Relationship of Vitamin D Status with Biomarkers of Muscle Damage and Body Composition in Spanish Elite Female Football Players: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Ethics Statement
2.3. Participants
2.4. Procedure
2.4.1. Anthropometric Measurements
2.4.2. Biochemical Analysis
2.4.3. Menstrual Cycle
2.4.4. Dietary Habits
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callahan, L.R. The evolution of the female athlete: Progress and problems. Pediatr. Ann. 2000, 29, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Nassis, G.P.; Brito, J.; Tomás, R.; Heiner-Møller, K.; Harder, P.; Kryger, K.O.; Krustrup, P. Elite women’s football: Evolution and challenges for the years ahead. Scand. J. Med. Sci. Sports 2022, 32, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Sims, S.T.; Kerksick, C.M.; Smith-Ryan, A.E.; Janse de Jonge, X.A.K.; Hirsch, K.R.; Arent, S.M.; Hewlings, S.J.; Kleiner, S.M.; Bustillo, E.; Tartar, J.L.; et al. International society of sports nutrition position stand: Nutritional concerns of the female athlete. J. Int. Soc. Sports Nutr. 2023, 20, 2204066. [Google Scholar] [CrossRef] [PubMed]
- Pilis, K.; Stec, K.; Pilis, A.; Mroczek, A.; Michalski, C.; Pilis, W. Body composition and nutrition of female athletes. Rocz. Państwowego Zakładu Hig. 2019, 70, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Sygo, J.; Morton, J.P. Fuelling the female athlete: Carbohydrate and protein recommendations. Eur. J. Sport Sci. 2022, 22, 684–696. [Google Scholar] [CrossRef] [PubMed]
- López-Torres, O.; Rodríguez-Longobardo, C.; Capel-Escoriza, R.; Fernández-Elías, V.E. Ergogenic aids to improve physical performance in female athletes: A systematic review with meta-analysis. Nutrients 2022, 15, 81. [Google Scholar] [CrossRef]
- Grabia, M.; Perkowski, J.; Socha, K.; Markiewicz-Żukowska, R. Female athlete triad and relative energy deficiency in sport (REDs): Nutritional management. Nutrients 2024, 16, 359. [Google Scholar] [CrossRef]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [CrossRef]
- Coelho, A.R.; Cardoso, G.; Brito, M.E.; Gomes, I.N.; Cascais, M.J. The female athlete triad/relative energy deficiency in sports (RED-S). Rev. Bras. Ginecol. Obstet. 2021, 43, 395–402. [Google Scholar] [CrossRef]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Abreu, R.; Figueiredo, P.; Beckert, P.; Marques, J.P.; Amorim, S.; Caetano, C.; Carvalho, P.; Sá, C.; Cotovio, R.; Cruz, J.; et al. Portuguese Football Federation consensus statement 2020: Nutrition and performance in football. BMJ Open Sport Exerc. Med. 2021, 7, e001082. [Google Scholar] [CrossRef] [PubMed]
- Angelini, F.; Marzatico, F.; Stesina, G.; Stefanini, L.; Bonuccelli, A.; Beschi, S.; Buonocore, D.; Rucci, S.; Tencone, F. Seasonal pattern of vitamin D in male elite soccer players. J. Int. Soc. Sports Nutr. 2011, 8 (Suppl. S1). [Google Scholar] [CrossRef]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Margioris, A.N. Vitamin D and exercise performance in professional soccer players. PLoS ONE 2014, 9, e101659. [Google Scholar] [CrossRef] [PubMed]
- Valtueña, J.; Aparicio-Ugarriza, R.; Medina, D.; Lizarraga, A.; Rodas, G.; González-Gross, M.; Drobnic, F. Vitamin D status in Spanish elite team sport players. Nutrients 2021, 13, 1311. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, D.E.; Woolf, K.; Burke, L. Assessment of nutrient status in athletes and the need for supplementation. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 139–158. [Google Scholar] [CrossRef]
