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Abstract: The development of an equipment starts from an effective design activity. The concept
selection process is an activity that is entailed in the design stage, and its relevance in the design
process cannot be overemphasized because it informs the choice of optimal conceptual design from a
set of alternative designs. Hence, there is a need to accrue efforts to the concept selection process
because of its importance. This article presents the identification of optimal conceptual design as a
multicriteria decision-making model by assessing the suitability of fuzzy Measurement Alternatives
and Ranking according to COmpromise Solution (MARCOS). The fuzzy MARCOS model was
developed to access four alternative conceptual designs of briquetting machines considering eight
design features with several sub-features. The results obtained from the decision analysis showed
that the fuzzy MARCOS model was able to rank the designs based on their performance and the final
values of the overall utility function. The overall utility function is based on the utility degree of the
conceptual design alternatives in terms of the best and worst designs identified by the model. The
utility degree created a platform for comparison on how the design alternatives varied from the best
and worst designs. The results obtained from the MARCOS method were validated using the TOPSIS
method and modified TOPSIS method, and the results obtained showed that the MARCOS method is
in conformity with the validation results.

Keywords: design concept selection; fuzzy MARCOS; design process; multi-criteria decision making;
briquetting machine

1. Introduction

Achieving the goal of developing a product with all-embracing design features starts
from brainstorming activities in the design phase of the product when several conceptual
design concepts have been established. An important task at this stage is decision making
on identification of the optimal conceptual design. Decision making in the preliminary
design phase and extensive design concept selection from several conceptual designs can
be accrued to the robust design of a product [1,2]. The number of design features that
are embedded in the optimal design concept is also important because they depict the
multifarious functions that the product can perform. A good way to develop a product
with several design features is to examine the features of different conceptual designs
during the concept selection phase. Selecting an optimal design implies that the design
has a satisfactory performance considering all the design features [3,4]. Also, an optimal
design can be developed so that the design features from other conceptual designs can
be added to the design. This makes the decision process important, and the efforts put
into it cannot be overemphasized. Design engineers provide several design solutions in
the developmental stage before a detailed analysis is carried out [5]. Provision of several
design solutions is necessary because the management of a manufacturing firm wants
to reduce the cost of fabrication and produce an extensive product that will have a high
demand in a competitive market and extended useful life. Also, the firm may be interested
in selecting a design that is realistic in terms of completion time and utilization of existing
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technologies of fabrication. In essence, selecting an optimal design concept from a set of
alternative designs becomes inevitable considering the fact that all the design solutions
have several benefits and shortcomings [2].

Research has shown that an excellent way to arrive at an optimal solution in the
decision-making process in this scenario is to introduce the Multi-Criteria Decision Model
(MCDM) [6,7]. In the preliminary phase of an equipment or a product, the design features
and sub-features are identified alongside various design alternatives in order to allow for
decision making on the optimal design concept to be modelled as an MCDM. Basically,
MCDMs can be broadly divided into two categories, which are the Multi-Attribute Decision
Model (MADM) and Multi-Objective Decision Model (MODM) [8,9]. The MADM is
applicable in cases that involves making a choice from a set of alternatives in a discrete
or well-defined solution space. The MODM is applied to solve decision problems with
several goals where there are no discrete sets of explicitly defined alternatives. Also,
the MODM also applies to scenarios where the alternatives are to be ranked based on
several criteria. In this case, the decision process is performed at different times in order
to satisfy the various objectives of the decision criteria [9,10]. Several MADMs have been
introduced to solve real-life decision-making problems, but there is a need to investigate
the suitability of these models in the design process. Among the MADMs used in decision-
making processes are the Multi-Attribute Utility Theories (MAUTs). MAUTs include the
Analytic Hierarchy Process (AHP), Weighted Decision Matrix (WDM), Analytic Network
Process (ANP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS),
VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and Elimination and
Choice Translating Reality (ELECTRE), among others [11].

Several efforts have been made by researchers to apply these MADMs in the selection
of an optimal design from a set of alternative conceptual designs. Considering the fact
that the design features that are usually applied as criteria in the decision process are
different dimensions and units, researches have introduced the theory of fuzzy membership
functions and rough numbers into the MADMs. The introduction of the fuzzy and rough
number theories is to cater to the multifarious units and dimensions of the design features
and ensure that the decision process is unprejudiced and there is no allocation of a crisp
value to weights of the design features of different units and dimensions or performance of
the design concepts in the decision matrix [12]. Depending on the nature and objectives
of the decision process and the complexity of the design features, the Triangular Fuzzy
Number (TFN) and Trapezoidal Fuzzy Number (TrFN) have been applied as membership
functions in different MADM models in order to proffer solutions in the decision process of
selecting an optimal conceptual design [1].

Further, since the introduction of the Measurement Alternatives and Ranking accord-
ing to Compromise Solution (MARCOS) in the year 2020 [13], it has gained attention
by researchers and its application has been extended to several fields of applications for
decision making. Examples of the areas of application include supplier selection [14–18],
logistics [19,20], infrastructure and technology assessment [21–30] and management de-
cisions [31]. At inception, it was applied to assess sustainable supplier selection in the
medical industry, which is a very important task in the medical firm that must be strategi-
cally addressed because of the quality expected from medical supplies. Considering eight
suppliers and twenty-one decision criteria, the MARCOS method was able to define the
relationship between the suppliers and the reference values in order to obtain the utility
functions of the suppliers and rank them in relation to the reference values [13]. Further,
the MARCOS method was applied to determine the response of insurance companies in
terms of healthcare services to the COVID-19 pandemic considering its ability to consider
a large set of alternatives, decision criteria and sub-criteria without compromising on the
stability and computational integrity of the decision process [31]. In order to avoid a vague
decision process, the intuitionistic fuzzy membership function was introduced to evaluate
ten insurance companies considering five expert opinions and seven decision criteria. The
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decision process was able to identify payback period, premium price and network as the
substantial criteria for evaluating healthcare insurance companies.

Also, considering the importance of effective supply chain management to the growth
of industries and business and the fact that a sustainable supply chain is essential in running
the day-to-day activities of the company, several articles have provided explicit information
on the application of the MARCOS method in supplier selection and its integration with
other multi-attribute models. An example of this application is the integration of extended
VIKOR and MARCOS for sustainable supplier selection in organ transplantation networks
for healthcare devices using an interval-valued intuitionistic fuzzy model [32]. Ayşegül
and Adali [14] integrated the fuzzy MARCOS model with fuzzy SWARA (Stepwise Weight
Assessment Ratio Analysis) in green supply chain management in order to identify the best
supplier from alternative suppliers in a textile industry where green and environmentally
friendly textile dyes are needed to be supplied in the industries. The implementation of
this integrated fuzzy MARCOS with fuzzy SWARA for green supplier selection has also
been verified by Tas et al. [33]. The integration of SWARA and MARCOS also finds appli-
cation in decision making in the logistics field, where a decision was made on inventory
classification. The decision process involved the evaluation of fifty products to be stored
considering the quantity of the products purchased, their unit price and annual value of
purchase [34]. Another important area of application of the MARCOS model is the field
of manufacturing. The MARCOS method was applied in the process for powder-mixed
electrical discharge machining of cylindrical-shaped parts using a chromium silicon steel
tool, and the result obtained was compared with TOPSIS and MAIRCA (Multi-Attributive
Ideal-Real Comparative Analysis). The results obtained showed that the three methods
selected the same alternative as the optimal alternative from the eighteen alternatives
considered in the decision process [35]. Similarly, the MARCOS method was also compared
with MAIRCA, TOPSIS and EAMR (Evaluation by an Area-based Method of Ranking)
considering the turning process. The cutting speed, feed and depth of cut were the input
parameters in the cutting process in order to determine the material removal rate and
surface roughness of the workpiece. The results obtained from the application showed that
the four models are in conformity, as they identified the same alternative as the optimal
process from the sixteen alternatives considered in the decision process [36]. The result
was similar to the application and comparison of MARCOS to EDAS (Evaluation based on
Distance from Average Solution), TOPSIS, MOORA (Multi-Objective Optimization on the
basis of Ratio Analysis) and PIV (Proximity Indexed Value) in the milling decision-making
process [37]. Further, the MARCOS method was applied in the grinding, turning and
milling processes in order to determine the optimum material removal rate and effective
surface finish considering nine trials with different machining parameters [38].

