Tele-Pulmonary Rehabilitation and Mediterranean-like Lifestyle, Adjunctively to Continuous Positive Airway Pressure in Obstructive Sleep Apnea Patients: Effects in Fitness and Oxidative Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- Age and body composition limitations:
- ○
- ages between 18 and 65 years
- ○
- body mass index < 40 kg/m2 [21]
- Sleep Criteria:
- ○
- Apnea Hypopnea Index ≥ 20 events per hour and sleep duration during polysomnography study > 250 min [22]
- Comorbidities:
- Access to new technologies and internet
- Physical Characteristics:
- ○
- no daily physical strain due to working ≥3 h per day
- ○
- no weekly exercise ≥100 min per week with ≥60% of heart rate maximum predicted
- ○
- no active self-reported symptoms (chest pain, fatigue, and/or dyspnea)
- Cognitive Assessment:
- ○
- no cognitive impairment, as indicated by Montreal cognitive assessment (MoCA) test score > 25.
2.2. Measurements
2.2.1. Anthropometric Characteristics and Body Composition
2.2.2. Biomarkers
2.2.3. Sleep Quality and Daily Sleepiness
2.2.4. Mediterranean-like Diet
2.2.5. Physical Fitness Test
2.3. Interventions Nutrition Program
- High consumption of cereals (and bread), mainly whole meal
- High consumption of seasonal fruits and vegetables
- Daily consumption of milk and dairy products (preferably low-fat)
- Daily consumption of pulses, nuts, and spices instead of salt
- Consumption of eggs, fish, and poultry on a weekly basis
- Low consumption of meat and meat products
- Occasional consumption of sweets
- High ratio of monounsaturated to saturated fatty acids
- Moderate consumption of ethyl alcohol (mainly in the form of wine)
2.4. Interventions Exercise Program
2.5. Statistical Analysis
3. Results
3.1. Anthropometric Characteristics and Body Composition
3.2. Biomarkers
3.3. Sleep Quality and Daily Sleepiness
3.4. Mediterranean-like Diet
3.5. Physical Fitness Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and Management of Obstructive Sleep Apnea: A Review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of Sleep Apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef] [PubMed]
- Vavougios, G.D.; George, D.G.; Pastaka, C.; Zarogiannis, S.G.; Gourgoulianis, K.I. Phenotypes of Comorbidity in OSAS Patients: Combining Categorical Principal Component Analysis with Cluster Analysis. J. Sleep Res. 2016, 25, 31–38. [Google Scholar] [CrossRef]
- Badran, M.; Ayas, N.; Laher, I. Cardiovascular Complications of Sleep Apnea: Role of Oxidative Stress. Oxid. Med. Cell Longev. 2014, 2014, 985258. [Google Scholar] [CrossRef] [PubMed]
- Vavougios, G.; Pastaka, C.; Tsilioni, I.; Natsios, G.; Seitanidis, G.; Florou, E.; Gourgoulianis, K.I. The DJ-1 Protein as a Candidate Biomarker in Obstructive Sleep Apnea Syndrome. Sleep Breath. Schlaf Atm. 2014, 18, 897–900. [Google Scholar] [CrossRef]