- Heller, J.E.; Thomas, J.J.; Hollis, B.W.; Larson-Meyer, D.E. Relation between vitamin D status and body composition in collegiate athletes. Int. J. Sport. Nutr. Exerc. Metab. 2015, 25, 128–135. [Google Scholar] [CrossRef]
- Oliai Araghi, S.; van Dijk, S.C.; Ham, A.C.; Brouwer-Brolsma, E.M.; Enneman, A.W.; Sohl, E.; Swart, K.M.A.; van der Zwaluw, N.L.; van Wijngaarden, J.P.; Dhonukshe-Rutten, R.A.M.; et al. BMI and body fat mass is inversely associated with vitamin D levels in older individuals. J. Nutr. Health Aging 2015, 19, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Caballero-García, A.; Córdova-Martínez, A.; Vicente-Salar, N.; Roche, E.; Pérez-Valdecantos, D. Vitamin D, its role in recovery after muscular damage following exercise. Nutrients 2021, 13, 2336. [Google Scholar] [CrossRef]
- Ishikawa, T.; Kawai, K.; Kanayama, M.; Wada, Y. Increased serum creatine kinase due to hypocalcemia in vitamin D deficiency. Pediatr. Neurol. 1987, 3, 37–39. [Google Scholar] [CrossRef]
- Hammouda, O.; Chtourou, H.; Chaouachi, A.; Chahed, H.; Ferchichi, S.; Kallel, C.; Chamari, K.; Souissi, N. Effect of short-term maximal exercise on biochemical markers of muscle damage, total antioxidant status, and homocysteine levels in football players. Asian J. Sports Med. 2012, 3, 239–246. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G. Skinfolds and Body Density and Their Relation to Body Fatness: A Review. Hum. Biol. 1981, 53, 181–225. [Google Scholar] [PubMed]
- Norton, K. Standards for anthropometry assessment. In Kinanthropometry and Exercise Physiology; Routledge: London, UK, 2018; pp. 68–137. [Google Scholar]
- Cabañas, M.; Esparza, F. Compendio de Cineantropometría; CTO Editorial: Madrid, Spain, 2009; Volume 2, 496p. [Google Scholar]
- Núñez, F.J.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Validity of field methods to estimate fat-free mass changes throughout the season in elite youth football players. Front. Physiol. 2020, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Burke, L. Nutrition for recovery after training and competition. In Clinical Sports Nutrition, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2015; pp. 420–462. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchnr, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Ortega Páez, E.; Ochoa Sangrador, C.; Molina Arias, M. Pruebas No Paramétricas. 2021. Available online: https://evidenciasenpediatria.es/articulo.php?lang=es&id=7892 (accessed on 1 February 2024).
- Gómez-Gómez, M.; Danglot-Banck, C.; Vega-Franco, L. Sinopsis de Pruebas Estadísticas No Paramétricas. Cuándo Usarlas. Revista Mexicana de Pediatría 2003; Volume 70. Available online: https://d1wqtxts1xzle7.cloudfront.net/94464813/Sinopsis_pruebas_no_parametricas-libre.pdf?1668784350=&response-content-disposition=inline%3B+filename%3DSinopsis_de_pruebas_estadisticas_no_para.pdf&Expires=1721354318&Signature=az8D8O9a227xriVKTkfwR2qRjMkd0AKF1vu9EixYwlKfiUIFB7Y7CPD8BBi1SYujLZhCmzLyYO41R4EsyhRlAyGc~MIz8ox9H2pRaYq9IqqoSEwprxmkYMXFJGHNcpq9c8hIa~4ID~YhIx3Eo2pAQUonFJosrb5bh2kejMF6G33Nmx6muUW1bwU5saCpQ7dyWc6nbccuinzDYAgAyYfKDjWHBukO-LpaeIrdwbsUs9Y-XVHlxLm~KMg2FQObwiISuY1BuLvyWn88P-6Dp1DFBtzs7QrFUv4BCyqz8lt43Bm-fe~HjQAvb1Zb7UJ28HhB6yf6HAOl3ApSDs3VxjOqwQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 1 February 2024).
