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Abstract: The development of an equipment starts from an effective design activity. The concept
selection process is an activity that is entailed in the design stage, and its relevance in the design
process cannot be overemphasized because it informs the choice of optimal conceptual design from a
set of alternative designs. Hence, there is a need to accrue efforts to the concept selection process
because of its importance. This article presents the identification of optimal conceptual design as a
multicriteria decision-making model by assessing the suitability of fuzzy Measurement Alternatives
and Ranking according to COmpromise Solution (MARCOS). The fuzzy MARCOS model was
developed to access four alternative conceptual designs of briquetting machines considering eight
design features with several sub-features. The results obtained from the decision analysis showed
that the fuzzy MARCOS model was able to rank the designs based on their performance and the final
values of the overall utility function. The overall utility function is based on the utility degree of the
conceptual design alternatives in terms of the best and worst designs identified by the model. The
utility degree created a platform for comparison on how the design alternatives varied from the best
and worst designs. The results obtained from the MARCOS method were validated using the TOPSIS
method and modified TOPSIS method, and the results obtained showed that the MARCOS method is
in conformity with the validation results.

Keywords: design concept selection; fuzzy MARCOS; design process; multi-criteria decision making;
briquetting machine

1. Introduction

Achieving the goal of developing a product with all-embracing design features starts
from brainstorming activities in the design phase of the product when several conceptual
design concepts have been established. An important task at this stage is decision making
on identification of the optimal conceptual design. Decision making in the preliminary
design phase and extensive design concept selection from several conceptual designs can
be accrued to the robust design of a product [1,2]. The number of design features that
are embedded in the optimal design concept is also important because they depict the
multifarious functions that the product can perform. A good way to develop a product
with several design features is to examine the features of different conceptual designs
during the concept selection phase. Selecting an optimal design implies that the design
has a satisfactory performance considering all the design features [3,4]. Also, an optimal
design can be developed so that the design features from other conceptual designs can
be added to the design. This makes the decision process important, and the efforts put
into it cannot be overemphasized. Design engineers provide several design solutions in
the developmental stage before a detailed analysis is carried out [5]. Provision of several
design solutions is necessary because the management of a manufacturing firm wants
to reduce the cost of fabrication and produce an extensive product that will have a high
demand in a competitive market and extended useful life. Also, the firm may be interested
in selecting a design that is realistic in terms of completion time and utilization of existing
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technologies of fabrication. In essence, selecting an optimal design concept from a set of
alternative designs becomes inevitable considering the fact that all the design solutions
have several benefits and shortcomings [2].

Research has shown that an excellent way to arrive at an optimal solution in the
decision-making process in this scenario is to introduce the Multi-Criteria Decision Model
(MCDM) [6,7]. In the preliminary phase of an equipment or a product, the design features
and sub-features are identified alongside various design alternatives in order to allow for
decision making on the optimal design concept to be modelled as an MCDM. Basically,
MCDMs can be broadly divided into two categories, which are the Multi-Attribute Decision
Model (MADM) and Multi-Objective Decision Model (MODM) [8,9]. The MADM is
applicable in cases that involves making a choice from a set of alternatives in a discrete
or well-defined solution space. The MODM is applied to solve decision problems with
several goals where there are no discrete sets of explicitly defined alternatives. Also,
the MODM also applies to scenarios where the alternatives are to be ranked based on
several criteria. In this case, the decision process is performed at different times in order
to satisfy the various objectives of the decision criteria [9,10]. Several MADMSs have been
introduced to solve real-life decision-making problems, but there is a need to investigate
the suitability of these models in the design process. Among the MADMSs used in decision-
making processes are the Multi-Attribute Utility Theories (MAUTs). MAUTs include the
Analytic Hierarchy Process (AHP), Weighted Decision Matrix (WDM), Analytic Network
Process (ANP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS),
VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and Elimination and
Choice Translating Reality (ELECTRE), among others [11].

Several efforts have been made by researchers to apply these MADMs in the selection
of an optimal design from a set of alternative conceptual designs. Considering the fact
that the design features that are usually applied as criteria in the decision process are
different dimensions and units, researches have introduced the theory of fuzzy membership
functions and rough numbers into the MADMs. The introduction of the fuzzy and rough
number theories is to cater to the multifarious units and dimensions of the design features
and ensure that the decision process is unprejudiced and there is no allocation of a crisp
value to weights of the design features of different units and dimensions or performance of
the design concepts in the decision matrix [12]. Depending on the nature and objectives
of the decision process and the complexity of the design features, the Triangular Fuzzy
Number (TFN) and Trapezoidal Fuzzy Number (TrFN) have been applied as membership
functions in different MADM models in order to proffer solutions in the decision process of
selecting an optimal conceptual design [1].

Further, since the introduction of the Measurement Alternatives and Ranking accord-
ing to Compromise Solution (MARCOS) in the year 2020 [13], it has gained attention
by researchers and its application has been extended to several fields of applications for
decision making. Examples of the areas of application include supplier selection [14-18],
logistics [19,20], infrastructure and technology assessment [21-30] and management de-
cisions [31]. At inception, it was applied to assess sustainable supplier selection in the
medical industry, which is a very important task in the medical firm that must be strategi-
cally addressed because of the quality expected from medical supplies. Considering eight
suppliers and twenty-one decision criteria, the MARCOS method was able to define the
relationship between the suppliers and the reference values in order to obtain the utility
functions of the suppliers and rank them in relation to the reference values [13]. Further,
the MARCOS method was applied to determine the response of insurance companies in
terms of healthcare services to the COVID-19 pandemic considering its ability to consider
a large set of alternatives, decision criteria and sub-criteria without compromising on the
stability and computational integrity of the decision process [31]. In order to avoid a vague
decision process, the intuitionistic fuzzy membership function was introduced to evaluate
ten insurance companies considering five expert opinions and seven decision criteria. The
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decision process was able to identify payback period, premium price and network as the
substantial criteria for evaluating healthcare insurance companies.

