The Lattice Boltzmann Method and Image Processing Techniques for Effective Parameter Estimation of Digital Rock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lattice Boltzmann
2.3. Porosity
2.4. Digital Image Analysis
2.5. Permeability
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schetz, J.A.; Fuhs, A.E. Fundamentals of Fluid Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Zhao, W.; Jia, C.; Jiang, L.; Zhang, T.; He, M.; Zhang, F.; Jiang, Z.; Li, X.; Wu, K. Fluid charging and hydrocarbon accumulation in the sweet spot, Ordos Basin, China. J. Pet. Sci. Eng. 2021, 200, 108391. [Google Scholar] [CrossRef]
- Stephens, D.B.; Hsu, K.C.; Prieksat, M.A.; Ankeny, M.D.; Blandford, N.; Roth, T.L.; Kelsey, J.A.; Whitworth, J.R. A comparison of estimated and calculated effective porosity. Hydrogeol. J. 1998, 6, 156–165. [Google Scholar] [CrossRef]
- Koponen, A.; Kataja, M.; Timonen, J. Permeability and effective porosity of porous media. Phys. Rev. E 1997, 56, 3319. [Google Scholar] [CrossRef]
- Boruah, N. Rock physics template (RPT) analysis of well logs for lithology and fluid classification. In Proceedings of the 8th International Conference Exposition on Petroleum Geophysics, Hyderabad, India, 1–3 February 2010; pp. 1–8. [Google Scholar]
- Az-Zahra, F.; Dharmawan, I.A. A Study of Geometrical Effects on Permeability Estimation in Three-dimensional Fractures Using the Lattice Boltzmann Method. CFD Lett. 2023, 15, 1–18. [Google Scholar] [CrossRef]
- Lucas-Oliveira, E.; Araujo-Ferreira, A.G.; Trevizan, W.A.; dos Santos, B.C.C.; Bonagamba, T.J. Sandstone surface relaxivity determined by NMR T2 distribution and digital rock simulation for permeability evaluation. J. Pet. Sci. Eng. 2020, 193, 107400. [Google Scholar] [CrossRef]
- Winardhi, C.; Maulana, F.; Latief, F. Permeability estimation of porous rock by means of fluid flow simulation and digital image analysis. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 29, p. 012005. [Google Scholar]
- Al-Marzouqi, H. Digital rock physics: Using CT scans to compute rock properties. IEEE Signal Process. Mag. 2018, 35, 121–131. [Google Scholar] [CrossRef]
- Filomena, C.; Hornung, J.; Stollhofen, H. Assessing accuracy of gas-driven permeability measurements: A comparative study of diverse Hassler-cell and probe permeameter devices. Solid Earth 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Jin, Y.; Dong, J.; Zhang, X.; Li, X.; Wu, Y. Scale and size effects on fluid flow through self-affine rough fractures. Int. J. Heat Mass Transf. 2017, 105, 443–451. [Google Scholar] [CrossRef]
- Dharmawan, I.; Ulhag, R.; Endyana, C.; Aufaristama, M. Numerical simulation of non-Newtonian fluid flows through fracture network. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 29, p. 012030. [Google Scholar]
- Zhao, Y.L.; Wang, Z.; Ye, J.; Sun, H.; Gu, J. Lattice Boltzmann simulation of gas flow and permeability prediction in coal fracture networks. J. Nat. Gas Sci. Eng. 2018, 53, 153–162. [Google Scholar] [CrossRef]
- Narváez, A.; Harting, J. Evaluation of pressure boundary conditions for permeability calculations using the lattice-Boltzmann method. arXiv 2010, arXiv:1005.2322. [Google Scholar]
- Chen, S.; Yang, B.; Zheng, C. A lattice Boltzmann model for heat transfer in porous media. Int. J. Heat Mass Transf. 2017, 111, 1019–1022. [Google Scholar] [CrossRef]
- Neumann, R.; Andreeta, M.; Lucas-Oliveira, E. 11 Sandstones: Raw, Filtered and Segmented Data. 2020. Available online: https://www.digitalrocksportal.org/projects/317 (accessed on 17 March 2024). [CrossRef]
- Krause, M.J.; Kummerländer, A.; Avis, S.J.; Kusumaatmaja, H.; Dapelo, D.; Klemens, F.; Gaedtke, M.; Hafen, N.; Mink, A.; Trunk, R.; et al. OpenLB—Open source lattice Boltzmann code. Comput. Math. Appl. 2021, 81, 258–288. [Google Scholar] [CrossRef]
- Zhao, H.; Ning, Z.; Kang, Q.; Chen, L.; Zhao, T. Relative permeability of two immiscible fluids flowing through porous media determined by lattice Boltzmann method. Int. Commun. Heat Mass Transf. 2017, 85, 53–61. [Google Scholar] [CrossRef]
- Koponen, A.; Kataja, M.; Timonen, J.; Kandhai, D. Simulations of single-fluid flow in porous media. Int. J. Mod. Phys. C 1998, 9, 1505–1521. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, J.; Wang, H.; Xia, Y.; Cai, J. Single phase flow simulation in porous media by physical-informed Unet network based on lattice Boltzmann method. J. Hydrol. 2024, 639, 131501. [Google Scholar] [CrossRef]
