliminary Decision Matrix
2.3. Fuzzy MARCOS
3. Implementation
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Results Validation
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Design Experts | Sub-Features of DfAD | ||||||
---|---|---|---|---|---|---|---|
NJ | AM | PA | PP | AD | |||
DE1 | VEC | VEC | HGC | HGC | EXC | ||
DE2 | VHC | VEC | VHC | MHC | VHC | ||
DE3 | VHC | HVC | HGC | VHC | VHC | ||
Design Experts | Sub-Features of DfMn | ||||||
---|---|---|---|---|---|---|---|
MC | MT | MF | RM | PC | |||
DE1 | EXC | HVC | VHC | HVC | HGC | ||
DE2 | HGC | MHC | HGC | MHC | VHC | ||
DE3 | VEC | VHC | VEC | MHC | HVC | ||
Design Experts | Sub-Features of DfR | |||||
---|---|---|---|---|---|---|
FR | MR | DC | OP | |||
DE1 | HGC | VHC | MHC | VHC | ||
DE2 | VHC | MHC | HVC | MHC | ||
DE3 | HGC | MDC | HVC | HGC | ||
Design Experts | Sub-Features of DfLC | |||||
---|---|---|---|---|---|---|
OC | AC | SC | RC | |||
DE1 | VHC | VEC | MDC | VHC | 11 13 15 | |
DE2 | HGC | HGC | MHC | MDC | ||
DE3 | VHC | HVC | HVC | HGC | 12 14 16 | |
Design Experts | Sub-Features of DfE | ||||||
---|---|---|---|---|---|---|---|
SO | EC | MU | PD | ED | |||
DE1 | VHC | VEC | MHC | MDC | VEC | 15 | 15 |
DE2 | VEC | HGC | HVC | MHC | HVC | ||
DE3 | HVC | VHC | HVC | VHC | HGC | ||
Design Experts | Sub-Features of DfF | |||||||
---|---|---|---|---|---|---|---|---|
PP | PF | DB | IM | MS | TC | |||
DE1 | MDC | VEC | VEC | VHC | VHC | VEC | ||
DE2 | HGC | HVC | HVC | HVC | VHC | EXC | ||
DE3 | MHC | VEC | VHC | HGC | VEC | VHC | ||
Design Experts | Sub-Features of DfMa | |||||||
---|---|---|---|---|---|---|---|---|
CM | MP | TM | PI | IP | PM | |||
DE1 | VEC | HGC | HVC | MHC | MDC | VEC | 17 20 23 | |
DE2 | HVC | VHC | VEC | HGC | HVC | EXC | ||
DE3 | HVC | VHC | HGC | HVC | HGC | HGC | 17 20 23 | |
Design Experts | Sub-Features of DfO | |||||||
---|---|---|---|---|---|---|---|---|
MW | SP | CP | UL | EO | MD | |||
DE1 | VEC | HVC | VEC | VHC | VEC | MDC | 20 23 26 | 19 22 25 |
DE2 | HVC | HGC | VEC | VHC | EXC | MHC | ||
DE3 | VHC | HGC | HGC | HVC | HVC | HVC | ||
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
NJ | MEA | HGA | MHA | HGA | MHA | VHA | VHA | HGA | VHA | MEA | MHA | MHA |
AM | HGA | MEA | MEA | HGA | HGA | VHA | MHA | VHA | EHA | MLA | MHA | MHA |
PA | MLA | MLA | MHA | HGA | HGA | MHA | VHA | VHA | MHA | MEA | MEA | MLA |
PP | MHA | HGA | MLA | VHA | MHA | MHA | VHA | EHA | EHA | MLA | HGA | MEA |
AD | MHA | MLA | MEA | MLA | MLA | MEA | VHA | HGA | VHA | MEA | MLA | MEA |
Sub-DM |
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
MW | MLA | MEA | VLA | MHA | MLA | MEA | MEA | MEA | MHA | MLA | MLA | MEA |
SP | MEA | MHA | MLA | HGA | VHA | MHA | VHA | VHA | MHA | MEA | MEA | MHA |
CP | VLA | LOA | MEA | VHA | HGA | VHA | VHA | EHA | VHA | HGA | HGA | MHA |
UL | MHA | MEA | HGA | HGA | MHA | MHA | MHA | HGA | HGA | MHA | HGA | MEA |
EO | MLA | MHA | HGA | VHA | MHA | MEA | HGA | VHA | VHA | HGA | MLA | MHA |