Also, considering the importance of effective supply chain management to the growth
of industries and business and the fact that a sustainable supply chain is essential in running
the day-to-day activities of the company, several articles have provided explicit information
on the application of the MARCOS method in supplier selection and its integration with
other multi-attribute models. An example of this application is the integration of extended
VIKOR and MARCOS for sustainable supplier selection in organ transplantation networks
for healthcare devices using an interval-valued intuitionistic fuzzy model [32]. Aysegiil
and Adali [14] integrated the fuzzy MARCOS model with fuzzy SWARA (Stepwise Weight
Assessment Ratio Analysis) in green supply chain management in order to identify the best
supplier from alternative suppliers in a textile industry where green and environmentally
friendly textile dyes are needed to be supplied in the industries. The implementation of
this integrated fuzzy MARCOS with fuzzy SWARA for green supplier selection has also
been verified by Tas et al. [33]. The integration of SWARA and MARCOS also finds appli-
cation in decision making in the logistics field, where a decision was made on inventory
classification. The decision process involved the evaluation of fifty products to be stored
considering the quantity of the products purchased, their unit price and annual value of
purchase [34]. Another important area of application of the MARCOS model is the field
of manufacturing. The MARCOS method was applied in the process for powder-mixed
electrical discharge machining of cylindrical-shaped parts using a chromium silicon steel
tool, and the result obtained was compared with TOPSIS and MAIRCA (Multi-Attributive
Ideal-Real Comparative Analysis). The results obtained showed that the three methods
selected the same alternative as the optimal alternative from the eighteen alternatives
considered in the decision process [35]. Similarly, the MARCOS method was also compared
with MAIRCA, TOPSIS and EAMR (Evaluation by an Area-based Method of Ranking)
considering the turning process. The cutting speed, feed and depth of cut were the input
parameters in the cutting process in order to determine the material removal rate and
surface roughness of the workpiece. The results obtained from the application showed that
the four models are in conformity, as they identified the same alternative as the optimal
process from the sixteen alternatives considered in the decision process [36]. The result
was similar to the application and comparison of MARCOS to EDAS (Evaluation based on
Distance from Average Solution), TOPSIS, MOORA (Multi-Objective Optimization on the
basis of Ratio Analysis) and PIV (Proximity Indexed Value) in the milling decision-making
process [37]. Further, the MARCOS method was applied in the grinding, turning and
milling processes in order to determine the optimum material removal rate and effective
surface finish considering nine trials with different machining parameters [38].

Considering the applications of the MARCOS model in different areas of application,
it can be observed that the model finds more application in infrastructure and technology
assessment, it is suitable for handling several numbers of alternatives and it also has a
consideration for the ideal and anti-ideal scenarios in the formation of the decision matrix.
This makes it possible for the model to capture the variations of the alternatives from the
ideal and anti-ideal solutions considering the utility degree and functions of all the alterna-
tives in order to confirm the optimal alternative. Also, considering the application areas of
the MARCOS model, it is necessary to investigate its suitability to decision making on the
identification of optimal design concept considering several conceptual design alternatives.
Hence, this article attempts to extend the application of the fuzzy MARCOS model to
the identification of an optimal design concept considering four conceptual designs of a
briquette making machine. The decision process considered eight design features, with
each of the design features having several sub-features. The importance of considering
several design features is to ensure that the decision process is robust and all-encompassing
in order to ascertain the computational integrity of the fuzzy MARCOS model.
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2. Methodology

There is a need to develop a preliminary decision matrix that contains the weights
of the design features and the performance weights of the design concepts relative to
each design feature in the decision process. The task involved in the development of the
preliminary decision matrix can be divided into two. First, the relative contributions of
the sub-features to the design features are aggregated considering the opinions of several
design experts in order to determine the weights of the design features and sub-features.
Second, the availability of the sub-features in the design alternatives are also evaluated by
design experts in order to obtain sub-aggregates for the design concepts. The sub-aggregate
for the design concepts for each of the design features form the elements of the decision
matrix together with the weights of the design features. In order to avoid apportioning of
crisp values in the development of the preliminary decision matrix, linguistic terms are
used to represent the Triangular Fuzzy Numbers (TFNs).

2.1. TEN and Membership Functions

Considering the multi-dimensional nature and different units of measurements and
quantification of the design features and their sub-features, apportioning the crisp number
will allow ambiguous and prejudice in the decision process. Hence, a fuzzy number with
the triangular membership function is applied by using a linguistic scale to represent
the membership functions as presented in Table 1. The linguistic scale was applied for
aggregating the relative contributions of the sub-features to the design features and the
availability of the sub-features in the design alternatives. For ease of analysis, consider
a TFN ‘M’, of which membership function ‘u;,(y)” is contained in [0 1] as defined in
Equation (1) [39].

¥~ YyEla b
1 ., _c

nly) = ¢ T T yElbd W
0 Otherwise

Table 1. Linguistic terms and membership functions for the decision process.

Relative Contributions of Sub-Features to
Design Feature

Relative Availability of Sub-Features in
the Design Alternatives

Triangular Fuzzy Numbers and
Membership Function

Indeterminate Contribution (IDC)

Extremely Poor Availability (ELA)

111

Indeterminate-Moderate Contribution (IMC)

Very Low Availability (VLA)

—_
N
N

Moderate Contribution (MDC)

Low Availability (LOA)

Moderate-High Contribution (MHC)

Medium Low Availability (MLA)

High Contribution (HGC)

Medium Availability (MEA)

High-Very High Contribution (HVC)

Medium High Availability (MHA)

Very High Contribution (VHC)

High Availability (HGA)

Very High-Extreme Contribution (VEC)

Very High Availability (VHA)

Extreme Contribution (EXC)

Extremely High Availability (EHA)

NIO s N @ [N N [Nlw
Ol loro | s [N W (o | N
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In Equation (1), 4, b and c represent the lower, modal and upper values of M, respec-
tively, such that a < b < c. The TFN (M) described in Equation (1) can be defuzzified to
obtain a crisp value ‘M;s;", which is the best non-fuzzy performance value, as presented
in Equation (2) [40].
a+4b+c

. @

Mcrisp =
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2.2. Preliminary Decision Matrix

Consider a scenario where there are ‘n” number of alternative conceptual designs (C;,)
that are to be assessed before commencement of detailed design and prototyping. If the
assessment is done with ‘m” number of design features, then it is possible to develop a
preliminary decision matrix. In order to determine the weights of the design features and
their sub-features, the ratings of design experts’ decisions are developed in a sub-decision
matrix as presented in Equation (3). Also, the availability of sub-features in the design
concepts can also be presented in a fuzzified sub-decision matrix using k" number of design
experts as described in Equation (4). The matrices described in Equations (3) and (4) are
developed based on the linguistic scale presented in Table 1. The weights of the design
features and sub-features are instrumental in the determination of aggregate TENs for the
design concepts.

{sn}l %r;}cz {2}3 %n}g Cul" Wdfm
DE; dEy" dEy* dE(” ... dE]Y -
DE, dEy"' dEJ* dE;® ... dE}Y
. : : : : (3)
dfm - N N N oo
DE, dE™ dE/* dE* ... dE}
wa, de;} de;? de;? Wd;"fi

In Equation (3), df,’f’i represents the decision of design expert ‘k” for the relative con-
tribution of the ith sub-feature (d;’}’) corresponding to design feature m (dg,,). Cuj' is the
cumulative weight of the decisions of the kth design expert, which is obtainable from Equa-
tion (5). Also, Wd’snfl and Wdy,, are the weights of the ith sub-feature and design feature m,

respectively. dej} and Wd #m can also be obtained from Equations (6) and (7), respectively.