- Rotenberg, B.W.; Murariu, D.; Pang, K.P. Trends in CPAP Adherence over Twenty Years of Data Collection: A Flattened Curve. J. Otolaryngol.-Head Neck Surg. J. Oto-Rhino-Laryngol. Chir. Cervico-Faciale 2016, 45, 43. [Google Scholar] [CrossRef] [PubMed]
- Pigakis, K.M.; Voulgaris, A.; Nena, E.; Kontopodi, A.; Steiropoulos, P. Changes in Exercise Capacity of Patients With Obstructive Sleep Apnea following Treatment with Continuous Positive Airway Pressure. Cureus 2022, 14, e21729. [Google Scholar] [CrossRef]
- Stevens, D.; Loffler, K.A.; Buman, M.P.; Dunstan, D.W.; Luo, Y.; Lorenzi-Filho, G.; Barbe, F.E.; Anderson, C.S.; McEvoy, R.D.; SAVE investigators. CPAP Increases Physical Activity in Obstructive Sleep Apnea with Cardiovascular Disease. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2021, 17, 141–148. [Google Scholar] [CrossRef]
- Dai, J.; Jones, D.P.; Goldberg, J.; Ziegler, T.R.; Bostick, R.M.; Wilson, P.W.; Manatunga, A.K.; Shallenberger, L.; Jones, L.; Vaccarino, V. Association between Adherence to the Mediterranean Diet and Oxidative Stress. Am. J. Clin. Nutr. 2008, 88, 1364–1370. [Google Scholar] [CrossRef]
- Georgoulis, M.; Yiannakouris, N.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. The Effectiveness of a Weight-Loss Mediterranean Diet/Lifestyle Intervention in the Management of Obstructive Sleep Apnea: Results of the “MIMOSA” Randomized Clinical Trial. Clin. Nutr. Edinb. Scotl. 2021, 40, 850–859. [Google Scholar] [CrossRef]
- Papandreou, C.; Schiza, S.E.; Bouloukaki, I.; Hatzis, C.M.; Kafatos, A.G.; Siafakas, N.M.; Tzanakis, N.E. Effect of Mediterranean Diet versus Prudent Diet Combined with Physical Activity on OSAS: A Randomised Trial. Eur. Respir. J. 2012, 39, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative Stress: Role of Physical Exercise and Antioxidant Nutraceuticals in Adulthood and Aging. Oncotarget 2018, 9, 17181–17198. [Google Scholar] [CrossRef] [PubMed]
- Damianidou, L.; Eboriadou, M.; Giannopoulos, A.; Haidopoulou, K.; Markou, K.; Tzimou, I.; Kirvasilis, F.; Kontouli, K.; Tsanakas, I.; Athanassiadou, F. Reduced Exercise Capacity in Greek Children with Mild to Moderate Obstructive Sleep Apnea Syndrome. Pediatr. Pulmonol. 2013, 48, 1237–1245. [Google Scholar] [CrossRef]
- Przybyłowski, T.; Bielicki, P.; Kumor, M.; Hildebrand, K.; Maskey-Warzechowska, M.; Korczyński, P.; Chazan, R. Exercise Capacity in Patients with Obstructive Sleep Apnea Syndrome. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2007, 58 (Suppl. S5), 563–574. [Google Scholar]
- Chennaoui, M.; Arnal, P.J.; Sauvet, F.; Léger, D. Sleep and Exercise: A Reciprocal Issue? Sleep Med. Rev. 2015, 20, 59–72. [Google Scholar] [CrossRef]