MD | MEA | MLA | HGA | HGA | MHA | MHA | VHA | HGA | VHA | MHA | HGA | MEA |
Sub-DM |
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
SO | VHA | MHA | VHA | MLA | MLA | MHA | MEA | MEA | MLA | HGA | MHA | MHA |
EC | MHA | MHA | HGA | HGA | HGA | VHA | MHA | HGA | VHA | HGA | VHA | VHA |
MU | HGA | HGA | MHA | MEA | MLA | MEA | MEA | MLA | MLA | MLA | MEA | LOA |
PD | MLA | MEA | MEA | MHA | HGA | MLA | HGA | MHA | MEA | HGA | HGA | MHA |
ED | VHA | VHA | HGA | HGA | MHA | HGA | HGA | HGA | VHA | MHA | MHA | MEA |
Sub-DM |
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
FR | MHA | MEA | HGA | HGA | VHA | HGA | MHA | MHA | MLA | HGA | HGA | VHA |
MR | HGA | MHA | MHA | MHA | HGA | VHA | HGA | HGA | MHA | HGA | VHA | VHA |
DC | MHA | HGA | HGA | VHA | MHA | HGA | MHA | HGA | HGA | VHA | HGA | VHA |
OP | MEA | MEA | MLA | HGA | MHA | MEA | MEA | MLA | HGA | HGA | VHA | HGA |
Sub-DM |
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
OC | MHA | VHA | MHA | MHA | MHA | HGA | MHA | HGA | HGA | MLA | MEA | MHA |
AC | HGA | MHA | VHA | MHA | HGA | HGA | MHA | MEA | MHA | MHA | HGA | MEA |
SC | MHA | MEA | MLA | MEA | MHA | MHA | HGA | HGA | MHA | HGA | HGA | MHA |
RC | HGA | MHA | HGA | MHA | MEA | MLA | MHA | HGA | MEA | HGA | VHA | HGA |
Sub-DM |
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
PP | HGA | MHA | MHA | HGA | VHA | MHA | HGA | HGA | VHA | MHA | MHA | HGA |
PF | MHA | MHA | HGA | MHA | HGA | VHA | VHA | HGA | HGA | HGA | MHA | MEA |
DB | MEA | MEA | HGA | MHA | MEA | HGA | HGA | HGA | MHA | MEA | MEA | MHA |
IM | MHA | MHA | HGA | HGA | VHA | HGA | VHA | VHA | HGA | HGA | HGA | MHA |
MS | MEA | MEA | VHA | VHA | HGA | MHA | HGA | HGA | VHA | MHA | MHA | HGA |
TC | HGA | VHA | HGA | HGA | MHA | VHA | VHA | HGA | VHA | HGA | VHA | HGA |
Sub-DM |
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
CM | VHA | HGA | HGA | MEA | MHA | MHA | MEA | MEA | MHA | MHA | MEA | HGA |
MP | MHA | HGA | VHA | MEA | MEA | HGA | MHA | MHA | HGA | MHA | MHA | VHA |
TM | HGA | VHA | HGA | MHA | HGA | MHA | MHA | HGA | HGA | HGA | VHA | MHA |
PI | MEA | HGA | MHA | MEA | MHA | MHA | MEA | HGA | MHA | HGA | MHA | HGA |
IP | HGA | HGA | MHA | HGA | HGA | VHA | HGA | HGA | MEA | MHA | MEA | HGA |
PM | MHA | MEA | MHA | MHA | MEA | MEA | HGA | MHA | MHA | HGA | HGA | MHA |
Sub-DM |
Sub- Features | DC1 | DC2 | DC3 | DC4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | DE1 | DE2 | DE3 | |
MC | MHA | MEA | HGA | HGA | HGA | VHA | VHA | VHA | MHA | HGA | MHA | MHA |
MT | HGA | HGA | MHA | MEA | MHA | HGA | HGA | MHA | MEA | MHA | MHA | MEA |
MF | HGA | MHA | MEA | HGA | MHA | HGA | VHA | HGA | HGA | MEA | MHA | MLA |
RM | MLA | MEA | HGA | MHA | MEA | MEA | HGA | MEA | MHA | MHA | HGA | HGA |
PC | VHA | VHA | HGA | HGA | VHA | HGA | HGA | HGA | VHA | HGA | VHA | HGA |
Sub-DM |
References
- Olabanji, O.; Mpofu, K. Extending the application of fuzzy COPRAS to optimal product design. Procedia CIRP 2023, 119, 182–192. [Google Scholar] [CrossRef]