- Vanlint, S. Vitamin D and obesity. Nutrients 2013, 5, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Butscheidt, S.; Rolvien, T.; Ueblacker, P.; Amling, M.; Barvencik, F. Impact of vitamin D in sports: Does vitamin D insufficiency compromise athletic performance? Sportverletz. Sportschaden Organ Ges. Orthop.-Traumatol. Sportmed. 2017, 31, 37–44. [Google Scholar]
- Shuler, F.D.; Wingate, M.K.; Moore, G.H.; Giangarra, C. Sports health benefits of vitamin D. Sports Health 2012, 4, 496–501. [Google Scholar] [CrossRef]
- Han, S.S.; Kim, M.; Lee, S.M.; Lee, J.P.; Kim, S.; Joo, K.W.; Lim, C.S.; Kim, Y.S.; Kim, D.K. Association between body fat and vitamin D status in Korean adults. Asia Pac. J. Clin. Nutr. 2014, 23, 65–75. [Google Scholar]
- Ingebrigtsen, J.; Dillern, T.; Shalfawi, S.A.I. Aerobic capacities and anthropometric characteristics of elite female football players. J. Strength Cond. Res. 2011, 25, 3352–3357. [Google Scholar] [CrossRef]
- Goranovic, K.; Lilić, A.; Karišik, S.; Eler, N.; Anđelić, M.; Joksimović, M. Morphological characteristics, body composition and explosive power in female football professional players. J. Phys. Educ. Sport 2021, 21, 81–87. [Google Scholar]
- Idrizovic, K. Physical and anthropometric profiles of elite female football players. Med. Sport. 2014, 67, 273–287. [Google Scholar]
- Villaseca-Vicuña, R.; Molina-Sotomayor, E.; Zabaloy, S.; Gonzalez-Jurado, J.A. Anthropometric profile and physical fitness performance comparison by game position in the Chile women’s senior national football team. Appl. Sci. 2021, 11, 2004. [Google Scholar] [CrossRef]
- Griffin, J.; Horan, S.; Keogh, J.; Dodd, K.; Andreatta, M.; Minahan, C. Contextual factors influencing the characteristics of female football players. J. Sports Med. Phys. Fit. 2021, 61, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Oyón, P.; Franco, L.; Rubio, F.J.; Valero, A. Young women football players. Anthropometric and physiological characteristics. Evolution in a sports season. Arch. Med. Deporte 2016, 33, 24–28. [Google Scholar]
- Lee, J.H.; Song, C.H.; Yum, K.S.; Kim, K.S.; Nam, S.W.; Han, J.Y.; Sun, H.S. Age Associated Changes in Body Mass Index and Body Fat Distribution. J. Korean Acad. Fam. Med. 2003, 24, 1010–1016. [Google Scholar]
- Baker, M.R.; Peacock, M.; Nordin, B.E.C. The decline in vitamin d status with age. Age Ageing 1980, 9, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Staśkiewicz, W.; Grochowska-Niedworok, E.; Zydek, G.; Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Jaruga-Sękowska, S.; Kowalski, O.; Kardas, M. The assessment of body composition and nutritional awareness of football players according to age. Nutrients 2023, 15, 705. [Google Scholar] [CrossRef] [PubMed]
- Rojano-Ortega, D.; Berral-de la Rosa, F.J. Effects of vitamin D supplementation on muscle function and recovery after exercise-induced muscle damage: A systematic review. J. Hum. Nutr. Diet. 2023, 36, 1068–1078. [Google Scholar] [CrossRef]
- Kurnik, D.; Hochman, I.; Vesterman-Landes, J.; Kenig, T.; Katzir, I.; Lomnicky, Y.; Halkin, H.; Loebstein, R. Muscle pain and serum creatine kinase are not associated with low serum 25(OH) vitamin D levels in patients receiving statins. Clin. Endocrinol. 2012, 77, 36–41. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Kim, J. Effect of body fat percentage on muscle damage induced by high-intensity eccentric exercise. Int. J. Environ. Res. Public Health 2020, 17, 3476. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J. The relationship of creatine kinase variability with body composition and muscle damage markers following eccentric muscle contractions. J. Exerc. Nutr. Biochem. 2015, 19, 123–129. [Google Scholar] [CrossRef] [PubMed]