Cd, Cd, Cd,
DEq — DE; DEq — DE; s DEq — DE;
~. 11 ~ 1k ~ 11 ~ 1k ~ 1 ~ 1k
dE} oo dE] dE} <o dEY -+ dE] - dE}
m m m m m m
~ 1 ~ |k ~ 11 ~ |k ~ 1 ~ |k
dE? o dE3 dE? oo dE3| .- dE2 - dE?
m m m m m m
daBs| a2’ am| aB3l' B3| B3
1 m 1 m 2 m 2 m n m n m (4)
~. 1 ~. |k ~. 1 ~. |k ~. 1 ~. 1k
dEi oo dE} dE} oo dES| - dE - dE!
m m m m m m
i—i Vm=1,2,3 ... m
Cul" = Z[d};g“ )
i=1 Vk=1,2..k
Kk Vm=1,2,3... m
m,i
) |4E}
Wiy = ——=— Tk (6)
Vi=1,23 ... i
k=k " k=k y
kzl L~ k21 [dEk / ]
Wd, = — = = Ym=1,2,3 m (7)
MYk ; Lk
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k

In Equation (4), dE,,| is the decision of design expert ‘k” on the availability of sub-
m

~ 1k

feature ‘i’ in design concept ‘n’ corresponding to design feature ‘m’. Also, [Agg] denotes
n

the aggregate TFN for the nth design concept corresponding to the decision of the kth

design expert, and {ﬁ] " is the overall TFN for the nth design concept considering design
n
k ~m
and [A} can be obtained from Equations (8) and (9), respectively.

n

feature ‘m’. {Agg}

n

sf

it VkL2ek
S [del « dEl }

_ = m

{Agg] = v (8)

. lg {de}g‘ + dEl
4] == ik ©)

The weight of the design features and the overall TEN obtained from Equation (9) for
all the design concepts corresponding to the design features will be harnessed to develop a
decision matrix as presented in Equation (10). This matrix will be used for decision making
in the fuzzy MARCOS process.

Wdp Wdp, Wigs Wd g,
r~11 r~12 r~13 r~1m
Cd, |A A A - A
L 11 L 11 L 11 L 11
r~11 r~12 r~13 [~1m
Cdy, |A A A A
:~:% :~:% :~:§ :N:%z (10)
Cdy |A A A A
L 13 L 13 L 13 L 13
Ltz a3 o
Cd, |A A A - A
L dn L dn L dn L dn

2.3. Fuzzy MARCOS

In order to implement the fuzzy MARCOS model, the first step is to create an extended
fuzzy matrix containing the best (Cd’) and worst (Cd) design concepts based on the bene-
ficial (B4f) and cost (Cyf) categories of design features. The best and worst design concepts
created in this case will represent the ideal and anti-ideal design concepts, respectively. The
best and worst design concepts can be obtained from Equations (11) and (12), respectively.
The matrix containing the best and worst design concepts can be obtained by rewriting
Equation (10) as presented in Equation (13).

cdb = (11)

Cdv (12)
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Wdp Wdp, Wdg Wiy,
Best g [4]' [A] (4] ... [4]"
Design L1y L dp LU Ip L 1b
A1 12 13 ~
o 4] A [, (AL
Sl U U i
Cd, A% A% A% A2
Cds '13 'A‘3 '13 'A‘j (13)
R fom
Cd, A A A A
e e S oo
Worst o [4]' [A]" [4]” ... [4
Design Ul U dw U o w

Further, the elements of the extended fuzzy decision matrix in Equation (13) can be
normalized using Equation (14) for the beneficial (B ¢) and cost (Cyy) features considering
the notations for the lower, modal and upper values of the TFN defined in Equation (1).

a

(AL (A1 (Al
~m|€ b pym|® vmeCdf

- A A 1A
[g]m“ [g}m [g]mc
NSZC N:I,,c ~z15 vmeBdf
[Ala] (ALl 4l

qmya amb . qmc
In Equation (14), [A} [A] [A} represents the lower, modal and upper val-
n n n

m Cc

ma g qmb o
ues of the elements of the extended fuzzy decision matrix while {A} {A} " {A} "
w w w
represents the lower, modal and upper values of the elements of the worst design. The next
step is to compute the weighted normalized fuzzy decision matrix [0]; as presented in
Equation (15). This is obtainable by multiplying the weights of the design features with the
normalized elements of the decision matrix. Hence, the weighted and normalized version

of Equation (13) can be expressed in Equation (16).

~m ~
)" = [A]n L * Wi, (15)
Best b r~11 ~ ~12 ~ r~13 ~ [~1m ~
Design Cd _A_ b N * Wdfl _A_ b N * Wdfz _A_ b N * Wdf3 v _A_ b In * Wdfm
r~11 ~ 12 ~ r~13 ~ m ~
A A
Cd] 4 *Wdfl 14 *Wdfz I _1N*Wdf3 N N*Wdfm
r~11 ~ 12 ~ r~13 ~ 1 ~
Cdz A ) *Wdfl ) *Wdfz A ) *Wdf3 21 N*Wdfm
-1 _ 12 ~ C N m N (16)
Cd3 _A_3 *Wdfl B *Wdfz _A_3 N*Wdf3 I3 N*Wdfm
r~11 ~ 12 ~ r~13 ~ ~m ~
Cdn .A.n *Wdf1 1, *Wdfz .A.n N*Wdf3 1, N*Wdfm
Worst w [} ~ 12 ~ [+13 ~ =M ~
Design cd _A_w *Wip Lol " Wiz, _A_ w|y * Wis Joln ™ Welgin
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The cumulative fuzzy matrix (C;) can be obtained by summing the elements of the
weighted matrix. This is obtainable from Equation (17). The cumulative fuzzy matrix is

necessary for estimating the utility degree of the design alternatives {ljﬂ . The utility

degree of the design alternatives is a function of the cumulative matrices of the best and

1+
worst design. Hence, the utility degree can be expressed in terms of best {Uﬂ and worst
n

[UI ] design scenarios as presented in Equations (18) and (19), respectively. The next step

is to compute the fuzzy utility matrix [T} . The fuzzy utility matrix is a summation of
n

the utility degrees for the best and worst scenario of the design concepts as presented in
Equation (20). Further, the fuzzy utility matrix is necessary for determining a new fuzzy

ew
number [T} , which is the maximum of the utility matrix as presented in Equation (21).