- Olabanji, O.M.; Mpofu, K. Design concept evaluation technique via functional link matrix and fuzzy VIKOR based on left and right scores. Prod. Manuf. Res. 2021, 9, 116–139. [Google Scholar] [CrossRef]
- Olabanji, O.M. Improving the Computational Process for Identifying Optimal Design Using Fuzzified Decision Models. Int. J. Fuzzy Syst. Appl. IGI Glob. 2022, 11, 1–21. [Google Scholar] [CrossRef]
- Olabanji, O.M. Fuzzified Synthetic Extent Weighted Average for Appraisal of Design Concepts. Int. J. Res. Ind. Eng. 2020, 9, 190–208. [Google Scholar]
- Renzi, C.; Leali, F. A multicriteria decision-making application to the conceptual design of mechanical components. J. Multi-Criteria Decis. Anal. 2016, 23, 87–111. [Google Scholar] [CrossRef]
- Okudan, G.E.; Shirwaiker, R.A. A multi-stage problem formulation for concept selection for improved product design. In Proceedings of the 2006 Technology Management for the Global Future-PICMET 2006 Conference, Istanbul, Turkey, 8–13 July 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2528–2538. [Google Scholar]
- Balin, A.; Demirel, H.; Alarcin, F. A novel hybrid MCDM model based on fuzzy AHP and fuzzy TOPSIS for the most affected gas turbine component selection by the failures. J. Mar. Eng. Technol. 2016, 15, 69–78. [Google Scholar] [CrossRef]
- Olabanji, O.M.; Mpofu, K. Fusing Multi-Attribute Decision Models for Decision Making to Achieve Optimal Product Design. Found. Comput. Decis. Sci. 2020, 45, 305–337. [Google Scholar] [CrossRef]
- Renzi, C.; Leali, F.; Pellicciari, M.; Andrisano, A.O.; Berselli, G. Selecting alternatives in the conceptual design phase: An application of Fuzzy-AHP and Pugh’s Controlled Convergence. Int. J. Interact. Des. Manuf. 2015, 9, 1–17. [Google Scholar] [CrossRef]
- Renzi, C.; Leali, F.; Di Angelo, L. A review on decision-making methods in engineering design for the automotive industry. J. Eng. Des. 2017, 28, 118–143. [Google Scholar] [CrossRef]
- Okudan, G.E.; Tauhid, S. Concept selection methods—A literature review from 1980 to 2008. Int. J. Des. Eng. 2008, 1, 243–277. [Google Scholar] [CrossRef]
- Olabanji, O.M.; Mpofu, K. Design sustainability of reconfigurable machines. IEEE Access 2020, 8, 215956–215976. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Ayşegül, T.; Adali, E.A. Green supplier selection based on the combination of fuzzy SWARA (SWARA-F) and fuzzy MARCOS (MARCOS-F) methods. Gazi Univ. J. Sci. 2022, 35, 1535–1554. [Google Scholar]
- Biswas, S. Measuring performance of healthcare supply chains in India: A comparative analysis of multi-criteria decision making methods. Decis. Mak. Appl. Manag. Eng. 2020, 3, 162–189. [Google Scholar] [CrossRef]
- Puška, A.; Stević, Ž.; Stojanović, I. Selection of sustainable suppliers using the fuzzy MARCOS method. Curr. Chin. Sci. 2021, 1, 218–229. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chattopadhyay, R.; Chakraborty, S. An integrated D-MARCOS method for supplier selection in an iron and steel industry. Decis. Mak. Appl. Manag. Eng. 2020, 3, 49–69. [Google Scholar]