Considering the applications of the MARCOS model in different areas of application,
it can be observed that the model finds more application in infrastructure and technology
assessment, it is suitable for handling several numbers of alternatives and it also has a
consideration for the ideal and anti-ideal scenarios in the formation of the decision matrix.
This makes it possible for the model to capture the variations of the alternatives from the
ideal and anti-ideal solutions considering the utility degree and functions of all the alterna-
tives in order to confirm the optimal alternative. Also, considering the application areas of
the MARCOS model, it is necessary to investigate its suitability to decision making on the
identification of optimal design concept considering several conceptual design alternatives.
Hence, this article attempts to extend the application of the fuzzy MARCOS model to
the identification of an optimal design concept considering four conceptual designs of a
briquette making machine. The decision process considered eight design features, with
each of the design features having several sub-features. The importance of considering
several design features is to ensure that the decision process is robust and all-encompassing
in order to ascertain the computational integrity of the fuzzy MARCOS model.
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2. Methodology

There is a need to develop a preliminary decision matrix that contains the weights
of the design features and the performance weights of the design concepts relative to
each design feature in the decision process. The task involved in the development of the
preliminary decision matrix can be divided into two. First, the relative contributions of
the sub-features to the design features are aggregated considering the opinions of several
design experts in order to determine the weights of the design features and sub-features.
Second, the availability of the sub-features in the design alternatives are also evaluated by
design experts in order to obtain sub-aggregates for the design concepts. The sub-aggregate
for the design concepts for each of the design features form the elements of the decision
matrix together with the weights of the design features. In order to avoid apportioning of
crisp values in the development of the preliminary decision matrix, linguistic terms are
used to represent the Triangular Fuzzy Numbers (TFNs).

2.1. TFN and Membership Functions

Considering the multi-dimensional nature and different units of measurements and
quantification of the design features and their sub-features, apportioning the crisp number
will allow ambiguous and prejudice in the decision process. Hence, a fuzzy number with
the triangular membership function is applied by using a linguistic scale to represent
the membership functions as presented in Table 1. The linguistic scale was applied for
aggregating the relative contributions of the sub-features to the design features and the
availability of the sub-features in the design alternatives. For ease of analysis, consider
a TFN ‘M’, of which membership function ‘µm(y)’ is contained in [0 1] as defined in
Equation (1) [39].

µm(y) =



1
b−a y − a

b−a y ∈ [a b]

1
b−c y − c

b−c y ∈ [b c]

0 Otherwise

(1)

Table 1. Linguistic terms and membership functions for the decision process.

Relative Contributions of Sub-Features to
Design Feature

Relative Availability of Sub-Features in
the Design Alternatives

Triangular Fuzzy Numbers and
Membership Function

Indeterminate Contribution (IDC) Extremely Poor Availability (ELA) 1 1 1

Indeterminate-Moderate Contribution (IMC) Very Low Availability (VLA) 1 3
2 2

Moderate Contribution (MDC) Low Availability (LOA) 3
2 2 5

2

Moderate-High Contribution (MHC) Medium Low Availability (MLA) 2 5
2 3

High Contribution (HGC) Medium Availability (MEA) 5
2 3 7

2

High-Very High Contribution (HVC) Medium High Availability (MHA) 3 7
2 4

Very High Contribution (VHC) High Availability (HGA) 7
2 4 9

2

Very High-Extreme Contribution (VEC) Very High Availability (VHA) 4 9
2 5

Extreme Contribution (EXC) Extremely High Availability (EHA) 9
2 5 11

2

In Equation (1), a, b and c represent the lower, modal and upper values of M, respec-
tively, such that a ≤ b ≤ c. The TFN (M) described in Equation (1) can be defuzzified to
obtain a crisp value ‘Mcrisp’, which is the best non-fuzzy performance value, as presented
in Equation (2) [40].

Mcrisp =
a + 4b + c

6
(2)
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2.2. Preliminary Decision Matrix

Consider a scenario where there are ‘n’ number of alternative conceptual designs (Cdn)
that are to be assessed before commencement of detailed design and prototyping. If the
assessment is done with ‘m’ number of design features, then it is possible to develop a
preliminary decision matrix. In order to determine the weights of the design features and
their sub-features, the ratings of design experts’ decisions are developed in a sub-decision
matrix as presented in Equation (3). Also, the availability of sub-features in the design
concepts can also be presented in a fuzzified sub-decision matrix using ‘k’ number of design
experts as described in Equation (4). The matrices described in Equations (3) and (4) are
developed based on the linguistic scale presented in Table 1. The weights of the design
features and sub-features are instrumental in the determination of aggregate TFNs for the
design concepts.

dm1
s f dm2

s f dm3
s f · · · dmi

s f Cum
k W̃d f m

DE1 dẼm,1
1 dẼm,2

1 dẼm,3
1 · · · dẼm,i

1 · · ·
DE2 dẼm,1

2 dẼm,2
2 dẼm,3

2 · · · dẼm,i
2 · · ·

d f m
...

...
...

...
... · · ·

DEk dẼm,1
k dẼm,2

k dẼm,2
k · · · dẼm,i

k · · ·
W̃dm

s f W̃dm1
s f W̃dm2

s f W̃dm3
s f · · · W̃dmi

s f

(3)

In Equation (3), dẼm,i
k represents the decision of design expert ‘k’ for the relative con-

tribution of the ith sub-feature (dmi
s f ) corresponding to design feature m (d f m). Cum

k is the
cumulative weight of the decisions of the kth design expert, which is obtainable from Equa-
tion (5). Also, W̃dmi

s f and W̃d f m are the weights of the ith sub-feature and design feature m,

respectively. W̃dmi
s f and W̃d f m can also be obtained from Equations (6) and (7), respectively.

Cd1 Cd2 · · · Cdn
d f m ds f DE1 → DEk DE1 → DEk · · · DE1 → DEk

W̃dm1
s f dẼ1

1

∣∣∣1
m

· · · dẼ1
1

∣∣∣k
m

dẼ1
2

∣∣∣1
m

· · · dẼ1
2

∣∣∣k
m

· · · dẼ1
n

∣∣∣1
m

· · · dẼ1
n

∣∣∣k
m

W̃dm2
s f dẼ2

1

∣∣∣1
m

· · · dẼ2
1

∣∣∣k
m

dẼ2
2

∣∣∣1
m

· · · dẼ2
2

∣∣∣k
m

· · · dẼ2
n

∣∣∣1
m

· · · dẼ2
n

∣∣∣k
m

W̃d f m W̃dm3
s f dẼ3

1

∣∣∣1
m

dẼ2
1

∣∣∣k
m

dẼ3
2

∣∣∣1
m

dẼ3
2

∣∣∣k
m

dẼ3
n

∣∣∣1
m

dẼ3
n

∣∣∣k
m

...
...

...
...

...
...

...