This new fu;zy number will be defuzzified using Equation (2) in order to compute the

+
utility functions in relation to the best F [UI } and worst F {UI } design alternatives as
n

presented in Equations (22) and (23), respectlvely The next step is to defuzzify the TFNs
for the best and worst utility degree scenarios and the best and worst utility functions. This
is necessary for the determination of a crisp value for the overall utility function for the
design concepts, as presented in Equation (24).

Cr = m[j[u " (17)
@], - & &
@, - & ®

In Equations (18) and (19), E? and 6?’ are the cumulative fuzzy matrix for the best and
worst designs, respectively.

7], =[], e o], 20)

7], = Max[T] @y
1

Flay]” = o, 22)

T~ynew|
|

crisp

7,
FlU}| = [}
{d]n }w

(23)

[ crisp

1 _ [ul], +[ui],
F{ud}n_ 1- F[LI’H 1-F[ul], @9

1 L
g, R,
In Equation (24), [ 1]+ [uil,, F[ul]:

[ljﬂ :, {ljﬂ ;, F [ljﬂ . and F [UI } , respectively. The design concepts are ranked accord-

ing to the values of the overall ut111ty functions such that the design with the highest value
is the optimal design.

and F[U]] = represent the crisp values for
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3. Implementation

In order to investigate the suitability of the methodology, it is necessary to implement
its application in the conceptual design of a product. In this article, four conceptual designs
of a briquette making machine are considered for evaluation using the design for X features.
A framework for application of the methodology to conceptual designs of briquetting
making machines is presented in Figure 1. It is worthwhile to know that all the sub-features
allotted to the design for X features are performance indicators for effective operation of
the briquette making machine. For simplification of analysis, a framework for application
of the fuzzy MARCOS is presented in Figure 2. Firstly, sub-matrices for aggregating the
relative contributions of the sub-features to the design features are developed as presented
in Tables A1-A8 in Appendix A following Equation (3) and using the linguistic terms
presented in Table 1. Also, sub-matrices for aggregating the relative availability of the sub-
features in the design concepts are developed as presented in Tables A9—-A16 in Appendix A
using the weights obtained for the sub-features.

< >
1
Design for Assembly and Design for Life Cycle Cost
Disassembly (DfAD) v (DfLC)
» Number O_f _temporary and DC3 » Operation cost (OC) — P
g pAermanentJomts (E{J) > Acquisition & installation
ccess to machine parts cost (AC)
(AM) > Salvage & disposal cost (SC)
> Parts assembly pattern (PA) > Replacement cost (RC)
» Position and removal of hop- ]
per and product (PP)
» Assembly and disassembly . .
time (AD) Design for Rellabll.lty (DfR)
» Frequency of repair (FR) e N
Design for functionality (DfF) ; I\D/IaC_hme robulstngess (l\f/lR)
» Morphology of parts (PP) (];:(S:l;gn complexity ol parts
—» Pressing force (PF)
» Damage to briquettes (DB) > Off the shelf parts (OP)
» Impact pressure (IM)
» Machine stability (MS)
» Throughput capacity (TC) DC1
1
DC2
A
Optimal B
L | Design
)
Concept
A
1
1 1
Design for Maintainability Design for Opgration (DfO)
» Machine weight (MW)
(DfMn) > Spares of parts (SP)
» Maintenance cost (MC) » Compactness of pressing | |
» Maintenance time (MT) unit (CP)
> i\/lain)tenance frequency ; gsage }imit (UL) £0)
MF ase of operation
» Routine maintenance (RM) » Machine Diagnose (MD)
» Part replacement cost (PC) j
1
1 1
Design for Environment (DfE) Design for Manufacturing (DfMa)
» Safety of operation (SO) » Manufacturing Cost (CM)
» Energy consumption (EC) » Manufacturing process (MP)
» Material utilization (MU) » Manufacturing time (TM) -,
» Parts and material disposal R » Parts interchangeability (PI)
(PD) » Part intricacy (IP)
» Effluents or discharge (ED) » Parts material (PM)
] 1
>
> <
»

Figure 1. Application to preliminary conceptual designs of briquette making machines.
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Preliminary Decision Matrix

Develop a sub-matrix that

@

%l contains the decisions of de- Determine the fuzzified weights of the

sign experts on the relative design features and sub-features from

contributions of the sub-fea- {} the sub matrix containing the relativeﬁ>
tures to the importance of the

Identify design features and

sub-features that necessary contributions of the sub-features to the

design features as needed in

for the effective performance importance of the design features.

the optimal design using the

of the optimum design.

linguistic scale.

{

Develop a sub-matrix that

Develop a linguistic scale of]
contains the decisions of de- Determine the aggregates and overall
TFN for the design concepts from the @

sub-matrix containing the relative

membership function using
sign experts on the relative

74:> availability of the sub-fea-

tures in the design concepts {} availability of the sub-features in the
using the linguistic scale.

a triangular fuzzy number to

represents scale for ratings

of the decisions.

design concepts.

Fuzzy MARCOS

Develop an Initial fuzzy matrix il
from the overall TFN of the de-

sign concepts obtained from the

Develop an extended fuzzy ma- Classify the design features

into beneficial and cost cate-

<} gories in order to identify the Cj

features to maximize and

trix that contains the fuzzy best

design and fuzzy worst design

sub-matrix containing the relative <}

to represent the ideal and anti- . . availability of the sub-features in
minimize respectively.

ideal solution respectively.

the design concepts.

i <A

Compute the cumulative fuzzy

Determine the normalized fuzzy Determine the weighted
decision matrix considering the {} normalized fuzzy decision —ﬁ} matrix and the utility degree for

the design alternatives.

g

beneficial and cost features. matrix.

Determine the utility
function for the design
concepts and rank them
Sto based on the maximum
value of the function.

Determine the utility functions in
relation to the best and worst de-

sign. Defuzzify the utility degree

Cj for the design alternatives and

the utility function for the best

and worst design

new fuzzy number.

Compute the fuzzy utility
matrix in order to determine
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ity matrix. Defuzzify the

Figure 2. Framework for the application of fuzzy MARCOS.
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4. Results and Discussion
4.1. Results

The aggregate TFNSs for the design concepts in Tables A9-A16 are harnessed alongside
the weights of the design features obtained from Tables A1-A8 in order to arrive at a
preliminary decision matrix as presented in Table 2. It is necessary to normalize the
elements of the decision matrix in order to consider the beneficial and cost features. the
normalized decision matrix is presented in Table 3. The cumulative matrix, utility degree in
relation to the best and worst designs, utility matrix and utility functions in relation to the
best and worst designs can be obtained from Equations (17)—(23) considering the weighted
normalized decision matrix in Table 4. Table 5 shows the computations of the cumulative
matrix, utility degree in relation to the best and worst designs, utility matrix and utility
functions in relation to the best and worst designs. In order to obtain the utility functions
for the design alternatives considering Equation (24), the utility function and utility degree
in relation to best and worst designs are defuzzified using Equation (2) as presented in
Table 6. The design concepts are ranked according to the values of their utility functions.