- Werneke, M.W.; Deutscher, D.; Grigsby, D.; Tucker, C.A.; Mioduski, J.E.; Hayes, D. Telerehabilitation During the COVID-19 Pandemic in Outpatient Rehabilitation Settings: A Descriptive Study. Phys. Ther. 2021, 101, pzab110. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Astara, K.; Ioannidis, P.; Vavougios, G.D.; Daniil, Z.; Gourgoulianis, K.I. Tele-Exercise in Non-Hospitalized versus Hospitalized Post-COVID-19 Patients. Sports Basel Switz. 2022, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, V.T.; Astara, K.; Tourlakopoulos, K.N.; Papayianni, E.; Boutlas, S.; Vavougios, G.D.; Daniil, Z.; Gourgoulianis, K.I. Obstructive Sleep Apnea Syndrome: The Effect of Acute and Chronic Responses of Exercise. Front. Med. 2021, 8, 806924. [Google Scholar] [CrossRef]
- Romagnolo, D.F.; Selmin, O.I. Mediterranean Diet and Prevention of Chronic Diseases. Nutr. Today 2017, 52, 208–222. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary Patterns: A Mediterranean Diet Score and Its Relation to Clinical and Biological Markers of Cardiovascular Disease Risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Karetsi, E.; Gourgoulianis, K.I. The Effect of Growth and Body Surface Area on Cardiopulmonary Exercise Testing: A Cohort Study in Preadolescent Female Swimmers. Child. Basel Switz. 2023, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Astara, K.; Siachpazidou, D.; Vavougios, G.; Ragias, D.; Vatzia, K.; Rapti, G.; Alexopoulos, E.; Gourgoulianis, K.; Xiromerisiou, G. Sleep Disordered Breathing from Preschool to Early Adult Age and Its Neurocognitive Complications: A Preliminary Report. Sleep Sci. 2021, 14, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, V.; Vavougios, G.; Astara, K.; Siachpazidou, D.; Papayianni, E.; Gourgoulianis, K. The 6-Minute Walk Test and Anthropometric Characteristics as Assessment Tools in Patients with Obstructive Sleep Apnea Syndrome. A Preliminary Report during the Pandemic. J. Pers. Med. 2021, 11, 563. [Google Scholar] [CrossRef]
- Astara, K.; Stavrou, V.; Vavougios, G.; Siachpazidou, D.; Papayianni, E.; Gourgoulianis, K. Fitness Indicators and Cognitive Performance in Patients with Obstructive Sleep Apnea Syndrome. A Preliminary Report. ERJ Open Res. 2021, 7, 52. [Google Scholar] [CrossRef]
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An Official European Respiratory Society/American Thoracic Society Technical Standard: Field Walking Tests in Chronic Respiratory Disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef]
- Stavrou, V.; Astara, K.; Daniil, Z.; Gourgoulianis, K.; Kalabakas, K.; Karagiannis, D.; Basdekis, G.; Basdekis, G. The Reciprocal Association between Fitness Indicators and Sleep Quality in the Context of Recent Sport Injury. Int. J. Environ. Res. Public Health 2020, 17, 4810. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Vavougios, G.D.; Kalogiannis, P.; Tachoulas, K.; Touloudi, E.; Astara, K.; Mysiris, D.S.; Tsirimona, G.; Papayianni, E.; Boutlas, S.; et al. Breathlessness and Exercise with Virtual Reality System in Long-Post-Coronavirus Disease 2019 Patients. Front. Public Health 2023, 11, 1115393. [Google Scholar] [CrossRef]