- Badi, I.; Pamucar, D. Supplier selection for steelmaking company by using combined Grey-MARCOS methods. Decis. Mak. Appl. Manag. Eng. 2020, 3, 37–48. [Google Scholar] [CrossRef]
- Stević, Ž.; Brković, N. A novel integrated FUCOM-MARCOS model for evaluation of human resources in a transport company. Logistics 2020, 4, 4. [Google Scholar] [CrossRef]
- Ulutaş, A.; Karabasevic, D.; Popovic, G.; Stanujkic, D.; Nguyen, P.T.; Karaköy, Ç. Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics 2020, 8, 1672. [Google Scholar] [CrossRef]
- Puška, A.; Stojanović, I.; Maksimović, A.; Osmanović, N. Evaluation software of project management by using measurement of alternatives and ranking according to compromise solution (MARCOS) method. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 89–102. [Google Scholar] [CrossRef]
- Stanković, M.; Stević, Ž.; Das, D.K.; Subotić, M.; Pamučar, D. A new fuzzy MARCOS method for road traffic risk analysis. Mathematics 2020, 8, 457. [Google Scholar] [CrossRef]
- Ilieva, G.; Yankova, T.; Hadjieva, V.; Doneva, R.; Totkov, G. Cloud service selection as a fuzzy multi-criteria problem. TEM J. 2020, 9, 484. [Google Scholar] [CrossRef]
- Mitrović Simić, J.; Stević, Ž.; Zavadskas, E.K.; Bogdanović, V.; Subotić, M.; Mardani, A. A novel CRITIC-Fuzzy FUCOM-DEA-Fuzzy MARCOS model for safety evaluation of road sections based on geometric parameters of road. Symmetry 2020, 12, 2006. [Google Scholar] [CrossRef]
- Simić, V.; Soušek, R.; Jovčić, S. Picture fuzzy MCDM approach for risk assessment of railway infrastructure. Mathematics 2020, 8, 2259. [Google Scholar] [CrossRef]
- Pamucar, D.; Iordache, M.; Deveci, M.; Schitea, D.; Iordache, I. A new hybrid fuzzy multi-criteria decision methodology model for prioritizing the alternatives of the hydrogen bus development: A case study from Romania. Int. J. Hydrogen Energy 2021, 46, 29616–29637. [Google Scholar] [CrossRef]
- Bakır, M.; Atalık, Ö. Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of e-service quality in the airline industry. Decis. Mak. Appl. Manag. Eng. 2021, 4, 127–152. [Google Scholar] [CrossRef]
- Celik, E.; Gul, M. Hazard identification, risk assessment and control for dam construction safety using an integrated BWM and MARCOS approach under interval type-2 fuzzy sets environment. Autom. Constr. 2021, 127, 103699. [Google Scholar] [CrossRef]
- Deveci, M.; Özcan, E.; John, R.; Pamucar, D.; Karaman, H. Offshore wind farm site selection using interval rough numbers based Best-Worst Method and MARCOS. Appl. Soft Comput. 2021, 109, 107532. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Zolfani, S.H.; Kahvand, M.; Khazaelpour, P. Landfill location selection for healthcare waste of urban areas using hybrid BWM-grey MARCOS model based on GIS. Sustain. Cities Soc. 2021, 67, 102712. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. MARCOS technique under intuitionistic fuzzy environment for determining the COVID-19 pandemic performance of insurance companies in terms of healthcare services. Appl. Soft Comput. 2021, 104, 107199. [Google Scholar] [CrossRef]