- García-Romero-Pérez, Á.; Ordonez, F.J.; Reyes-Gil, F.; Rodríguez-López, E.S.; Oliva-Pascual-Vaca, Á. Muscle damage biomarkers in congestion weeks in English Premier League football players: A prospective study for two consecutive seasons. Int. J. Environ. Res. Public Health 2021, 18, 7960. [Google Scholar] [CrossRef] [PubMed]
- Stanforth, P.R.; Crim, B.N.; Stanforth, D.; Stults-Kolehmainen, M.A. Body composition changes among female NCAA division 1 athletes across the competitive season and over a multiyear time frame. J. Strength Cond. Res. 2014, 28, 300–307. [Google Scholar] [CrossRef]
- Markus, I.; Constantini, K.; Hoffman, J.R.; Bartolomei, S.; Gepner, Y. Exercise-induced muscle damage: Mechanism, assessment and nutritional factors to accelerate recovery. Eur. J. Appl. Physiol. 2021, 121, 969–992. [Google Scholar] [CrossRef] [PubMed]
Total (n = 21) | Goalkeeper (n = 2) | Defender (n = 6) | Midfielder (n = 8) | Forward (n = 5) | Kruskal–Wallis Test | ||
---|---|---|---|---|---|---|---|
M (Min–Max, IQR) | M (Min–Max) | M (Min–Max) | M (Min–Max) | M (Min–Max) | H | p | |
Age | 24 (20–33, 4) | 24.50 (21–28) | 24.50 (21.00–29.00) | 22 (20–30) | 25.00 (23.00–33.00) | 3.909 | 0.271 |
Weight (kg) | 62.00 (53.70–80.60, 12.00) | 69.80 (62.00–77.60) | 65.05 (56.30–70.30) | 56.65 (53.70–74.50) | 60.80 (54.20–80.60) | 4.292 | 0.232 |
Height (m) | 1.67 (1.55–1.81, 0.10) | 1.69 (1.63–1.74) | 1.69 (1.64–1.75) | 1.64 (1.55–1.81) | 1.69 (1.64–1.79) | 2.674 | 0.445 |
BMI (kg/m2) | 22.37 (18.98–25.63, 1.92) | 24.48 (23.34–25.63) | 22.43 (20.93–24.91) | 21.54 (20.21–22.81) | 22.06 (18.98–25.16) | 5.324 | 0.150 |
% Fat Mass Carter | 16.32 (12.87–26.14, 4.71) | 21.42 (21.03–21.81) | 16.38 (12.87–18.63) | 16.81 (13.86–26.14) | 15.03 (13.71–16.82) | 6.345 | 0.096 |
FFM (kg) | 51.18 (44.24–68.48, 8.62) | 54.82 (48.96–60.68) | 54.05 (49.06–60.75) | 47.37 (44.24–55.03) | 52.01 (46.77–68.48) | 6.614 | 0.085 |
FM (kg) | 10.46 (7.24–19.47, 2.74) | 14.98 (13.04–16.92) | 10.60 (7.24–11.72) | 9.81 (7.46–19.47) | 9.25 (7.43–12.12) | 4.349 | 0.226 |
Vitamin D (ng/mL) | 35.80 (18.70–63.80, 13.85) | 35.75 (24.80–46.70) | 31.65 (23.40–37.50) | 34.80 (18.70–45.80) | 39.50 (22.60–63.80) | 1.145 | 0.766 |
Vitamin D Deficiency * (n = 7) | Adequate Vitamin D * (n = 14) | Mann–Whitney Test | ||
---|---|---|---|---|
M (Min–Max, IQR) | M (Min–Max, IQR) | U | p | |
Age | 23.00 (20.00–29.00, 3.00) | 25.00 (20.00–33.00, 4.50) | 30.00 | 0.153 |
Anthropometric variables | ||||
% Fat Mass Carter | 16.76 (15.03–26.14, 5.48) | 15.71 (12.87–21.03, 3.93) | 26.00 | 0.086 |
FM (kg) | 11.72 (8.95–19.47, 5.66) | 9.40 (7.24–13.04, 3.41) | 15.00 | 0.011 |
FFM (kg) | 55.94 (45.85–68.48) | 49.05 (44.24–60.75, 6.17) | 24.00 | 0.062 |
Biochemical variables (reference values *) | ||||
Haemoglobin (12.0–16.5 g/dL) | 13.20 (11.80–14.50, 1.70) | 13.30 (12.10–14.20, 0.82) | 45.00 | 0.765 |
Creatinine (0.55–1.02 mg/dL) | 0.91 (0.76–1.18, 0.27) | 0.94 (0.61–11.18, 0.19) | 42.00 | 0.601 |
Magnesium (1.60–2.6 mg/dL **) | 2.11 (1.83–2.16, 0.14) | 2.07 (1.90–2.30, 0.13) | 45.00 | 0.765 |
CK (26–192 UI/L) | 158.00 (67.60–307.00, 90.00) | 190.00 (93.70–290.00, 80.75) | 43.00 | 0.654 |