W̃dmi
s f dẼi

1

∣∣∣1
m

· · · dẼi
1

∣∣∣k
m

dẼi
2

∣∣∣1
m

· · · dẼi
2

∣∣∣k
m

· · · dẼi
n

∣∣∣1
m

· · · dẼi
n

∣∣∣k
m[

Ãgg

]k

n
· · · · · · · · · · · · · · · · · · · · · · · · · · ·[

Ã
]m

n
· · · · · · · · ·

(4)

Cum
k =

i=i

∑
i=1

[
dẼm,i

k

]∣∣∣∣∣
∀ m=1, 2, 3 ..... m

∀ k=1, 2 ..... k

(5)

W̃dmi
s f =

k=k
∑

k=1

[
dẼm,i

k

]
∑ k

∣∣∣∣∣∣∣∣∣
∀ m=1, 2, 3 ..... m

∀ i=1, 2, 3 ..... i

(6)

W̃d f m =

k=k
∑

k=1
Cum

k

∑ k
=

i=i

∑
i=1


k=k
∑

k=1

[
dẼm,i

k

]
∑ k


∣∣∣∣∣∣∣∣∣∀ m = 1, 2, 3 .. . . . m (7)
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In Equation (4), dẼi
n

∣∣∣k
m

is the decision of design expert ‘k’ on the availability of sub-

feature ‘i’ in design concept ‘n’ corresponding to design feature ‘m’. Also,
[

Ãgg

]k

n
denotes

the aggregate TFN for the nth design concept corresponding to the decision of the kth

design expert, and
[

Ã
]m

n
is the overall TFN for the nth design concept considering design

feature ‘m’.
[

Ãgg

]k

n
and

[
Ã
]m

n
can be obtained from Equations (8) and (9), respectively.

[
Ãgg

]k

n
=

i=i
∑

i=1

[
W̃dmi

s f ∗ dẼi
n

∣∣∣k
m

]
∑ i

∣∣∣∣∣∣∣∣∣
∀ k=1, 2 ..... k

∀ n=1, 2, 3 ..... n

(8)

[
Ã
]m

n
=

i=i
∑

i=1

[
W̃dmi

s f ∗ dẼi
n

∣∣∣k
m

]
∑ i∑ k

∣∣∣∣∣∣∣∣∣
∀ m=1, 2, 3 ..... k

∀ n=1, 2, 3 ..... n

(9)

The weight of the design features and the overall TFN obtained from Equation (9) for
all the design concepts corresponding to the design features will be harnessed to develop a
decision matrix as presented in Equation (10). This matrix will be used for decision making
in the fuzzy MARCOS process.

W̃d f 1 W̃d f 2 W̃d f 3 · · · W̃d f m

Cd1

[
Ã
]1

1

[
Ã
]2

1

[
Ã
]3

1
· · ·

[
Ã
]m

1

Cd2

[
Ã
]1

2

[
Ã
]2

2

[
Ã
]3

2
· · ·

[
Ã
]m

2

Cd3

[
Ã
]1

3

[
Ã
]2

3

[
Ã
]3

3
· · ·

[
Ã
]m

3
...

...
...

...
...

Cdn

[
Ã
]1

n

[
Ã
]2

n

[
Ã
]3

n
· · ·

[
Ã
]m

n

(10)

2.3. Fuzzy MARCOS

In order to implement the fuzzy MARCOS model, the first step is to create an extended
fuzzy matrix containing the best (Cdb) and worst (Cdw) design concepts based on the bene-
ficial (Bd f ) and cost (Cd f ) categories of design features. The best and worst design concepts
created in this case will represent the ideal and anti-ideal design concepts, respectively. The
best and worst design concepts can be obtained from Equations (11) and (12), respectively.
The matrix containing the best and worst design concepts can be obtained by rewriting
Equation (10) as presented in Equation (13).

Cdb =


Min

n

[
Ã
]m

n
∀ m ∈ Bd f

Max
n

[
Ã
]m

n
∀ m ∈ Cd f

(11)

Cdw =


Max

n

[
Ã
]m

n
∀ m ∈ Bd f

Min
n

[
Ã
]m

n
∀ m ∈ Cd f

(12)
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W̃d f 1 W̃d f 2 W̃d f 3 · · · W̃d f m
Best
Design

Cdb
[

Ã
]1

b

[
Ã
]2

b

[
Ã
]3

b
· · ·

[
Ã
]m

b

Cd1

[
Ã
]1

1

[
Ã
]2

1

[
Ã
]3

1
· · ·

[
Ã
]m

1

Cd2

[
Ã
]1

2

[
Ã
]2

2

[
Ã
]3

2

[
Ã
]m

2

Cd3

[
Ã
]1

3

[
Ã
]2

3

[
Ã
]3

3

[
Ã
]m

3
...

...
...

...
...

Cdn

[
Ã
]1

n

[
Ã
]2

n

[
Ã
]3

n

[
Ã
]m

n
Worst
Design

Cdw
[

Ã
]1

w

[
Ã
]2

w

[
Ã
]3

w
· · ·

[
Ã
]m

w

(13)

Further, the elements of the extended fuzzy decision matrix in Equation (13) can be
normalized using Equation (14) for the beneficial (Bd f ) and cost (Cd f ) features considering
the notations for the lower, modal and upper values of the TFN defined in Equation (1).

[
Ã
]m

w

∣∣∣
N
= [a b c]mw

∣∣
N =



[Ã]
m
w

∣∣∣a
[Ã]

m
n

∣∣∣c
[Ã]

m
w

∣∣∣a
[Ã]

m
n

∣∣∣b
[Ã]

m
w

∣∣∣a
[Ã]

m
n

∣∣∣a ∀m ∈ Cd f

[Ã]
m
n

∣∣∣a
[Ã]

m
w

∣∣∣c
[Ã]

m
n

∣∣∣b
[Ã]

m
w

∣∣∣c
[Ã]

m
n

∣∣∣c
[Ã]

m
w

∣∣∣c ∀m ∈ Bd f

(14)

In Equation (14),
[

Ã
]m

n

∣∣∣a [
Ã
]m

n

∣∣∣b [Ã
]m

n

∣∣∣c represents the lower, modal and upper val-

ues of the elements of the extended fuzzy decision matrix while
[

Ã
]m

w

∣∣∣a [
Ã
]m

w

∣∣∣b [Ã
]m

w

∣∣∣c
represents the lower, modal and upper values of the elements of the worst design. The next
step is to compute the weighted normalized fuzzy decision matrix [υ̃]mn as presented in
Equation (15). This is obtainable by multiplying the weights of the design features with the
normalized elements of the decision matrix. Hence, the weighted and normalized version
of Equation (13) can be expressed in Equation (16).

[υ̃]mn =
[

Ã
]m

n

∣∣∣
N
∗ W̃d f m (15)

Best
Design

Cdb
[

Ã
]1

b

∣∣∣∣
N
∗ W̃d f 1

[
Ã
]2

b

∣∣∣∣
N
∗ W̃d f 2

[
Ã
]3

b

∣∣∣∣
N
∗ W̃d f 3 · · ·

[
Ã
]m

b

∣∣∣
N
∗ W̃d f m

Cd1

[
Ã
]1

1

∣∣∣∣
N
∗ W̃d f 1

[
Ã
]2

1

∣∣∣∣
N
∗ W̃d f 2

[
Ã
]3

1

∣∣∣∣
N
∗ W̃d f 3 · · ·

[
Ã
]m

1

∣∣∣
N
∗ W̃d f m

Cd2

[
Ã
]1

2

∣∣∣∣
N
∗ W̃d f 1

[
Ã
]2

2

∣∣∣∣
N
∗ W̃d f 2

[
Ã
]3

2

∣∣∣∣
N
∗ W̃d f 3

[
Ã
]m

2

∣∣∣
N
∗ W̃d f m

Cd3

[
Ã
]1

3

∣∣∣∣
N
∗ W̃d f 1

[
Ã
]2

3

∣∣∣∣
N
∗ W̃d f 2

[
Ã
]3

3

∣∣∣∣
N
∗ W̃d f 3

[
Ã
]m

3

∣∣∣
N
∗ W̃d f m

...
...