- Salimian, S.; Mousavi, S.M.; Antucheviciene, J. An interval-valued intuitionistic fuzzy model based on extended VIKOR and MARCOS for sustainable supplier selection in organ transplantation networks for healthcare devices. Sustainability 2022, 14, 3795. [Google Scholar] [CrossRef]
- Taş, M.A.; Çakır, E.; Ulukan, Z. Spherical fuzzy SWARA-MARCOS approach for green supplier selection. 3C Tecnol. 2021, Special Issue, 115–133. [Google Scholar] [CrossRef]
- Miškić, S.; Stević, Ž.; Tanackov, I. A novel integrated SWARA-MARCOS model for inventory classification. Int. J. Ind. Eng. Prod. Res. 2021, 32, 1–17. [Google Scholar] [CrossRef]
- Nguyen, H.-Q.; Nguyen, V.-T.; Phan, D.-P.; Tran, Q.-H.; Vu, N.-P. Multi-criteria decision making in the PMEDM process by using MARCOS, TOPSIS, and MAIRCA methods. Appl. Sci. 2022, 12, 3720. [Google Scholar] [CrossRef]
- Trung, D.D.; Thinh, H. A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study. Adv. Prod. Eng. Manag. 2021, 16, 443–456. [Google Scholar] [CrossRef]
- Trung, D. Application of EDAS, MARCOS, TOPSIS, MOORA and PIV methods for multi-criteria decision making in milling process. Decis. Mak 2021, 71, 69–84. [Google Scholar] [CrossRef]
- Do Trung, D. Multi-criteria decision making under the MARCOS method and the weighting methods: Applied to milling, grinding and turning processes. Manuf. Rev. 2022, 9, 3. [Google Scholar] [CrossRef]
- Olabanji, O.M.; Mpofu, K. Pugh matrix and aggregated by extent analysis using trapezoidal fuzzy number for assessing conceptual designs. Decis. Sci. Lett. 2020, 9, 21–36. [Google Scholar] [CrossRef]
- Olabanji, O.M.; Mpofu, K. Assessing the sustainability of manufacturing processes in the manufacture of transport equipment, based on fuzzy grey relational analysis. S. Afr. J. Ind. Eng. 2022, 33, 39–50. [Google Scholar] [CrossRef]
Relative Contributions of Sub-Features to Design Feature | Relative Availability of Sub-Features in the Design Alternatives | Triangular Fuzzy Numbers and Membership Function |
---|---|---|
Indeterminate Contribution (IDC) | Extremely Poor Availability (ELA) | 1 1 1 |
Indeterminate-Moderate Contribution (IMC) | Very Low Availability (VLA) | |
Moderate Contribution (MDC) | Low Availability (LOA) | |
Moderate-High Contribution (MHC) | Medium Low Availability (MLA) | |
High Contribution (HGC) | Medium Availability (MEA) | |
High-Very High Contribution (HVC) | Medium High Availability (MHA) | |
Very High Contribution (VHC) | High Availability (HGA) | |
Very High-Extreme Contribution (VEC) | Very High Availability (VHA) | |
Extreme Contribution (EXC) | Extremely High Availability (EHA) |
Design Features (DF) | Best Design | Design Concepts | Worst Design | |||
---|---|---|---|---|---|---|
DC1 | DC2 | DC3 | DC4 | |||
DfAD | ||||||
DfO 19 22 25 | ||||||
DfE 15 | ||||||
DfR | ||||||
DfLc 11 13 15 | ||||||
DfFu | ||||||
DfMa | ||||||
DfMn |
Design Features (DF) | Best Design | Design Concepts | Worst Design | |||