- Mosteller, R.D. Simplified Calculation of Body-Surface Area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Bountziouka, V.; Bathrellou, E.; Giotopoulou, A.; Katsagoni, C.; Bonou, M.; Vallianou, N.; Barbetseas, J.; Avgerinos, P.C.; Panagiotakos, D.B. Development, Repeatability and Validity Regarding Energy and Macronutrient Intake of a Semi-Quantitative Food Frequency Questionnaire: Methodological Considerations. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 659–667. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean Food Pattern Predicts the Prevalence of Hypertension, Hypercholesterolemia, Diabetes and Obesity, among Healthy Adults; the Accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Vavougios, G.D.; Boutlas, S.; Tourlakopoulos, K.N.; Papayianni, E.; Astara, K.; Stavrou, I.T.; Daniil, Z.; Gourgoulianis, K.I. Physical Fitness Differences, Amenable to Hypoxia-Driven and Sarcopenia Pathophysiology, between Sleep Apnea and COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 669. [Google Scholar] [CrossRef]
- DeMers, D.; Wachs, D. Physiology, Mean Arterial Pressure. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Enright, P.L.; Sherrill, D.L. Reference Equations for the Six-Minute Walk in Healthy Adults. Am. J. Respir. Crit. Care Med. 1998, 158, 1384–1387. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.M.; Murthy, J.N.; Wollak, I.D.; Jackson, A.S. The Six Minute Walk Test Accurately Estimates Mean Peak Oxygen Uptake. BMC Pulm. Med. 2010, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Haidar, A.; Horwich, T. Obesity, Cardiorespiratory Fitness, and Cardiovascular Disease. Curr. Cardiol. Rep. 2023, 25, 1565–1571. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Tourlakopoulos, K.N.; Vavougios, G.D.; Papayianni, E.; Kiribesi, K.; Maggoutas, S.; Nikolaidis, K.; Fradelos, E.C.; Dimeas, I.; Daniil, Z.; et al. Eight Weeks Unsupervised Pulmonary Rehabilitation in Previously Hospitalized of SARS-CoV-2 Infection. J. Pers. Med. 2021, 11, 806. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Vavougios, G.D.; Astara, K.; Mysiris, D.S.; Tsirimona, G.; Papayianni, E.; Boutlas, S.; Daniil, Z.; Hadjigeorgiou, G.; Bargiotas, P.; et al. The Impact of Different Exercise Modes in Fitness and Cognitive Indicators: Hybrid versus Tele-Exercise in Patients with Long Post-COVID-19 Syndrome. Brain Sci. 2024, 14, 693. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Yu, X.; Zhang, J.; Sun, X. Lipid Accumulation Product and Visceral Adiposity Index Are Effective Markers for Identifying the Metabolically Obese Normal-Weight Phenotype. Acta Diabetol. 2015, 52, 855–863. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Ding, J.; Zhou, W. Visceral Fat Area and Body Fat Percentage Measured by Bioelectrical Impedance Analysis Correlate with Glycometabolism. BMC Endocr. Disord. 2022, 22, 231. [Google Scholar] [CrossRef]