...
...

...

Cdn

[
Ã
]1

n

∣∣∣∣
N
∗ W̃d f 1

[
Ã
]2

n

∣∣∣∣
N
∗ W̃d f 2

[
Ã
]3

n

∣∣∣∣
N
∗ W̃d f 3

[
Ã
]m

n

∣∣∣
N
∗ W̃d f m

Worst
Design

Cdw
[

Ã
]1

w

∣∣∣∣
N
∗ W̃d f 1

[
Ã
]2

w

∣∣∣∣
N
∗ W̃d f 2

[
Ã
]3

w

∣∣∣∣
N
∗ W̃d f 3 · · ·

[
Ã
]m

w

∣∣∣
N
∗ W̃d f m

(16)
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The cumulative fuzzy matrix (C̃I) can be obtained by summing the elements of the
weighted matrix. This is obtainable from Equation (17). The cumulative fuzzy matrix is
necessary for estimating the utility degree of the design alternatives

[
Ũ I

d

]
n
. The utility

degree of the design alternatives is a function of the cumulative matrices of the best and

worst design. Hence, the utility degree can be expressed in terms of best
[
Ũ I

d

]+
n

and worst[
Ũ I

d

]−
n

design scenarios as presented in Equations (18) and (19), respectively. The next step

is to compute the fuzzy utility matrix
[

T̃
]

n
. The fuzzy utility matrix is a summation of

the utility degrees for the best and worst scenario of the design concepts as presented in
Equation (20). Further, the fuzzy utility matrix is necessary for determining a new fuzzy

number
[

T̃
]new

n
, which is the maximum of the utility matrix as presented in Equation (21).

This new fuzzy number will be defuzzified using Equation (2) in order to compute the

utility functions in relation to the best F
[
Ũ I

d

]+
n

and worst F
[
Ũ I

d

]−
n

design alternatives as
presented in Equations (22) and (23), respectively. The next step is to defuzzify the TFNs
for the best and worst utility degree scenarios and the best and worst utility functions. This
is necessary for the determination of a crisp value for the overall utility function for the
design concepts, as presented in Equation (24).

C̃I =
m=m

∑
m=1

[υ̃]mn (17)

[
Ũ I

d

]+
n
=

C̃I

C̃b
I

(18)

[
Ũ I

d

]−
n
=

C̃I

C̃w
I

(19)

In Equations (18) and (19), C̃b
I and C̃w

I are the cumulative fuzzy matrix for the best and
worst designs, respectively. [

T̃
]

n
=

[
Ũ I

d

]+
n
⊕

[
Ũ I

d

]−
n

(20)[
T̃
]new

n
= Max

n

[
T̃
]

n
(21)

F
[
Ũ I

d

]+
n
=

[
Ũ I

d

]+
n[

T̃
]new

n

∣∣∣
crisp

(22)

F
[
Ũ I

d

]−
n
=

[
Ũ I

d

]−
n[

T̃
]new

n

∣∣∣
crisp

(23)

F
[
U I

d

]
n
=

[
U I

d
]+

n +
[
U I

d
]−

n

1 +
1−F[U I

d]
+

n

F[U I
d]

+

n

+
1−F[U I

d]
−
n

F[U I
d]

−
n

(24)

In Equation (24),
[
U I

d
]+

n ,
[
U I

d
]−

n , F
[
U I

d
]+

n and F
[
U I

d
]−

n represent the crisp values for[
Ũ I

d

]+
n

,
[
Ũ I

d

]−
n

, F
[
Ũ I

d

]+
n

and F
[
Ũ I

d

]−
n

, respectively. The design concepts are ranked accord-
ing to the values of the overall utility functions such that the design with the highest value
is the optimal design.
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3. Implementation

In order to investigate the suitability of the methodology, it is necessary to implement
its application in the conceptual design of a product. In this article, four conceptual designs
of a briquette making machine are considered for evaluation using the design for X features.
A framework for application of the methodology to conceptual designs of briquetting
making machines is presented in Figure 1. It is worthwhile to know that all the sub-features
allotted to the design for X features are performance indicators for effective operation of
the briquette making machine. For simplification of analysis, a framework for application
of the fuzzy MARCOS is presented in Figure 2. Firstly, sub-matrices for aggregating the
relative contributions of the sub-features to the design features are developed as presented
in Tables A1–A8 in Appendix A following Equation (3) and using the linguistic terms
presented in Table 1. Also, sub-matrices for aggregating the relative availability of the sub-
features in the design concepts are developed as presented in Tables A9–A16 in Appendix A
using the weights obtained for the sub-features.
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4. Results and Discussion
4.1. Results

The aggregate TFNs for the design concepts in Tables A9–A16 are harnessed alongside
the weights of the design features obtained from Tables A1–A8 in order to arrive at a
preliminary decision matrix as presented in Table 2. It is necessary to normalize the
elements of the decision matrix in order to consider the beneficial and cost features. the
normalized decision matrix is presented in Table 3. The cumulative matrix, utility degree in
relation to the best and worst designs, utility matrix and utility functions in relation to the
best and worst designs can be obtained from Equations (17)–(23) considering the weighted
normalized decision matrix in Table 4. Table 5 shows the computations of the cumulative
matrix, utility degree in relation to the best and worst designs, utility matrix and utility
functions in relation to the best and worst designs. In order to obtain the utility functions
for the design alternatives considering Equation (24), the utility function and utility degree
in relation to best and worst designs are defuzzified using Equation (2) as presented in
Table 6. The design concepts are ranked according to the values of their utility functions.

Table 2. Fuzzified decision matrix with the best and worst designs and weight of design features.

Design
Features (DF)

Best
Design

Design Concepts
Worst DesignDC1 DC2 DC3 DC4

DfAD
16 2

3 19 1
6 21 2

3
12 19

20 16 49
60 21 11

60 9 1
36 12 5

17 16 3
49 10 51

67 14 14
45 18 13

36 12 19
20 16 49

60 21 11
60 8 17

30 11 23
30 15 7

15 8 17
30 11 23

30 15 7
15

DfO
19 22 25 11 3

10 14 25
27 19 3

59 7 16
27 10 26

41 14 16
91 10 16

91 13 18
29 17 48

85 11 3
10 14 25

27 19 3
59 8 62

65 12 11
54 15 41

43 7 16
27 10 26

41 14 16
91

DfE 15 17 1
2 20 9 35

36 13 16
45 17 16

67 9 35
36 13 16

45 17 16
67 8 34

45 11 43
45 15 59

90 8 38
45 12 3

49 15 7
9 9 17

90 12 41
90 16 2

9 8 34
45 11 43

45 15 59
90

DfR
10 1

2 12 1
2 14 1

2
9 5

6 13 13
48 17 5

24 7 31
36 10 12

13 14 35
72 8 35

36 12 9
37 16 1

72 7 5
6 10 43

48 14 11
24 9 5

6 13 13
48 17 5

24 7 5
6 10 43

48 14 11
24

DfLc
11 13 15 8 9

37 11 25
72 14 39

41 8 61
72 12 1

18 15 55
72 8 9

37 11 25
72 14 39

41 8 9
16 11 3

4 15 7
16 8 14

31 11 23
36 15 16

49 8 61
72 12 1

18 15 55
72

DfFu
19 5

6 22 5
6 25 5

6
12 10

83 15 6
7 20 5

54 10 1
2 14 17 42

43 11 13
36 14 71

72 19 1
9 12 10

83 15 6
7 20 5

54 10 26
53 13 42

43 17 26
27 10 26

53 13 42
43 17 26

27

DfMa
18 1

6 21 1
6 24 1

6
8 42

43 12 13
54 16 10 7

72 13 19
36 17 11

24 8 42
43 12 13

54 16 9 24
73 12 26

41 16 11
25 9 58

67 13 14
55 17 1

7 10 7
72 13 19

36 17 11
24

DfMn
15 1

6 17 2
3 20 1

6
10 13

30 13 9
10 17 13

15 9 19
30 12 59

60 16 5
6 10 1

18 13 41
90 17 16

45 10 13
30 13 9

10 17 13
15 9 7

20 12 2
3 16 29

60 9 7
20 12 2

3 16 29
60
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Table 3. Normalized fuzzy decision matrix with the best and worst designs and weight of
design features.