Total Cholesterol (140–240 mg/dL) | 157.00 (119.00–177.00, 43.00) | 160.00 (114.00–204.00, 20.50) | 36.00 | 0.331 |
Ferritin (8–252 ng/mL) | 62.10 (13.80–123.00, 82.00) | 75.55 (12.40–181.00, 62.33) | 46.00 | 0.823 |
Serum iron (50–170 µg/dL) | 65.00 (40.00–147.00, 48.00) | 83.50 (32.00–168.00, 44.50) | 38.00 | 0.412 |
Transferrin (215–365 mg/dL) | 248.00 (208.00–361.00, 64.00) | 243.50 (195.00–337.00, 54.25) | 43.50 | 0.681 |
TSI (15–50%) | 18.81 (7.90–35.68, 11.21) | 22.50 (8.08–51.36, 19.63) | 35.00 | 0.296 |
Basal Cortisol (10–26 µg/dL) | 19.90 (16.90–22.80, 1.70) | 17.85 (14.20–21.70, 4.78) | 24.00 | 0.062 |
Testosterone (12–59 ng/dL) | 32.26 (23.76–51.39, 17.96) | 39.97 (10.40–71.41, 22.86) | 46.00 | 0.823 |
Free Testosterone (0.02–4.6 pg/mL ***) | 1.10 (0.80–1.80, 0.80) | 1.30 (0.70–2.50, 0.83) | 42.00 | 0.599 |
Serotonin (0–200 ng/mL) | 93.00 (70.00–241.00, 49.00) | 124.50 (58.00–178.00, 59.50) | 35.00 | 0.322 |
Regular menstrual cycle (%) | 85.7 | 78.6 | 0.694 # |
Vit D low | Vit D ade | Age | Creatinine | CK | ||
---|---|---|---|---|---|---|
Vit D low | R | −0.873 * | 0.036 | −0.571 | ||
Vit D ade | R | 0.657 * | 0.227 | 0.222 | ||
Weight | R | −0.464 | 0.058 | −0.210 | 0.294 | −0.165 |
Height | R | −0.536 | 0.115 | −0.221 | 0.405 | −0.078 |
BMI | R | −0.500 | 0.026 | −0.116 | 0.044 | −0.082 |
% FM Carter | R | −0.286 | 0.328 | −0.133 | −0.048 | −0.325 |
FFM (kg) | R | −0.071 | −0.172 | −0.176 | 0.358 | −0.142 |
FM (kg) | R | −0.786 * | 0.213 | −0.225 | 0.109 | −0.245 |
B | p | OR | 95% CI | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Vitamin D deficiency | −0.030 | 0.706 | 0.970 | 0.829 | 1.136 |
Irregular menstrual cycle | 0.188 | 0.893 | 1.207 | 0.077 | 18.853 |
No exclusive consumption of carbohydrate-rich foods before training | −2.260 | 0.120 | 0.104 | 0.006 | 1.809 |
No consumption of protein-rich foods after training only | 1.383 | 0.389 | 3.986 | 0.172 | 92.554 |
>2 h in post-exercise ingestion | 0.395 | 0.810 | 1.485 | 0.059 | 37.450 |
%FM | 0.3368 | 0.492 | 1.445 | 0.505 | 4.136 |
FM (kg) | 0.303 | 0.679 | 1.354 | 0.322 | 5.704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Fernandez, A.; Rojas, J.P.; Gimenez-Blasi, N.; Conde-Pipó, J.; Latorre, J.A.; Mariscal-Arcas, M. Relationship of Vitamin D Status with Biomarkers of Muscle Damage and Body Composition in Spanish Elite Female Football Players: A Cross-Sectional Study. Appl. Sci. 2024, 14, 6349. https://doi.org/10.3390/app14146349
Mora-Fernandez A, Rojas JP, Gimenez-Blasi N, Conde-Pipó J, Latorre JA, Mariscal-Arcas M. Relationship of Vitamin D Status with Biomarkers of Muscle Damage and Body Composition in Spanish Elite Female Football Players: A Cross-Sectional Study. Applied Sciences. 2024; 14(14):6349. https://doi.org/10.3390/app14146349
Chicago/Turabian StyleMora-Fernandez, Agustin, Julia Peinado Rojas, Nuria Gimenez-Blasi, Javier Conde-Pipó, Jose Antonio Latorre, and Miguel Mariscal-Arcas. 2024. "Relationship of Vitamin D Status with Biomarkers of Muscle Damage and Body Composition in Spanish Elite Female Football Players: A Cross-Sectional Study" Applied Sciences 14, no. 14: 6349. https://doi.org/10.3390/app14146349
APA StyleMora-Fernandez, A., Rojas, J. P., Gimenez-Blasi, N., Conde-Pipó, J., Latorre, J. A., & Mariscal-Arcas, M. (2024). Relationship of Vitamin D Status with Biomarkers of Muscle Damage and Body Composition in Spanish Elite Female Football Players: A Cross-Sectional Study. Applied Sciences, 14(14), 6349. https://doi.org/10.3390/app14146349