Table 2. Fuzzified decision matrix with the best and worst designs and weight of design features.

Design Best Design Concepts
Features (DF) Design DC1 DC2 DC3 DC4 Worst Design
DAD 1212164 2111 9.L122 162 10211434 1813 12191622 211 817112 157 8171123 152
16%19%21% 201060 <160 361417 1019 671%15 193¢ 201060 <160 301130 1015 301130 +°15
DfO 3 1425 10.3 161026 1416 161218 148 31425 103 621~11 1241 16126 1416
1992 25 113145 198 781026 1486 1081381788 113143198  8%12ll 154 7161026 1486
1 351216 1716 351216 1716 341143 1259 38153 1=7 171541 142 341143 1259
DfE1517320 9131 1788 oPslerrle 8L 153 838123 157 9471241 162 834115 155
DfR 51313 175 314012 1435 35109 141 51043 1411 51213 175 51043 1411
10312} 141 92131 173 7311012 1435 83127 165 721043 1411 92131317 731052 1431
DfLc 9 1425 1439 611~ 1 1255 9 1125 1,39 9113 127 141123 1216 611~ 1 1255
111315 83—7117—2 145 8ﬁ12ﬁ 1575 83—711ﬁ 14ﬁ 8%“1 15E 8ﬁ11% 15@ 8ﬁ12ﬁ 1555
DfFu 10426 »n .5 1 42 131471 101 10126 Hn 5 261242 1726 261242 1726
193223 253 1239158 203 10314174 121472198 128815 205  10%13217%  10%133 17%
DfMa 421513 7 1219 1711 421513 241526 1411 581414 171 7 1219 1~11
181211 241 821283 16 105132 1711 82128 16 9241226 1611 92813l 171 1051332 1711

DfMn

1172 1
15117 20}

1 12341 1716
10451355 1735

13139 1713
1035134 1743

7192 1629
955125 165
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Table 3. Normalized fuzzy decision matrix with the best and worst designs and weight of
design features.

Design Design Concepts

Features (DF) Design DC1 DC2 DC3 DC4 Worst Design
DEAD 127 2618 61 3125 13 127 365 46 365 46
16%19% 21% 18 34 6131 91 6137 15 18 34 899 63 899 63
3576 224 32 475 71 3576 3941 67 224 32
Df0 192225 5097 1 5B 1 887 77 5971 8361 50 555
1 11 55 11 55 3243 89 39 7 54 8 13 16 3243 89
DfE 15173 20 71 L w71 ! 6362 98 7610 59 1518 17 362 98
DfR 427 4 3740 16 1237 6 51921 427 4 51921
10%12% 14% 7 35 8163 1 2352 72 1130 25 735 1130 25
43 8 2313 41 43 8 8 47 26 7 17 79 2313 41
DfLc111315 7811 1 um u 7811 1 1567 27 1321 81 um u
DfFu 3815 ¢ 239 17 1344 30 3815 ¢ 1216 59 1216 59
19%22% 25% 31 4456 19 2359 41 63 1 2323 66 323 66
DfMa 8114 1828 2811 627 51 12110 1828
18%21% 24% 11 3539 a1 1138 5 2131 11 53 9
DfMn 779 784 9 61 34 779 45 56 12 45 56 12
15%17% 20% 129 1311 52 16 81 35 129 8679 13 679 13
Table 4. Weighted normalized fuzzy decision matrix with the best and worst designs.
Design Concepts
Best Worst Desi
DF Design DC1 DC2 DC3 DC4 orst Design
DfAD 1041512 213 78114 163 8212221828 1041542213 6391078 1583 639103 155
131722 41523 44 7 43 1 131722 53 4 29 41523 44
DfO 11331735 25 731283 184 105158 234 113317225 82144 20% 731223 183
DfE 8821332 20 8621332 20 732125 185, 7381210 183 812 183 7321255 185,
16 1 47 43 20 28 @67 38 46 ~75 17 16 1 46 ~75 17
DfR 6916141 4278 128 528 8521338 488 72 1212 6938 141 488 78 1282
DfLc 6% 95 15 5388 1381 6% 95 15 58 95 142 519 142 5288 1381
DfFu 11321845 252 10311545 2385 1131745 243 111845 252 1048153 23Z 1048152 237
DfMa 108152 401 9314} 352 1081583401 92152 388  9fl14l 368 98144 35%
61267 1 114531 151225 23 61267 1 1519521 23 151521 23
DfMn 851387 201 8ll123L 19 8121325 192 861387 201 7121221182 7821231 1823

Table 5. Cumulative matrix, utility degree and functions for the design concepts.

73411227 1821
602594 5 156
DESIGN CONCEPTS
DC2 DC3
5 1 67 49 15 1
6731054 17283 708310833 176}

Cumulative for Best Design

Cumulative for Worst Design

DC1
1594 2
6112964 1592

DC4
19 40 22
631 9849 162%

Cumulative matrix (C;)

Utility degree in relation to

i 3327 o18 889 538 2346 27 3183 51
best design [ﬁ[] 9531 <91 219 5 5847 <62 8793 <4
d
n
Utility degree in rela?lon to 191 553 3616 o7 14911 514 2814 537
worst design [L’j] - 48142 <82 83753 <8 3173 15 69 ~ 81 52
d
4n
13 : T 26117 465 57~ 5 19 28111 7 16181 453
Utility function in relation to 5511 33413 1615 17 135
best designF[fI’} 3112 13 1775 ~76 8732 36 67 48
d
n
Utility function in relation to U 17 u» 7 524 9411
99 31 19 7183 73 315 6211 12

worst design F [ﬁ”

n
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Table 6. Defuzzified utility degrees and functions and ranking of design concepts.