---|---|---|---|---|---|---|
DC1 | DC2 | DC3 | DC4 | |||
DfAD | ||||||
DfO 19 22 25 | ||||||
DfE 15 | ||||||
DfR | ||||||
DfLc 11 13 15 | ||||||
DfFu | ||||||
DfMa | ||||||
DfMn |
DF | Best Design | Design Concepts | Worst Design | |||
---|---|---|---|---|---|---|
DC1 | DC2 | DC3 | DC4 | |||
DfAD | ||||||
DfO | ||||||
DfE | 8 | |||||
DfR | 6 | 6 | ||||
DfLc | ||||||
DfFu | ||||||
DfMa | ||||||
DfMn |
Cumulative for Best Design | ||||
Cumulative for Worst Design | ||||
DESIGN CONCEPTS | ||||
DC1 | DC2 | DC3 | DC4 | |
Cumulative matrix | ||||
Utility degree in relation to best design | ||||
Utility degree in relation to worst design | ||||
Utility matrix | ||||
Utility function in relation to best design | ||||
Utility function in relation to worst design |
Design Concepts | Utility Degrees and Functions | Rank | ||||
---|---|---|---|---|---|---|
DC1 | 4 | |||||
DC2 | 2 | |||||
DC3 | 1 | |||||
DC4 | 3 |
DF | Ideal Positive Solution | Design Concepts | Ideal Negative Solution | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DC1 | DC2 | DC3 | DC4 | |||||||
Distance to Ideal Positive | Distance to Ideal Negative | Distance to Ideal Positive | Distance to Ideal Negative | Distance to Ideal Positive | Distance to Ideal Negative | Distance to Ideal Positive | Distance to Ideal Negative | |||
DfAD | ||||||||||
DfO | ||||||||||
DfE | ||||||||||
DfR | ||||||||||
DfLc | ||||||||||
DfFu | ||||||||||
DfMa | ||||||||||
DfMn | ||||||||||
Cumulative Distance | ||||||||||
Closeness Coefficient Index (CCI) | ||||||||||
Ranking | 4th | 2nd | 1st | 3rd |
DF | Design Concepts | |||||||
---|---|---|---|---|---|---|---|---|
DC1 | DC2 | DC3 | DC4 | |||||
Distance to Best Design | Distance to Worst Design | Distance to Best Design | Distance to Worst Design | Distance to Best Design | Distance to Worst Design | Distance to Best Design | Distance to Worst Design | |
DfAD | ||||||||
DfO | ||||||||
DfE | 1 | |||||||
DfR | 1 | |||||||
DfLc | ||||||||
DfFu | 1 | |||||||
DfMa | 1 | |||||||
DfMn | 1 | |||||||
Cumulative distance to best and worst designs | ||||||||
Closeness Coefficient Index (CCI) | ||||||||
Ranking | 4th | 2nd | 1st | 3rd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olabanji, O.M. A Treatise on Reconnoitering the Suitability of Fuzzy MARCOS for Assessment of Conceptual Designs. Appl. Sci. 2024, 14, 762. https://doi.org/10.3390/app14020762
Olabanji OM. A Treatise on Reconnoitering the Suitability of Fuzzy MARCOS for Assessment of Conceptual Designs. Applied Sciences. 2024; 14(2):762. https://doi.org/10.3390/app14020762
Chicago/Turabian StyleOlabanji, Olayinka Mohammed. 2024. "A Treatise on Reconnoitering the Suitability of Fuzzy MARCOS for Assessment of Conceptual Designs" Applied Sciences 14, no. 2: 762. https://doi.org/10.3390/app14020762
APA StyleOlabanji, O. M. (2024). A Treatise on Reconnoitering the Suitability of Fuzzy MARCOS for Assessment of Conceptual Designs. Applied Sciences, 14(2), 762. https://doi.org/10.3390/app14020762