Design
Features (DF)

Best
Design

Design Concepts
Worst DesignDC1 DC2 DC3 DC4

DfAD
16 2

3 19 1
6 21 2

3

11
18

27
34 1 26

61
18
31

61
91

31
61

25
37

13
15

11
18

27
34 1 36

89
5
9

46
63

36
89

5
9

46
63

DfO 19 22 25 35
59

76
97 1 2

5
24
43

32
43

47
88

5
7

71
77

35
59

76
97 1 39

83
41
64

67
80

2
5

24
43

32
43

DfE 15 17 1
2 20 11

19
55
71 1 11

19
55
71 1 32

63
43
62

89
98

39
76

7
10

54
59

8
15

13
18

16
17

32
63

43
62

89
98

DfR
10 1

2 12 1
2 14 1

2

4
7

27
35 1 37

81
40
63

16
19

12
23

37
52

67
72

5
11

19
30

21
25

4
7

27
35 1 5

11
19
30

21
25

DfLc 11 13 15 43
78

8
11 1 23

44
13
19

41
44

43
78

8
11 1 8

15
47
67

26
27

7
13

17
24

79
81

23
44

13
19

41
44

DfFu
19 5

6 22 5
6 25 5

6

38
63

15
19 1 23

44
39
56

17
19

13
23

44
59

39
41

38
63

15
19 1 12

23
16
23

59
66

12
23

16
23

59
66

DfMa
18 1

6 21 1
6 24 1

6

23
41

11
15 1 18

35
2
3

8
9

23
41

11
15 1 6

11
27
38

51
53

11
21

21
31

10
11

18
35

2
3

8
9

DfMn
15 1

6 17 2
3 20 1

6

7
12

7
9 1 7

13
8
11

49
52

9
16

61
81

34
35

7
12

7
9 1 45

86
56
79

12
13

45
86

56
79

12
13

Table 4. Weighted normalized fuzzy decision matrix with the best and worst designs.

DF
Best

Design

Design Concepts
Worst DesignDC1 DC2 DC3 DC4

DfAD 10 4
21 15 17

78 21 2
3 7 8

77 11 1
8 16 3

7 8 29
62 12 77

81 18 18
23 10 4

21 15 17
78 21 2

3 6 20
27 10 46

71 15 60
73 6 20

27 10 46
71 15 60

73

DfO 11 13
48 17 22

93 25 7 4
7 12 23

82 18 44
73 10 7

47 15 43
59 23 1

20 11 13
48 17 22

93 25 8 53
57 14 4

43 20 29
31 7 4

7 12 23
82 18 44

73

DfE 8 65
96 13 53

95 20 8 65
96 13 53

95 20 7 47
76 12 3

22 18 8
49 7 16

23 12 10
41 18 25

82 8 12 29
45 18 32

39 7 47
76 12 3

22 18 8
49

DfR 6 9 16
25 14 1

2 4 47
59 7 43

46 12 20
97 5 28

59 8 67
75 13 38

77 4 46
59 7 75

82 12 17
93 6 9 16

25 14 1
2 4 46

59 7 75
82 12 17

93

DfLc 6 2
31 9 4

9 15 5 3
4 8 8

9 13 81
83 6 2

31 9 4
9 15 5 83

95 9 3
25 14 26

59 5 11
12 9 17

82 14 29
46 5 3

4 8 8
9 13 81

83

DfFu 11 27
28 18 1

52 25 5
6 10 31

84 15 9
10 23 6

53 11 3
14 17 1

33 24 4
7 11 27

28 18 1
52 25 5

6 10 16
45 15 53

60 23 2
21 10 16

45 15 53
60 23 2

21

DfMa 10 18
95 15 23

44 40 1
6 9 15

44 14 1
22 35 22

31 10 18
95 15 23

44 40 1
6 9 23

25 15 2
51 38 28

43 9 41
80 14 1

3 36 29
53 9 15

44 14 1
22 35 22

31

DfMn 8 6
7 13 67

90 20 1
6 8 11

62 12 31
37 19 8 15

28 13 25
82 19 23

39 8 6
7 13 67

90 20 1
6 7 15

16 12 21
40 18 23

38 7 15
16 12 21

40 18 23
38

Table 5. Cumulative matrix, utility degree and functions for the design concepts.

Cumulative for Best Design 73 11
52 112 27

71 182 1
3

Cumulative for Worst Design 60 5
52 94 9

28 156 2
13

DESIGN CONCEPTS

DC1 DC2 DC3 DC4

Cumulative matrix (C̃I) 61 15
19 96 4

7 159 2
53 67 5

7 105 1
90 172 67

82 70 49
89 108 15

28 176 1
4 63 19

49 98 40
41 162 22

23

Utility degree in relation to

best design
[
Ũ I

d

]+
n

33
95

27
31 2 18

91
8

21
89
94 2 38

85
23
58

46
47 2 27

62
31
87

83
93 2 1

4

Utility degree in relation to

worst design
[
Ũ I

d

]−
n

19
48 1 1

42 2 53
82

36
83 1 6

53 2 7
8

14
31 1 11

73 2 14
15

28
69 1 4

81 2 37
52

Utility matrix
[

T̃
]

n
26
35 1 17

19 4 65
77

57
70 2 5

83 5 19
72

28
33 2 11

85 5 7
19

16
21 1 81

86 4 53
55

Utility function in relation to

best design F
[
Ũ I

d

]+
n

5
31

5
12 1 1

13
3
17

34
75 1 13

76
16
87

15
32 1 7

36
1
6

3
7 1 5

48

Utility function in relation to

worst design F
[
Ũ I

d

]−
n

14
99

11
31

17
19

11
71

32
83

71
73

5
31

2
5 1 9

62
4
11

11
12
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Table 6. Defuzzified utility degrees and functions and ranking of design concepts.