Design Utility Degrees and Functions Rank
Concepts [ [t FuLl FULl FIu],
DC1 1 14 4 > 2(0.625) 4
DC2 1 13 2 3 22(0.759) 2
DC3 1} 11 5 B $(0.811) 1
DC4 13 126 3 B £(0.662) 3

4.2. Discussion

Considering the weighted normalized decision matrix in Table 4, a clear picture of the
performance of the design alternatives with respect to the design features can be obtained
in the form of TFNs. Also, an interesting aspect of the fuzzy MARCOS method is the
determination of the best and worst design by selecting the design with the highest upper
membership function of the TENs in all the design features. This implies that the best
design will perform well in all the design features, and the worst design will perform poorly
in all the design features. Although, in real life, achieving the best design may seem a little
bit difficult because a consideration of all the design features in a design may be difficult
to achieve. Hence, there will be a trade-off in the design process such that some design
features will not be predominantly available in the design. It is worthwhile to note that
such design features are also important, but the decision to prioritize the design features
has come to play in order to satisfy the features that are necessary for a robust design. Also,
when there is a need to prioritize some design features, the alternatives which have the
best performance in all these features can easily be identified. In essence, there is a need to
classify the design features into cost and beneficial features. The separation of the design
features into cost and beneficial features makes it easy to identify the design concepts that
will be cost demanding, particularly before fabrication and commercialization. This will
go a long way to inform the manufacturer on the logistics that will be involved in the
production of the machine before the completion of the design. In this case, design for
manufacturing cost and life cycle cost are considered as the cost features. The design for life
cycle cost and manufacturing are the cost features as highlighted in Table 4. Considering
the upper membership function of the best design concepts in the weighted normalized
fuzzy decision matrix in Table 4, it is clear that concept two has the best manufacturing and
life cycle costs, but that does not indicate that it is the optimal design concept. However,
if the aim of the decision process is to obtain a design with less cost, then design concept
two can serve as a best design. Also, it is also clear that the performances of all the
design concepts in terms of the beneficial features can be captured in Table 4. This will
also help to achieve the identification of design concepts with other beneficial features.
Further, considering the upper membership function of the cumulative matrix for the best
and worst designs in Table 5, it is obvious that none of the design concepts is closer to
the best and worst designs. This is an interesting aspect of the fuzzy MARCOS model
because it gives a relative comparison by providing a clear picture of the design alternatives
relative to the best and worst designs. The relative position of the design alternatives
to the best and worst designs can be depicted in the form of the TFNs, as presented in
Figure 3a. This implies that the fuzzy MARCOS method determines a value for the best
and worst designs and also provides the values for the design concepts to be assessed. This
method is good because it can create a platform for comparison on the distances of the
design concept to the best and worst designs. The MARCOS model further determined
the optimal design alternative considering the utility degrees, fuzzy utility functions and
overall utility function rather than mere defuzzification and comparison with the best
and worst designs. Also, considering the comparison in Figure 3a, the model was able
to establish the level of performance of the design alternatives relative to the expected
performance of the best and worst designs, but a judgment on the optimal design concept
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cannot be made because the utility degree, which is a function of how each of the designs
performs with respect to the best and worst designs, needs to be determined. Hence, in
Figure 3b, the design alternatives were ranked based on their scores in the overall utility
function. An observation of the final values of the overall utility function showed that there
is a closeness in the final values of the design alternatives. This is an indication that the
decision process did not apportion values to the design alternatives but rather compared
their performances in all the design features.

LOWER .MODAL o UPPER

O

0.700 _
0.600 |

0.500

0.400

0.300

0.200

0.100

0.900
0.800 |

ab c a b c abc abc abc abc 0.000 - - : :
DESIGN DESIGN DESIGN DESIGN
BEST DESIGN DESIGN DESIGN DESIGN WORST CONCEPT CONCEPT CONCEPT CONCEPT
DESIGN CONCEPT CONCEPT CONCEPT CONCEPT DESIGN ) N 3 4
1 2 3 4
Design Alternatives
(a) (b)

Figure 3. Comparison of design alternatives relative to the best and worst designs and their rankings.
(a) Comparison of design alternatives. (b) Ranking of the design concepts.

5. Results Validation

The results obtained from the implementation of the fuzzy MARCOS on the assessment
of the conceptual designs of a briquetting machine is validated via the use of TOPSIS and
modified TOPSIS. The TOPSIS method is implemented in order to check for conformity
in the results obtained. Considering the weighted normalized fuzzy decision matrix with
the best and worst designs in Table 4, it is possible to determine the ideal positive and
ideal negative solutions, then the distances to the ideal positive and ideal negative can also
be obtained as presented in Table 7. In essence, from Table 7, the ranking of the design
concept is also obtained from the closeness coefficient indices, and it can be observed
that the TOPSIS method provided the same ranking as the MARCOS method. Further, in
order to ascertain the consistency of the MARCOS decision process in terms of the best
and worst designs, a modified TOPSIS method is introduced. This method involves the
determination of the distances of the design concepts to the best and worst designs. This
method is similar to the general TOPSIS method. The only modification is that instead
of determining the distances to the positive and negative ideal solution, the distances
are determined to the best and worst designs using the vertex method, as described in
Equations (25) and (26), respectively.

1

D} = /3 (a0 = )+ (5= 1)+ (e0 — 1)?) 25)

DY = \/1 ((an — )+ (by — bo)* + (cn — cw)z) (26)
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Table 7. Validation of results by the TOPSIS method.
Design Concepts
DC1 DC2 DC3 DC4
Id,e?l Distance to Distance to . Distance to . Distance to Distance to Distance to Idea.l
DF Positive Distance to Distance to Negative
Soluti Ideal Ideal Ideal Positive Ideal Ideal Positive Ideal Ideal Ideal Soluti
olution Positive Negative Negative Negative Positive Negative olution
DfAD 212 6% 1048 78 92 10g5 7% 52 1145 629
DfO 25 68 13 104 104 114 9% 838 1% 7%
20 49 48 31 47 5 59 8 47
DfE 20 757 751 675 8x3 675 841 1327 8s1 77%
1 27 83 26 11 34 10 27 32 46
DfR 145 477 653 5% b¢s 45 617 637 515 43
DfLc 15 545 63 53 6255 58 613 51 642 58
DfFu 252 845 10% 94 980 105 955 84 1057 103}
DfMa 401 1553 238 183 28 174 223 153 235 9%
1 79 9 27 45 5 28 31 3 15
DfMn 205 655 8 7% 752 72 7358 634 83 71¢
Cumulative 17 62 26 17 2% 10 43 7
Distance 617 8625 70%; 8057 73%; 7713 70%5 8545
Closeness
Coefficient 12(0.413) 22(0.468) 18(0.486) £(0.454)
Index (CCI)
Ranking 4th 2nd 1st 3rd
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In Equations (25) and (26), DZ and DY represents the distances to the best and worst
designs for n number of design concepts. Also, a,, by, ¢, represent the lower, modal and
upper TFENs for the best design, while ay, by, ¢y represent the lower, modal and upper
TFNs for the worst design. Also, a,,, by, ¢, represent the lower, modal and upper TFNs for
the n design concept. Hence, the distances of the design concepts to the best and worst
designs are presented in Table 8. Considering Table 8, it is evident that the performance of
the design concept in terms of their distances to the best and worst design is depicted in all
the design features. Further, the determination of the cumulative distances of the design
concepts to the best and worst designs provided the overall performance of the designs
before the determination of the closeness coefficient for ranking. The ranking in this case is
also in conformity to the MARCOS method, which proves that there is consistency in the
MARCOS decision model.