- Gugliucci, A. Biomarkers of Dysfunctional Visceral Fat. Adv. Clin. Chem. 2022, 109, 1–30. [Google Scholar] [CrossRef]
- Tsimikas, S. The Re-Emergence of Lipoprotein(a) in a Broader Clinical Arena. Prog. Cardiovasc. Dis. 2016, 59, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zou, J.; Li, X.; Zhao, X.; Zou, J.; Liu, S.; Meng, L.; Qian, Y.; Xu, H.; Yi, H.; et al. Effect of the Interaction between Obstructive Sleep Apnea and Lipoprotein(a) on Insulin Resistance: A Large-Scale Cross-Sectional Study. J. Diabetes Res. 2019, 2019, 9583286. [Google Scholar] [CrossRef]
- Cesaro, A.; De Michele, G.; Fimiani, F.; Acerbo, V.; Scherillo, G.; Signore, G.; Rotolo, F.P.; Scialla, F.; Raucci, G.; Panico, D.; et al. Visceral Adipose Tissue and Residual Cardiovascular Risk: A Pathological Link and New Therapeutic Options. Front. Cardiovasc. Med. 2023, 10, 1187735. [Google Scholar] [CrossRef]
- Foscolou, A.; Georgousopoulou, E.; Magriplis, E.; Naumovski, N.; Rallidis, L.; Matalas, A.-L.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C.; Panagiotakos, D. The Mediating Role of Mediterranean Diet on the Association between Lp(a) Levels and Cardiovascular Disease Risk: A 10-Year Follow-up of the ATTICA Study. Clin. Biochem. 2018, 60, 33–37. [Google Scholar] [CrossRef]
- Fogacci, F.; Di Micoli, V.; Sabouret, P.; Giovannini, M.; Cicero, A.F.G. Lifestyle and Lipoprotein(a) Levels: Does a Specific Counseling Make Sense? J. Clin. Med. 2024, 13, 751. [Google Scholar] [CrossRef]
- Zhang, H.; Tong, T.K.; Kong, Z.; Shi, Q.; Liu, Y.; Nie, J. Exercise Training-Induced Visceral Fat Loss in Obese Women: The Role of Training Intensity and Modality. Scand. J. Med. Sci. Sports 2021, 31, 30–43. [Google Scholar] [CrossRef]
- Kastorini, C.-M.; Panagiotakos, D.B.; Chrysohoou, C.; Georgousopoulou, E.; Pitaraki, E.; Puddu, P.E.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C.; ATTICA Study Group. Metabolic Syndrome, Adherence to the Mediterranean Diet and 10-Year Cardiovascular Disease Incidence: The ATTICA Study. Atherosclerosis 2016, 246, 87–93. [Google Scholar] [CrossRef]
- Georgoulis, M.; Damigou, E.; Derdelakou, E.; Kosti, R.I.; Chrysohoou, C.; Barkas, F.; Kravvariti, E.; Tsioufis, C.; Pitsavos, C.; Liberopoulos, E.; et al. Adherence to the Mediterranean Diet and 20-Year Incidence of Hypertension: The ATTICA Prospective Epidemiological Study (2002–2022). Eur. J. Clin. Nutr. 2024, 78, 630–638. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Caples, S.M.; Lopez-Jimenez, F.; Somers, V.K. Interactions between Obesity and Obstructive Sleep Apnea. Chest 2010, 137, 711–719. [Google Scholar] [CrossRef]