Design
Concepts

Utility Degrees and Functions
Rank

[UI
d]+

n [UI
d]−n F[UI

d]+
n F[UI

d]−n F[UI
d]n

DC1 1 1 11
58

31
64

9
22

5
8 (0.625) 4

DC2 1 9
97 1 5

7
49
93

4
9

22
29 (0.759) 2

DC3 1 1
8 1 1

3
45
83

38
83

30
37 (0.811) 1

DC4 1 1
34 1 16

73
1
2

13
31

43
65 (0.662) 3

4.2. Discussion

Considering the weighted normalized decision matrix in Table 4, a clear picture of the
performance of the design alternatives with respect to the design features can be obtained
in the form of TFNs. Also, an interesting aspect of the fuzzy MARCOS method is the
determination of the best and worst design by selecting the design with the highest upper
membership function of the TFNs in all the design features. This implies that the best
design will perform well in all the design features, and the worst design will perform poorly
in all the design features. Although, in real life, achieving the best design may seem a little
bit difficult because a consideration of all the design features in a design may be difficult
to achieve. Hence, there will be a trade-off in the design process such that some design
features will not be predominantly available in the design. It is worthwhile to note that
such design features are also important, but the decision to prioritize the design features
has come to play in order to satisfy the features that are necessary for a robust design. Also,
when there is a need to prioritize some design features, the alternatives which have the
best performance in all these features can easily be identified. In essence, there is a need to
classify the design features into cost and beneficial features. The separation of the design
features into cost and beneficial features makes it easy to identify the design concepts that
will be cost demanding, particularly before fabrication and commercialization. This will
go a long way to inform the manufacturer on the logistics that will be involved in the
production of the machine before the completion of the design. In this case, design for
manufacturing cost and life cycle cost are considered as the cost features. The design for life
cycle cost and manufacturing are the cost features as highlighted in Table 4. Considering
the upper membership function of the best design concepts in the weighted normalized
fuzzy decision matrix in Table 4, it is clear that concept two has the best manufacturing and
life cycle costs, but that does not indicate that it is the optimal design concept. However,
if the aim of the decision process is to obtain a design with less cost, then design concept
two can serve as a best design. Also, it is also clear that the performances of all the
design concepts in terms of the beneficial features can be captured in Table 4. This will
also help to achieve the identification of design concepts with other beneficial features.
Further, considering the upper membership function of the cumulative matrix for the best
and worst designs in Table 5, it is obvious that none of the design concepts is closer to
the best and worst designs. This is an interesting aspect of the fuzzy MARCOS model
because it gives a relative comparison by providing a clear picture of the design alternatives
relative to the best and worst designs. The relative position of the design alternatives
to the best and worst designs can be depicted in the form of the TFNs, as presented in
Figure 3a. This implies that the fuzzy MARCOS method determines a value for the best
and worst designs and also provides the values for the design concepts to be assessed. This
method is good because it can create a platform for comparison on the distances of the
design concept to the best and worst designs. The MARCOS model further determined
the optimal design alternative considering the utility degrees, fuzzy utility functions and
overall utility function rather than mere defuzzification and comparison with the best
and worst designs. Also, considering the comparison in Figure 3a, the model was able
to establish the level of performance of the design alternatives relative to the expected
performance of the best and worst designs, but a judgment on the optimal design concept
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cannot be made because the utility degree, which is a function of how each of the designs
performs with respect to the best and worst designs, needs to be determined. Hence, in
Figure 3b, the design alternatives were ranked based on their scores in the overall utility
function. An observation of the final values of the overall utility function showed that there
is a closeness in the final values of the design alternatives. This is an indication that the
decision process did not apportion values to the design alternatives but rather compared
their performances in all the design features.
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Figure 3. Comparison of design alternatives relative to the best and worst designs and their rankings.
(a) Comparison of design alternatives. (b) Ranking of the design concepts.

5. Results Validation

The results obtained from the implementation of the fuzzy MARCOS on the assessment
of the conceptual designs of a briquetting machine is validated via the use of TOPSIS and
modified TOPSIS. The TOPSIS method is implemented in order to check for conformity
in the results obtained. Considering the weighted normalized fuzzy decision matrix with
the best and worst designs in Table 4, it is possible to determine the ideal positive and
ideal negative solutions, then the distances to the ideal positive and ideal negative can also
be obtained as presented in Table 7. In essence, from Table 7, the ranking of the design
concept is also obtained from the closeness coefficient indices, and it can be observed
that the TOPSIS method provided the same ranking as the MARCOS method. Further, in
order to ascertain the consistency of the MARCOS decision process in terms of the best
and worst designs, a modified TOPSIS method is introduced. This method involves the
determination of the distances of the design concepts to the best and worst designs. This
method is similar to the general TOPSIS method. The only modification is that instead
of determining the distances to the positive and negative ideal solution, the distances
are determined to the best and worst designs using the vertex method, as described in
Equations (25) and (26), respectively.

Db
n =

√
1
3

(
(an − ab)

2 + (bn − bb)
2 + (cn − cb)

2
)

(25)

Dw
n =

√
1
3

(
(an − aw)

2 + (bn − bw)
2 + (cn − cw)

2
)

(26)
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Table 7. Validation of results by the TOPSIS method.

DF
Ideal

Positive
Solution

Design Concepts

Ideal
Negative
Solution

DC1 DC2 DC3 DC4

Distance to
Ideal

Positive

Distance to
Ideal

Negative

Distance to
Ideal Positive

Distance to
Ideal

Negative

Distance to
Ideal Positive

Distance to
Ideal

Negative

Distance to
Ideal

Positive

Distance to
Ideal

Negative

DfAD 21 2
3 6 1

7 10 48
59 7 85

96 9 2
7 10 9

82 7 44
73 5 29

41 11 7
30 6 20

27

DfO 25 6 61
66 13 10 17

81 10 7
41 11 40

57 9 7
66 8 18

29 11 26
57 7 4

7

DfE 20 7 20
21 7 49

94 6 48
77 8 31

58 6 47
65 8 5

11 13 59
67 8 8

51 7 47
76

DfR 14 1
2 4 27

41 6 83
93 5 26

45 6 11
68 4 34

53 6 10
11 6 27

86 5 32
49 4 46

59

DfLc 15 5 4
49 6 3

7 5 3
4 6 3

40 5 8
21 6 13

47 5 1
2 6 13

58 5 83
95

DfFu 25 5
6 8 1

32 10 8
11 9 3

37 9 80
91 10 1

67 9 4
21 8 1

56 10 57
77 10 31

84

DfMa 40 1
6 15 13

28 23 15
32 18 3

19 22 17
42 17 8

33 22 59
82 15 33

34 23 5
21 9 15

44

DfMn 20 1
6 6 79

80 8 9
64 7 27

65 7 45
56 7 5

6 7 28
55 6 31

44 8 3
8 7 15

16

Cumulative
Distance 61 17

70 86 62
63 70 26

37 80 17
54 73 24

37 77 10
13 70 43

60 85 7
92

Closeness
Coefficient
Index (CCI)

19
46 (0.413) 22

47 (0.468) 18
37 (0.486) 5

11 (0.454)

Ranking 4th 2nd 1st 3rd
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In Equations (25) and (26), Db
n and Dw

n represents the distances to the best and worst
designs for n number of design concepts. Also, ab, bb, cb represent the lower, modal and
upper TFNs for the best design, while aw, bw, cw represent the lower, modal and upper
TFNs for the worst design. Also, an, bn, cn represent the lower, modal and upper TFNs for
the n design concept. Hence, the distances of the design concepts to the best and worst
designs are presented in Table 8. Considering Table 8, it is evident that the performance of
the design concept in terms of their distances to the best and worst design is depicted in all
the design features. Further, the determination of the cumulative distances of the design
concepts to the best and worst designs provided the overall performance of the designs
before the determination of the closeness coefficient for ranking. The ranking in this case is
also in conformity to the MARCOS method, which proves that there is consistency in the
MARCOS decision model.

Table 8. Validation of results by modified TOPSIS (distances to best and worst designs).