- Yan, G.; Li, Z.; Bore, T.; Torres, S.A.G.; Scheuermann, A.; Li, L. Discovery of Dynamic Two-Phase Flow in Porous Media Using Two-Dimensional Multiphase Lattice Boltzmann Simulation. Energies 2021, 14, 4044. [Google Scholar] [CrossRef]
- Dou, Z.; Zhou, Z.F. Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method. Int. J. Heat Fluid Flow 2013, 42, 23–32. [Google Scholar] [CrossRef]
- Espinoza-Andaluz, M.; Moyón, A.; Andersson, M. A comparative study between D2Q9 and D2Q5 lattice Boltzmann scheme for mass transport phenomena in porous media. Comput. Math. Appl. 2019, 78, 2886–2896. [Google Scholar] [CrossRef]
- Ashirbekov, A.; Kabdenova, B.; Monaco, E.; Rojas-Solórzano, L.R. Equation of State’s Crossover Enhancement of Pseudopotential Lattice Boltzmann Modeling of CO2 Flow in Homogeneous Porous Media. Fluids 2021, 6, 434. [Google Scholar] [CrossRef]
- Coon, E.T.; Porter, M.L.; Kang, Q. Taxila LBM: A parallel, modular lattice Boltzmann framework for simulating pore-scale flow in porous media. Comput. Geosci. 2014, 18, 17–27. [Google Scholar] [CrossRef]
- Neumann, R.F.; Barsi-Andreeta, M.; Lucas-Oliveira, E.; Barbalho, H.; Trevizan, W.A.; Bonagamba, T.J.; Steiner, M.B. High accuracy capillary network representation in digital rock reveals permeability scaling functions. Sci. Rep. 2021, 11, 11370. [Google Scholar] [CrossRef] [PubMed]
- Nabawy, B.S. Estimating porosity and permeability using digital image analysis (DIA) technique for highly porous sandstones. Arab. J. Geosci. 2014, 7, 889–898. [Google Scholar] [CrossRef]
- Latief, F.; Rizki, R.; Hutami, H. Digital Rock Physics Investigation in Outcrop Sandstone Reservoir. J. Sci. Appl. Technol. 2019, 2, 20–25. [Google Scholar]
- Espinoza-Andaluz, M.; Pagalo, J.; Ávila, J.; Barzola-Monteses, J. An alternative methodology to compute the geometric tortuosity in 2D porous media using the A-Star pathfinding algorithm. Computation 2022, 10, 59. [Google Scholar] [CrossRef]
- Fu, J.; Thomas, H.R.; Li, C. Tortuosity of porous media: Image analysis and physical simulation. Earth-Sci. Rev. 2021, 212, 103439. [Google Scholar] [CrossRef]
- Akmal, F.; Dzulizar, M.C.R.; Rafli, M.F.; Az-Zahra, F.; Haq, M.K.; Dharmawan, I.A. Machine learning prediction of tortuosity in digital rock. J. Geosci. Eng. Environ. Technol. 2023, 8, 06–12. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zhang, X. Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Trower, E.J.; Ganti, V.; Fischer, W.W.; Lamb, M.P. Erosional surfaces in the Upper Cretaceous Castlegate Sandstone (Utah, USA): Sequence boundaries or autogenic scour from backwater hydrodynamics? Geology 2018, 46, 707–710. [Google Scholar] [CrossRef]
- Quinteros, J.; Kind, M.V. A wavelet-based methodology for data integration in reservoir modeling. In Proceedings of the VII Congreso de Exploracion y Desarrollo de Hidrocaburus (Simposio de Modelado Geologico), European Association of Geoscientists & Engineers, Buenos Aires, Argentina, 5–8 November 2008; pp. cp–265. [Google Scholar]
Model | |
---|---|
D2Q9 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurcahya, A.; Alexandra, A.; Akmal, F.; Dharmawan, I.A. The Lattice Boltzmann Method and Image Processing Techniques for Effective Parameter Estimation of Digital Rock. Appl. Sci. 2024, 14, 7509. https://doi.org/10.3390/app14177509
Nurcahya A, Alexandra A, Akmal F, Dharmawan IA. The Lattice Boltzmann Method and Image Processing Techniques for Effective Parameter Estimation of Digital Rock. Applied Sciences. 2024; 14(17):7509. https://doi.org/10.3390/app14177509
Chicago/Turabian StyleNurcahya, Ardian, Aldenia Alexandra, Fadhillah Akmal, and Irwan Ary Dharmawan. 2024. "The Lattice Boltzmann Method and Image Processing Techniques for Effective Parameter Estimation of Digital Rock" Applied Sciences 14, no. 17: 7509. https://doi.org/10.3390/app14177509
APA StyleNurcahya, A., Alexandra, A., Akmal, F., & Dharmawan, I. A. (2024). The Lattice Boltzmann Method and Image Processing Techniques for Effective Parameter Estimation of Digital Rock. Applied Sciences, 14(17), 7509. https://doi.org/10.3390/app14177509