Table 8. Validation of results by modified TOPSIS (distances to best and worst designs).

Design Concepts

DC1 DC2 DC3 DC4
Distance to Di%aor;:: to Distance to Distance to Distance to Di%aor;:: to Distance to Distance to
DF Best Design . Best Design ~ Worst Design Best Design : Best Design ~ Worst Design
Design Design
2 T 2 5 5
DfAD 45 5 25 2% 0 43 43 0
DfO 5% 0 13 37 0 51 31 1%
T T I 1 1
DfE 0 15 15 0 15 3 1 5
DfR 11 0 Z 1 11 0 0 11
2 2 2 T T 3
DfLc 3 0 0 3 5 3 i 5
DfFu 21 0 1 11 0 2% 21 0
3 3 5 1
DfMa 23 0 0 23 1 12 24 5
DfMn 1 i 1 E 0 11 13 0
Cumulative
distance to 3 1 2 3 1 4 1
best and 173 23 73 125 45 157 15 5%
worst designs
Closeness
Coefficient $(0.116) 2(0.619) 7(0.776) 1(0.254)
Index (CCI)
Ranking 4th 2nd 1st 3rd

6. Conclusions

Conclusively, it is not an overstatement to say that concept selection in the preliminary
design phase of a product is very important, and as such, more emphasis and effort needs
to be put into the design concept selection in order to have a robust decision process. This is
necessary because it provides more information on the design features associated with the
optimal design concept. Sometimes, modifications can be made to any of the alternatives
or the optimal design in order to accommodate some design features before fabrication
commences. Due to the importance that is attached to the concept selection process, this
article proposes the adoption of fuzzy MARCOS as a multicriteria decision model as
a tool for carrying out the concept selection process. The preliminary decision matrix
was developed considering the weights of the design features and sub-features and the
availability of the sub-features in each of the design concepts. The essence of considering
the availability of the sub-features in the alternative designs is to assists the decision process
in obtaining unambiguous values for the performance of the design alternatives in the form
of linguistic terms using several experts” opinion. The framework for applying the fuzzy
MARCOS model to the selection of the optimal conceptual design was developed based on
its application to other subject areas, and the model performed excellently by identifying
the optimal design concepts considering its overall utility value relative to the best and
worst design. Further work can also be carried out in the aspect of identifying the designs
features to be improved on considering the best and worst design concepts identified by
the fuzzy MARCOS model.
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Appendix A

Table Al. Contributions of sub-features of design for assembly and disassembly.

Sub-Features of DfAD

Design ~
Cull! Wd
Experts NJ AM PA PP AD k fim
DE1 VEC VEC HGC HGC EXC 17520 223
DE2 VHC VEC VHC MHC VHC 163 19 21} yi 1 oo
16319} 212
DE3 VHC HVC HGC VHC VHC 16181 21 e
A7 i 241 42 2 41 42 5121 22l a2 541 45
Wz 334} 43 3241 42 22313 2331 33 3241 43
Table A2. Contributions of sub-features of design for maintainability.
Design Sub-Features of DfMn _
Experts Cué Welpy,
P MC MT MF RM PC
DE1 EXC HVC VHC HVC HGC 16119 211
DE2 HGC MHC HGC MHC VHC 12115 174 Lan
154173 204
DE3 VEC VHC VEC MHC HVC 161 19 211 e e
wazy 3241 4% 2231 32 3132 4 2122 31 331 4

Table A3. Contributions of sub-features of design for reliability.

Sub-Features of DfR

Design _
Cujl! wd
Experts FR MR DC OP k fm
DE1 HGC VHC MHC VHC 115131 155
DE2 VHC MHC HVC MHC 103125 145
10312} 141
DE3 HGC MDC HVC HGC 9111} 131 2702
A 1 51l 5 155 17l 24l 2 21l 2
waz 223132 212231 223132 223l 32

Table A4. Contributions of sub-features of design for life cycle cost.

Sub-Features of DfLC

llijxepstljtg oc AC e RC i Welm
DE1 VHC VEC MDC VHC 121141 16}
DE2 HGC HGC MHC MDC 8li0} 124 11315
DE3 VHC HVC HVC HGC 121416
Wz 313241 313241 212231  pl33l
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Table A5. Contributions of sub-features of design for environment.
Desien Sub-Features of DfE _
E gt Cu;{" Wdfm
xperts SO EC MU PD ED
DE1 VHC VEC MHC MDC VEC 15171 20
DE2 VEC HGC HVC MHC HVC 14117 191 .
15173 20
DE3 HVC VHC HVC VHC HGC 15118 201 :
A i 1 1 1725 41 272l a2 155 17l 122 41
Wy 314 41 3132 41 2% 3% 33 2322 31 3¢ 3% 4}
Table A6. Contributions of sub-features of design for functionality.
Design Sub-Features of DfF _
Experts PP PF DB M MS TC i Welu
DE1 MDC VEC VEC VHC VHC VEC 205233 263
DE2 HGC HVC HVC HVC VHC EXC 195223255 . o .
192223 252
DE3 MHC VEC VHC HGC VEC VHC  19l22lo51 707070
A j 1 241 42 1 1 1 241 42 1
Wdyy 2213 3241 42 314 4} 3314 3241 42 44%5

Table A7. Contributions of sub-features of design for manufacturing.

i Sub-Features of DfMa ~
lli)x(;i-%tr; cM MP ™ PI P PM cui Welf
DE1 VEC HGC HVC MHC MDC VEC 172023
DE2 HVC VHC VEC HGC HVC EXC 203233263 L8111 04
DE3 HVC VHC HGC HVC HGC HGC 172023 6760
wa 313241 313241 313%24] 213 3% 212331 3%24l1 42

Table A8. Contributions of sub-features of design for operation.

i Sub-Features of DfO _
Exflfi MW SP CP UL EO MD cui W
DE1 VEC HVC VEC VHC VEC MDC 202326
DE2 HVC HGC VEC VHC EXC MHC 193223 251
DE3 VHC HGC HGC HVC HVC HVC 173203 231 1922
Wy 334 43 2231 3% 334 43 3132 41 32 4342 212231

Table A9. Availability of sub-features of assembly and disassembly in the design concepts.