DF

Design Concepts
DC1 DC2 DC3 DC4

Distance to
Best Design

Distance to
Worst

Design
Distance to
Best Design

Distance to
Worst Design

Distance to
Best Design

Distance to
Worst

Design
Distance to
Best Design

Distance to
Worst Design

DfAD 4 2
9

1
2 2 1

3 2 2
5 0 4 5

7 4 5
7 0

DfO 5 1
7 0 1 4

7 3 4
7 0 5 1

7 3 1
4 1 7

8
DfE 0 1 1

2 1 1
2 0 1 1

3
1
9 1 1

2
DfR 1 4

5 0 7
9 1 1 4

5 0 0 1 4
5

DfLc 2
3 0 0 2

3
2
5

1
3

1
4

3
7

DfFu 2 1
5 0 1 1 1

5 0 2 1
5 2 1

5 0
DfMa 2 3

4 0 0 2 3
4 1 1 5

6 2 1
4

1
2

DfMn 1 1
3

1
2

4
5 0 1 1

4 1 1
4 0

Cumulative
distance to

best and
worst designs

17 3
4 2 1

3 7 2
3 12 3

7 4 1
2 15 4

7 15 5 1
6

Closeness
Coefficient
Index (CCI)

1
9 (0.116) 5

8 (0.619) 7
9 (0.776) 1

4 (0.254)

Ranking 4th 2nd 1st 3rd

6. Conclusions

Conclusively, it is not an overstatement to say that concept selection in the preliminary
design phase of a product is very important, and as such, more emphasis and effort needs
to be put into the design concept selection in order to have a robust decision process. This is
necessary because it provides more information on the design features associated with the
optimal design concept. Sometimes, modifications can be made to any of the alternatives
or the optimal design in order to accommodate some design features before fabrication
commences. Due to the importance that is attached to the concept selection process, this
article proposes the adoption of fuzzy MARCOS as a multicriteria decision model as
a tool for carrying out the concept selection process. The preliminary decision matrix
was developed considering the weights of the design features and sub-features and the
availability of the sub-features in each of the design concepts. The essence of considering
the availability of the sub-features in the alternative designs is to assists the decision process
in obtaining unambiguous values for the performance of the design alternatives in the form
of linguistic terms using several experts’ opinion. The framework for applying the fuzzy
MARCOS model to the selection of the optimal conceptual design was developed based on
its application to other subject areas, and the model performed excellently by identifying
the optimal design concepts considering its overall utility value relative to the best and
worst design. Further work can also be carried out in the aspect of identifying the designs
features to be improved on considering the best and worst design concepts identified by
the fuzzy MARCOS model.
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Appendix A

Table A1. Contributions of sub-features of design for assembly and disassembly.

Design
Experts

Sub-Features of DfAD
Cum

k W̃dfm
NJ AM PA PP AD

DE1 VEC VEC HGC HGC EXC 17 1
2 20 22 1

2

16 2
3 19 1

6 21 2
3

DE2 VHC VEC VHC MHC VHC 16 1
2 19 21 1

2

DE3 VHC HVC HGC VHC VHC 16 18 1
2 21

W̃dmi
s f 3 2

3 4 1
6 4 2

3 3 2
3 4 1

6 4 2
3 2 5

6 3 1
3 3 5

6 2 2
3 3 1

6 3 2
3 3 5

6 4 1
3 4 5

6

Table A2. Contributions of sub-features of design for maintainability.

Design
Experts

Sub-Features of DfMn
Cum

k W̃dfm
MC MT MF RM PC

DE1 EXC HVC VHC HVC HGC 16 1
2 19 21 1

2

15 1
6 17 2

3 20 1
6

DE2 HGC MHC HGC MHC VHC 12 1
2 15 17 1

2

DE3 VEC VHC VEC MHC HVC 16 1
2 19 21 1

2

W̃dmi
s f 3 2

3 4 1
6 4 2

3 2 5
6 3 1

3 3 5
6 3 1

3 3 5
6 4 1

3 2 1
3 2 5

6 3 1
3 3 3 1

2 4

Table A3. Contributions of sub-features of design for reliability.

Design
Experts

Sub-Features of DfR
Cum

k W̃dfm
FR MR DC OP

DE1 HGC VHC MHC VHC 11 1
2 13 1

2 15 1
2

10 1
2 12 1

2 14 1
2

DE2 VHC MHC HVC MHC 10 1
2 12 1

2 14 1
2

DE3 HGC MDC HVC HGC 9 1
2 11 1

2 13 1
2

W̃dmi
s f 2 5

6 3 1
3 3 5

6 2 1
3 2 5

6 3 1
3 2 2

3 3 1
6 3 2

3 2 2
3 3 1

6 3 2
3

Table A4. Contributions of sub-features of design for life cycle cost.

Design
Experts

Sub-Features of DfLC
Cum

k W̃dfm
OC AC SC RC

DE1 VHC VEC MDC VHC 12 1
2 14 1

2 16 1
2

11 13 15
DE2 HGC HGC MHC MDC 8 1

2 10 1
2 12 1

2

DE3 VHC HVC HVC HGC 12 14 16

W̃dmi
s f 3 1

6 3 2
3 4 1

6 3 1
6 3 2

3 4 1
6 2 1

6 2 2
3 3 1

6 2 1
2 3 3 1

2
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Table A5. Contributions of sub-features of design for environment.

Design
Experts

Sub-Features of DfE
Cum

k W̃dfm
SO EC MU PD ED

DE1 VHC VEC MHC MDC VEC 15 17 1
2 20

15 17 1
2 20

DE2 VEC HGC HVC MHC HVC 14 1
2 17 19 1

2

DE3 HVC VHC HVC VHC HGC 15 1
2 18 20 1

2

W̃dmi
s f 3 1

2 4 4 1
2 3 1

3 3 5
6 4 1

3 2 2
3 3 1

6 3 2
3 2 1

3 2 5
6 3 1

3 3 1
6 3 2

3 4 1
6

Table A6. Contributions of sub-features of design for functionality.

Design
Experts

Sub-Features of DfF
Cum

k W̃dfm
PP PF DB IM MS TC

DE1 MDC VEC VEC VHC VHC VEC 20 1
2 23 1

2 26 1
2

19 5
6 22 5

6 25 5
6

DE2 HGC HVC HVC HVC VHC EXC 19 1
2 22 1

2 25 1
2

DE3 MHC VEC VHC HGC VEC VHC 19 1
2 22 1

2 25 1
2

W̃dmi
s f 2 2 1

2 3 3 2
3 4 1

6 4 2
3 3 1

2 4 4 1
2 3 3 1

2 4 3 2
3 4 1

6 4 2
3 4 4 1

2 5

Table A7. Contributions of sub-features of design for manufacturing.

Design
Experts

Sub-Features of DfMa
Cum

k W̃dfm
CM MP TM PI IP PM

DE1 VEC HGC HVC MHC MDC VEC 17 20 23

18 1
6 21 1

6 24 1
6

DE2 HVC VHC VEC HGC HVC EXC 20 1
2 23 1

2 26 1
2

DE3 HVC VHC HGC HVC HGC HGC 17 20 23

W̃dmi
s f 3 1

3 3 5
6 4 1

3 3 1
6 3 2

3 4 1
6 3 1

6 3 2
3 4 1

6 2 1
2 3 3 1

2 2 1
3 2 5

6 3 1
3 3 2

3 4 1
6 4 2

3

Table A8. Contributions of sub-features of design for operation.