- Sun, X.; Luo, J.; Wang, Y. Comparing the Effects of Supplemental Oxygen Therapy and Continuous Positive Airway Pressure on Patients with Obstructive Sleep Apnea: A Meta-Analysis of Randomized Controlled Trials. Sleep Breath. 2021, 25, 2231–2240. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.; Hughes, M.G.; Thomas, A.W.; Morris, K. The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants 2017, 6, 63. [Google Scholar] [CrossRef]
- Mendelson, M.; Marillier, M.; Bailly, S.; Flore, P.; Borel, J.-C.; Vivodtzev, I.; Doutreleau, S.; Tamisier, R.; Pépin, J.-L.; Verges, S. Maximal Exercise Capacity in Patients with Obstructive Sleep Apnoea Syndrome: A Systematic Review and Meta-Analysis. Eur. Respir. J. 2018, 51, 1702697. [Google Scholar] [CrossRef]
- Berger, M.; Raffin, J.; Pichot, V.; Hupin, D.; Garet, M.; Labeix, P.; Costes, F.; Barthélémy, J.-C.; Roche, F. Effect of Exercise Training on Heart Rate Variability in Patients with Obstructive Sleep Apnea: A Randomized Controlled Trial. Scand. J. Med. Sci. Sports 2019, 29, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, Y.; Zheng, H.; Liu, G.; Mei, A. Effects of 12 Weeks of Regular Aerobic Exercises on Autonomic Nervous System in Obstructive Sleep Apnea Syndrome Patients. Sleep Breath. Schlaf Atm. 2018, 22, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet: A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
Total | CPAPgroup | non-CPAPgroup | p Value | ||
---|---|---|---|---|---|
Apnea Hypopnea Index | events/h | 45.1 ± 24.1 | 52.0 ± 31.5 | 38.2 ± 21.5 | 0.114 |
Apnea | events/h | 15.8 ± 17.5 | 20.6 ± 12.3 | 11.0 ± 18.8 | 0.117 |
Hypopnea | events/h | 29.3 ± 15.0 | 31.3 ± 14.7 | 27.2 ± 15.3 | 0.392 |
N1 | % | 3.4 ± 1.6 | 3.7 ± 1.7 | 3.2 ± 1.5 | 0.388 |
N2 | % | 58.4 ± 10.5 | 59.6 ± 9.2 | 57.1 ± 11.8 | 0.454 |
N3 | % | 10.0 ± 6.3 | 9.6 ± 4.9 | 10.4 ± 7.5 | 0.690 |
REM | % | 11.9 ± 5.8 | 12.0 ± 4.8 | 11.7 ± 6.8 | 0.880 |
Sleep duration | min | 273.3 ± 56.0 | 272.5 ± 28.4 | 274.2 ± 75.1 | 0.925 |
Desaturation Index | 46.1 ± 29.8 | 52.4 ± 33.0 | 39.8 ± 25.3 | 0.185 | |
Nadir oxygen saturation | % | 63.6 ± 16.8 | 60.2 ± 18.7 | 67.1 ± 15.0 | 0.183 |
Average oxygen saturation | % | 87.1 ± 7.4 | 86.4 ± 7.2 | 87.7 ± 7.7 | 0.586 |
Oxygen saturation < 90% | mim | 32.7 ± 47.3 | 45.1 ± 59.2 | 20.2 ± 27.5 | 0.754 |
ΔNRO2 | % | 20.6 ± 14.0 | 37.0 ± 28.5 | 30.1 ± 25.1 | 0.176 |
Warm-up and cool-down | 15% of each session | Routine exercises |
Aerobic exercises | 60% of each session | Intermittent outdoor walking |
Strength exercise | 15% of each session | Multi-joint exercise (large muscle mass) |
Mobility-Flexibility | 10% of each session | Static or dynamic routine exercises |
CPAPgroup | noCPAPgroup | p Value between Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | After 12-w | % Changes | p Value | Baseline | After 12-w | % Change | p Value | Baseline | After 12-w | ||