Sub- DC1 DC2 DC3 DC4

Features DEl DE2 DE3 DE1 DE2 DE3 DEl DE2 DE3 DEl DE2 DE3
NJj334l 42 MEA HGA MHA HGA MHA VHA VHA HGA VHA MEA MHA MHA
AM3241 42 HGA MEA MEA HGA HGA VHA MHA VHA EHA MLA MHA MHA
PA 2231 32 MLA MLA MHA HGA HGA MHA VHA VHA MHA MEA MEA MLA
pp2% 31 3% MHA HGA MLA VHA MHA MHA VHA EHA EHA MLA HGA MEA
AD3241 43 MHA MLA MEA MLA MLA MEA VHA HGA VHA MEA MLA MEA

1 5 3 511414 13 19149 11 1711 23 7
Sub-DM 94123 163 10241434 1882 120164 2111 817118 157%
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Table A10. Availability of sub-features of operation in the design concepts.

Sub- DC1 DC2 DC3 DC4
Features DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3
MW 3 %4 4 % MLA  MEA VLA MHA MLA MEA MEA MEA MHA MLA MLA MEA
SP2 % 3% 3 % MEA MHA MLA HGA VHA MHA VHA VHA MHA MEA MEA MHA
CP3 % 4 4% VLA LOA MEA VHA HGA VHA VHA EHA VHA HGA HGA MHA

UL 3132 41 MHA MEA HGA HGA MHA MHA MHA HGA HGA MHA HGA MEA
EO 32 4142 MLA MHA HGA VHA MHA MEA HGA VHA VHA HGA MLA MHA
MD 212231 MEA MLA HGA HGA MHA MHA VHA HGA VHA MHA HGA MEA

161026 16 161218 148 3 1425 3 621511 41
Sub-DM 7161026 1410 10161318 1748 13145193 8621211 154

Table A11. Availability of sub-features of environmental in the design concepts.

Sub- DC1 DC2 DC3 DC4
Features DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3
SO3 % 4 4% VHA MHA VHA MLA MLA MHA MEA MEA MLA HGA MHA MHA

EC3132 41 MHA MHA HGA HGA HGA VHA MHA HGA VHA HGA VHA VHA
Mu2231 32  HGA HGA MHA MEA MLA MEA MEA MLA MLA MLA MEA LOA
pD2} 2231 MLA MEA MEA MHA HGA MLA HGA MHA MEA HGA HGA MHA
ED3!3%241  VHA VHA HGA HGA MHA HGA HGA HGA VHA MHA MHA MEA

351216 16 341143 59 38153 7 171~ 41 2
Sub-DM 931316 1716 834114 155 838123 157 947128 162

Table A12. Availability of sub-features of reliability in the design concepts.

Sub- DC1 DC2 DC3 DC4
Features DEl DE2 DE3 DEl DE2 DE3 DE1 DE2 DE3 DEl1 DE2 DE3
FR22 3} 32 MHA MEA HGA HGA VHA HGA MHA MHA MLA HGA HGA VHA
MR 2123 31 HGA MHA MHA MHA HGA VHA HGA HGA MHA HGA VHA VHA
DC 233} 32 MHA HGA HGA VHA MHA HGA MHA HGA HGA VHA HGA VHA
or2%3l 32 MEA MEA MLA HGA MHA MEA MEA MLA HGA HGA VHA HGA

311012 35 3519 9 1 51043 1 511713 5
Sub-DM 7311012 143 82127 165 72104 1411 951313 175

Table A13. Availability of sub-features of life cycle cost in the design concepts.

Sub- DC1 DC2 DC3 DC4
Features DEl DE2 DE3 DE1 DE2 DE3 DEl DE2 DE3 DEl DE2 DE3
ocs3ls24l  MHA VHA MHA MHA MHA HGA MHA HGA HGA MLA MEA MHA
AC3l3%24l  HGA MHA VHA MHA HGA HGA MHA MEA MHA MHA HGA MEA
sc2i22 3l MHA MEA MLA MEA MHA MHA HGA HGA MHA HGA HGA MHA

RC2 % 33 % HGA MHA HGA MHA MEA MLA MHA HGA MEA HGA VHA HGA

61 1 55 9 25 39 9 3 7 144123 16
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Table A14. Availability of sub-features of functionality in the design concepts.
Sub- DC1 DC2 DC3 DC4
Features DEl DE2 DE3 DEl DE2 DE3 DEl DE2 DE3 DEl DE2 DE3
PP2213 HGA MHA MHA HGA VHA MHA HGA HGA VHA MHA MHA HGA
PF324l 42 MHA MHA HGA MHA HGA VHA VHA HGA HGA HGA MHA MEA
DB314 4] MEA MEA HGA MHA MEA HGA HGA HGA MHA MEA MEA MHA
IM3314 MHA MHA HGA HGA VHA HGA VHA VHA HGA HGA HGA MHA
MS 3341 43 MEA MEA VHA VHA HGA MHA HGA HGA VHA MHA MHA HGA
TC4435 HGA VHA HGA HGA MHA VHA VHA HGA VHA HGA VHA HGA
Sub-DM 10314175 1182147} 194 1288155 203 102134 173
Table A15. Availability of sub-features of manufacturing in the design concepts.
Sub- DC1 DC2 DC3 DC4
Features DEl DE2 DE3 DE1 DE2 DE3 DEl DE2 DE3 DEl DE2 DE3
cm3l32 4l VHA HGA HGA MEA MHA MHA MEA MEA MHA MHA MEA HGA
mp3l3%2 4l  MHA HGA VHA MEA MEA HGA MHA MHA HGA MHA MHA VHA
T™3132 41  HGA VHA HGA MHA HGA MHA MHA HGA HGA HGA VHA MHA
ri2l3 3l MEA HGA MHA MEA MHA MHA MEA HGA MHA HGA MHA HGA
ip21l23 3l HGA HGA MHA HGA HGA VHA HGA HGA MEA MHA MEA HGA
PM3341 42 MHA MEA MHA MHA MEA MEA HGA MHA MHA HGA HGA MHA
Sub-DM 105132 174 83128 16 9231228 163% 9281348 173
Table A16. Availability of sub-features of maintainability in the design concepts.
Sub- DC1 DC2 DC3 DC4
Features DE1 DE2 DE3 DE1 DE2 DE3 DE1l DE2 DE3 DEl DE2 DE3
Mc3%4l 42 MHA MEA HGA HGA HGA VHA VHA VHA MHA HGA MHA MHA
MT2231 32  HGA HGA MHA MEA MHA HGA HGA MHA MEA MHA MHA MEA
MF 3132 41 HGA MHA MEA HGA MHA HGA VHA HGA HGA MEA MHA MLA
RM2122 31  MLA MEA HGA MHA MEA MEA HGA MEA MHA MHA HGA HGA
PC33} 4 VHA VHA HGA HGA VHA HGA HGA HGA VHA HGA VHA HGA
Sub-DM 9131233 162 10451355 1758 108135 1742 95123 163
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