Design
Experts

Sub-Features of DfO
Cum

k W̃dfm
MW SP CP UL EO MD

DE1 VEC HVC VEC VHC VEC MDC 20 23 26

19 22 25
DE2 HVC HGC VEC VHC EXC MHC 19 1

2 22 1
2 25 1

2

DE3 VHC HGC HGC HVC HVC HVC 17 1
2 20 1

2 23 1
2

W̃dmi
s f 3 1

2 4 4 1
2 2 2

3 3 1
6 3 2

3 3 1
2 4 4 1

2 3 1
3 3 5

6 4 1
3 3 5

6 4 1
3 4 5

6 2 1
6 2 2

3 3 1
6

Table A9. Availability of sub-features of assembly and disassembly in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

NJ 3 2
3 4 1

6 4 2
3 MEA HGA MHA HGA MHA VHA VHA HGA VHA MEA MHA MHA

AM 3 2
3 4 1

6 4 2
3 HGA MEA MEA HGA HGA VHA MHA VHA EHA MLA MHA MHA

PA 2 5
6 3 1

3 3 5
6 MLA MLA MHA HGA HGA MHA VHA VHA MHA MEA MEA MLA

PP 2 2
3 3 1

6 3 2
3 MHA HGA MLA VHA MHA MHA VHA EHA EHA MLA HGA MEA

AD 3 5
6 4 1

3 4 5
6 MHA MLA MEA MLA MLA MEA VHA HGA VHA MEA MLA MEA

Sub-DM 9 1
36 12 5

17 16 3
49 10 51

67 14 14
45 18 13

36 12 19
20 16 49

60 21 11
60 8 17

30 11 23
30 15 7

15
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Table A10. Availability of sub-features of operation in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

MW 3 1
2 4 4 1

2 MLA MEA VLA MHA MLA MEA MEA MEA MHA MLA MLA MEA

SP 2 2
3 3 1

6 3 2
3 MEA MHA MLA HGA VHA MHA VHA VHA MHA MEA MEA MHA

CP 3 1
2 4 4 1

2 VLA LOA MEA VHA HGA VHA VHA EHA VHA HGA HGA MHA

UL 3 1
3 3 5

6 4 1
3 MHA MEA HGA HGA MHA MHA MHA HGA HGA MHA HGA MEA

EO 3 5
6 4 1

3 4 5
6 MLA MHA HGA VHA MHA MEA HGA VHA VHA HGA MLA MHA

MD 2 1
6 2 2

3 3 1
6 MEA MLA HGA HGA MHA MHA VHA HGA VHA MHA HGA MEA

Sub-DM 7 16
27 10 26

41 14 16
91 10 16

91 13 18
29 17 48

85 11 3
10 14 25

27 19 3
59 8 62

65 12 11
54 15 41

43

Table A11. Availability of sub-features of environmental in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

SO 3 1
2 4 4 1

2 VHA MHA VHA MLA MLA MHA MEA MEA MLA HGA MHA MHA

EC 3 1
3 3 5

6 4 1
3 MHA MHA HGA HGA HGA VHA MHA HGA VHA HGA VHA VHA

MU 2 2
3 3 1

6 3 2
3 HGA HGA MHA MEA MLA MEA MEA MLA MLA MLA MEA LOA

PD 2 1
3 2 5

6 3 1
3 MLA MEA MEA MHA HGA MLA HGA MHA MEA HGA HGA MHA

ED 3 1
6 3 2

3 4 1
6 VHA VHA HGA HGA MHA HGA HGA HGA VHA MHA MHA MEA

Sub-DM 9 35
36 13 16

45 17 16
67 8 34

45 11 43
45 15 59

90 8 38
45 12 3

49 15 7
9 9 17

90 12 41
90 16 2

9

Table A12. Availability of sub-features of reliability in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

FR 2 5
6 3 1

3 3 5
6 MHA MEA HGA HGA VHA HGA MHA MHA MLA HGA HGA VHA

MR 2 1
3 2 5

6 3 1
3 HGA MHA MHA MHA HGA VHA HGA HGA MHA HGA VHA VHA

DC 2 2
3 3 1

6 3 2
3 MHA HGA HGA VHA MHA HGA MHA HGA HGA VHA HGA VHA

OP 2 2
3 3 1

6 3 2
3 MEA MEA MLA HGA MHA MEA MEA MLA HGA HGA VHA HGA

Sub-DM 7 31
36 10 12

13 14 35
72 8 35

36 12 9
37 16 1

72 7 5
6 10 43

48 14 11
24 9 5

6 13 13
48 17 5

24

Table A13. Availability of sub-features of life cycle cost in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

OC 3 1
6 3 2

3 4 1
6 MHA VHA MHA MHA MHA HGA MHA HGA HGA MLA MEA MHA

AC 3 1
6 3 2

3 4 1
6 HGA MHA VHA MHA HGA HGA MHA MEA MHA MHA HGA MEA

SC 2 1
6 2 2

3 3 1
6 MHA MEA MLA MEA MHA MHA HGA HGA MHA HGA HGA MHA

RC 2 1
2 3 3 1

2 HGA MHA HGA MHA MEA MLA MHA HGA MEA HGA VHA HGA

Sub-DM 8 61
72 12 1

18 15 55
72 8 9

37 11 25
72 14 39

41 8 9
16 11 3

4 15 7
16 8 14

31 11 23
36 15 16

49
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Table A14. Availability of sub-features of functionality in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

PP 2 2 1
2 3 HGA MHA MHA HGA VHA MHA HGA HGA VHA MHA MHA HGA

PF 3 2
3 4 1

6 4 2
3 MHA MHA HGA MHA HGA VHA VHA HGA HGA HGA MHA MEA

DB 3 1
2 4 4 1

2 MEA MEA HGA MHA MEA HGA HGA HGA MHA MEA MEA MHA

IM 3 3 1
2 4 MHA MHA HGA HGA VHA HGA VHA VHA HGA HGA HGA MHA

MS 3 2
3 4 1

6 4 2
3 MEA MEA VHA VHA HGA MHA HGA HGA VHA MHA MHA HGA

TC 4 4 1
2 5 HGA VHA HGA HGA MHA VHA VHA HGA VHA HGA VHA HGA

Sub-DM 10 1
2 14 17 42

43 11 13
36 14 71

72 19 1
9 12 10

83 15 6
7 20 5

54 10 26
53 13 42

43 17 26
27

Table A15. Availability of sub-features of manufacturing in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

CM 3 1
3 3 5

6 4 1
3 VHA HGA HGA MEA MHA MHA MEA MEA MHA MHA MEA HGA

MP 3 1
6 3 2

3 4 1
6 MHA HGA VHA MEA MEA HGA MHA MHA HGA MHA MHA VHA

TM 3 1
6 3 2

3 4 1
6 HGA VHA HGA MHA HGA MHA MHA HGA HGA HGA VHA MHA

PI 2 1
2 3 3 1

2 MEA HGA MHA MEA MHA MHA MEA HGA MHA HGA MHA HGA

IP 2 1
3 2 5

6 3 1
3 HGA HGA MHA HGA HGA VHA HGA HGA MEA MHA MEA HGA

PM 3 2
3 4 1

6 4 2
3 MHA MEA MHA MHA MEA MEA HGA MHA MHA HGA HGA MHA

Sub-DM 10 7
72 13 19

36 17 11
24 8 42

43 12 13
54 16 9 24

73 12 26
41 16 11

25 9 58
67 13 14

55 17 1
7

Table A16. Availability of sub-features of maintainability in the design concepts.

Sub-
Features

DC1 DC2 DC3 DC4

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

MC 3 2
3 4 1

6 4 2
3 MHA MEA HGA HGA HGA VHA VHA VHA MHA HGA MHA MHA

MT 2 5
6 3 1

3 3 5
6 HGA HGA MHA MEA MHA HGA HGA MHA MEA MHA MHA MEA

MF 3 1
3 3 5

6 4 1
3 HGA MHA MEA HGA MHA HGA VHA HGA HGA MEA MHA MLA

RM 2 1
3 2 5

6 3 1
3 MLA MEA HGA MHA MEA MEA HGA MEA MHA MHA HGA HGA

PC 3 3 1
2 4 VHA VHA HGA HGA VHA HGA HGA HGA VHA HGA VHA HGA

Sub-DM 9 19
30 12 59

60 16 5
6 10 1

18 13 41
90 17 16

45 10 13
30 13 9

10 17 13
15 9 7

20 12 2
3 16 29

60
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