Age | years | 49.7 ± 9.4 | - | - | - | 49.3 ± 10.7 | - | - | - | 0.632 | |
Sex (Female) | n | 1 | - | - | - | 5 | - | - | - | - | |
Body mass index | kg/m2 | 32.1 ± 7.6 | 31.8 ± 6.8 | −2.9 ± 2.1 | 0.048 | 32.3 ± 5.1 | 31.9 ± 4.6 | −3.3 ± 6.4 | 0.054 | 0.254 | 0.349 |
Body surface area | m2 | 2.4 ± 0.6 | 2.4 ± 0.5 | −2.9 ± 2.1 | 0.730 | 2.4 ± 0.4 | 2.3 ± 0.4 | −3.3 ± 6.4 | 0.371 | 0.837 | 0.098 |
Lean body mass | % | 78.8 ± 6.5 | 78.6 ± 6.2 | −0.9 ± 0.7 | 0.521 | 77.8 ± 6.7 | 77.5 ± 6.1 | −1.1 ± 2.2 | 0.125 | 0.457 | 0.572 |
Total body water | % | 50.8 ± 4.9 | 50.8 ± 4.4 | −1.0 ± 0.8 | 0.932 | 49.3 ± 4.1 | 49.5 ± 4.1 | 1.0 ± 1.6 | 0.960 | 0.594 | 0.648 |
Body fat | % | 31.1 ± 9.3 | 31.4 ± 8.7 | −4.4 ± 4.1 | 0.638 | 33.4 ± 9.0 | 38.0 ± 11.5 | 10.4 ± 16.3 | 0.563 | 0.852 | 0.732 |
Muscle mass | kg | 34.7 ± 10.6 | 31.1 ± 4.4 | −14.2 ± 36.9 | 0.568 | 28.0 ± 5.3 | 33.7 ± 13.2 | 23.1 ± 48.8 | 0.837 | 0.642 | 0.328 |
Visceral fat | score | 15.1 ± 5.1 | 14.8 ± 5.6 | −7.6 ± 8.5 | 0.328 | 15.1 ± 6.5 | 14.3 ± 6.1 | −8.9 ± 8.6 | 0.009 | 0.517 | 0.218 |
Neck circumference | cm | 42.0 ± 4.0 | 41.6 ± 4.0 | −2.6 ± 3.0 | 0.635 | 40.5 ± 4.0 | 39.9 ± 4.4 | −3.0 ± 3.2 | 0.463 | 0.680 | 0.426 |
Waist hip ratio | m | 1.0 ± 0.1 | 1.0 ± 0.1 | −3.2 ± 2.6 | 0.922 | 1.0 ± 0.1 | 1.0 ± 0.1 | −7.8 ± 6.5 | 0.292 | 0.642 | 0.583 |
Δchest | cm | 5.2 ± 2.4 | 5.9 ± 1.9 | 41.2 ± 23.6 | 0.317 | 6.0 ± 1.9 | 7.2 ± 2.2 | 30.8 ± 26.6 | 0.030 | 0.188 | 0.178 |
d-ROMs | U. carr. | 351.3 ± 107.4 | 321.2 ± 97.2 | −15.7 ± 12.6 | 0.453 | 327.6 ± 97.3 | 319.8 ± 87.6 | −31.2 ± 28.6 | 0.453 | 0.810 | 0.453 |
PAT | U. cor. | 2138.6 ± 563.8 | 2401.2 ± 235.4 | 29.6 ± 44.8 | 0.054 | 2140.9 ± 375.5 | 2563.2 ± 483.3 | 28.6 ± 24.9 | <0.001 | 0.043 | 0.047 |
Lipoprotein (a) | mg/dL | 14.1 ± 20.8 | 12.3 ± 20.9 | −32.2 ± 25.5 | 0.021 | 24.9 ± 22.4 | 17.7 ± 16.3 | −28.2 ± 16.9 | 0.034 | 0.682 | 0.421 |
PSQI | score | 7.7 ± 4.2 | 7.6 ± 3.3 | −36.5 ± 14.8 | 0.862 | 8.2 ± 5.2 | 7.9 ± 5.6 | −48.0 ± 79.1 | 0.654 | 0.451 | 0.333 |
ESS | score | 8.3 ± 3.2 | 7.0 ± 2.7 | −39.3 ± 37.4 | 0.732 | 8.4 ± 4.4 | 7.9 ± 4.2 | −19.8 ± 34.9 | 0.742 | 0.291 | 0.315 |
Mediterranean diet | score | 33.1 ± 3.1 | 31.5 ± 3.5 | −4.3 ± 11.7 | 0.077 | 30.6 ± 4.7 | 30.8 ± 4.2 | 2.4 ± 17.5 | 0.810 | 0.046 | 0.345 |
Handgrip | kg | 44.1 ± 7.9 | 45.1 ± 8.2 | 2.1 ± 3.9 | 0.623 | 39.9 ± 11.1 | 40.6 ± 10.9 | 11.7 ± 29.3 | 0.542 | 0.433 | 0.321 |
6MWT | m | 431.2 ± 54.7 | 519.9 ± 65.1 | 16.6 ± 9.3 | <0.001 | 474.8 ± 67.4 | 507.3 ± 72.0 | 7.5 ± 6.6 | 0.002 | 0.031 | <0.001 |
% of predicted | 72.6 ± 10.5 | 87.4 ± 14.1 | 16.3 ± 9.4 | <0.001 | 82.0 ± 14.7 | 87.3 ± 16.1 | 8.3 ± 7.4 | 0.007 | 0.026 | 0.432 | |
Hear rate resting | bpm | 73.7 ± 8.7 | 73.1 ± 6.7 | −4.3 ± 5.4 | 0.218 | 76.0 ± 9.6 | 76.8 ± 12.3 | 10.4 ± 7.2 | 0.387 | 0.221 | 0.119 |
Mean arterial pressure resting | mmHg | 95.9 ± 9.0 | 94.0 ± 6.6 | −5.5 ± 3.8 | 0.322 | 92.8 ± 5.6 | 93.8 ± 8.3 | 5.7 ± 4.1 | 0.528 | 0.107 | 0.096 |
Hear rate end-6MWT | bpm | 108.1 ± 9.4 | 111.8 ± 8.6 | 9.0 ± 6.3 | 0.355 | 117.6 ± 18.2 | 124.2 ± 23.2 | 13.1 ± 7.9 | 0.426 | 0.046 | 0.032 |
Mean arterial pressure end-6MWT | mmHg | 102.3 ± 11.7 | 100.1 ± 7.2 | −6.7 ± 5.3 | 0.129 | 99.6 ± 8.9 | 101.4 ± 6.3 | 6.3 ± 5.1 | 0.157 | 0.432 | 0.182 |
Hear rate 1st min recovery | bpm | 86.1 ± 12.1 | 91.5 ± 10.6 | 11.5 ± 6.4 | 0.441 | 91.2 ± 12.9 | 96.5 ± 15.0 | 13.1 ± 9.1 | 0.080 | 0.852 | 0.226 |
Mean arterial pressure 1st min recovery | mmHg | 95.4 ± 8.9 | 95.8 ± 5.2 | 6.7 ± 4.6 | 0.453 | 93.8 ± 5.7 | 96.8 ± 6.6 | 6.3 ± 4.3 | 0.242 | 0.642 | 0.433 |
Estimate oxygen uptake | mL·min·kg | 14.9 ± 1.3 | 16.9 ± 1.6 | 11.8 ± 6.7 | <0.001 | 15.9 ± 1.6 | 16.6 ± 1.7 | 5.2 ± 4.7 | 0.002 | 0.033 | 0.099 |
% of predicted | 29.1 ± 9.5 | 30.1 ± 10.7 | 5.0 ± 3.5 | 0.015 | 26.0 ± 11.3 | 26.5 ± 11.4 | 6.6 ± 11.9 | 0.324 | 0.131 | 0.327 | |
METs | 4.2 ± 0.4 | 4.8 ± 0.4 | 11.8 ± 6.7 | <0.001 | 4.5 ± 0.4 | 4.7 ± 0.5 | 5.2 ± 4.7 | 0.003 | 0.035 | 0.742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrou, V.T.; Papayianni, E.; Astara, K.; Vavougios, G.D.; Kontogianni, M.D.; Bargiota, A.; Pastaka, C.; Daniil, Z.; Gourgoulianis, K.I. Tele-Pulmonary Rehabilitation and Mediterranean-like Lifestyle, Adjunctively to Continuous Positive Airway Pressure in Obstructive Sleep Apnea Patients: Effects in Fitness and Oxidative Indicators. Appl. Sci. 2024, 14, 8424. https://doi.org/10.3390/app14188424
Stavrou VT, Papayianni E, Astara K, Vavougios GD, Kontogianni MD, Bargiota A, Pastaka C, Daniil Z, Gourgoulianis KI. Tele-Pulmonary Rehabilitation and Mediterranean-like Lifestyle, Adjunctively to Continuous Positive Airway Pressure in Obstructive Sleep Apnea Patients: Effects in Fitness and Oxidative Indicators. Applied Sciences. 2024; 14(18):8424. https://doi.org/10.3390/app14188424
Chicago/Turabian StyleStavrou, Vasileios T., Eirini Papayianni, Kyriaki Astara, George D. Vavougios, Meropi D. Kontogianni, Alexandra Bargiota, Chaido Pastaka, Zoe Daniil, and Konstantinos I. Gourgoulianis. 2024. "Tele-Pulmonary Rehabilitation and Mediterranean-like Lifestyle, Adjunctively to Continuous Positive Airway Pressure in Obstructive Sleep Apnea Patients: Effects in Fitness and Oxidative Indicators" Applied Sciences 14, no. 18: 8424. https://doi.org/10.3390/app14188424
APA StyleStavrou, V. T., Papayianni, E., Astara, K., Vavougios, G. D., Kontogianni, M. D., Bargiota, A., Pastaka, C., Daniil, Z., & Gourgoulianis, K. I. (2024). Tele-Pulmonary Rehabilitation and Mediterranean-like Lifestyle, Adjunctively to Continuous Positive Airway Pressure in Obstructive Sleep Apnea Patients: Effects in Fitness and Oxidative Indicators. Applied Sciences, 14(18), 8424. https://doi.org/10.3390/app14188424