Comparison of the Sliding Resistance of Metallic, Composite and In-House 3D-Printed Brackets: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Study Set-Up
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wedrychowska-Szulc, B.; Syryńska, M. Patient and parent motivation for orthodontic treatment—A questionnaire study. Eur. J. Orthod. 2010, 32, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Rosvall, M.D.; Fields, H.W.; Ziuchkovski, J.; Rosenstiel, S.F.; Johnston, W.M. Attractiveness, acceptability, and value of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 276.e1–276.e12; discussion 276–277. [Google Scholar] [CrossRef]
- Gottlieb, E.L.; Nelson, A.H.; Vogels, D.S. JCO study of orthodontic diagnosis and treatment procedures part 1: Results and trends. J. Clin. Orthod. 1996, 30, 615–629. [Google Scholar]
- Russell, J.S. Aesthetic orthodontic brackets. J. Orthod. 2005, 32, 146–163. [Google Scholar] [CrossRef]
- Aslan, B.I.; Uzuner, F.D. Current Approaches in Orthodontics, 1st ed.; IntechOpen: London, UK, 2019; pp. 5–23. [Google Scholar]
- Viazis, A.D.; DeLong, R.; Bevis, R.R.; Douglas, W.H.; Speidel, T.M. Enamel surface abrasion from ceramic orthodontic brackets: A special case report. Am. J. Orthod. Dentofac. Orthop. 1989, 96, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Kitahara-Ceia, F.M.; Mucha, J.N.; dos Santos, P.A.M. Assessment of enamel damage after removal of ceramic brackets. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 548–555. [Google Scholar] [CrossRef]
- Articolo, L.C.; Kusy, R.P. Influence of angulation on the resistance to sliding in fixed appliances. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 39–51. [Google Scholar] [CrossRef]
- Kusy, R.P.; Whitley, J.Q. Coefficients of friction for arch wires in stainless steel and polycrystalline alumina bracket slots. I: The dry state. Am. J. Orthod. Dentofac. Orthop. 1990, 98, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Ireland, A.J.; Sherriff, M.; McDonald, F. Effect of bracket and wire composition on frictional forces. Eur. J. Orthod. 1991, 13, 322–328. [Google Scholar] [CrossRef]
- Keith, O.; Jones, S.P.; Davies, E.H. The influence of bracket material, ligation force and wear on frictional resistance of orthodontic brackets. Br. J. Orthod. 1993, 20, 109–115. [Google Scholar] [CrossRef]
- Loftus, B.P.; Artun, J.; Nicholls, J.I.; Alonzo, T.A.; Stoner, J.A. Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Bazakidou, E.; Nanda, R.; Duncanson, M.G.; Sinha, P. Evaluation of frictional resistance in esthetic brackets. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Karamouzos, A.; Athanasiou, A.E.; Papadopoulos, M.A. Clinical characteristics and properties of ceramic brackets: A comprehensive review. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kusy, R.P.; Whitley, J.Q. Friction between different wire-bracket configurations and materials. Semin. Orthod. 1997, 3, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Read-Ward, G.E.; Jones, S.P.; Davies, E.H. A comparison of self-ligating and conventional orthodontic bracket systems. Br. J. Orthod. 1997, 24, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Kapur, R.; Sinha, P.K.; Nanda, R.S. Comparison of frictional resistance in titanium and stainless-steel brackets. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Cacciafesta, V.; Sfondrini, M.F.; Scribante, A.; Klersy, C.; Auricchio, F. Evaluation of friction of conventional and metal-insert ceramic brackets in various bracket archwire combinations. J. Orthod. Dentofac. Orthop. 2003, 124, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, R.K.; Kwon, H.K.; Sciote, J.J.; Close, J.M. Frictional resistance in ceramic and metal brackets. J. Clin. Orthod. 2004, 38, 35–38. [Google Scholar]
- Saunders, C.R.; Kusy, R.P. Surface topography and frictional characteristics of ceramic brackets. Am. J. Orthod. Dentofac. Orthop. 1994, 106, 76–87. [Google Scholar] [CrossRef]
- Proffit, W.R. Contemporary Orthodontics; Mosby Inc.: St. Louis, MO, USA, 2000; pp. 385–416, 556. [Google Scholar]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020, 9, 3357. [Google Scholar] [CrossRef] [PubMed]
- Brucculeri, L.; Carpanese, C.; Palone, M.; Lombardo, L. In-House 3D-Printed vs. Conventional Bracket: An In Vitro Comparative Analysis of Real and Nominal Bracket Slot Heights. Appl. Sci. 2022, 12, 10120. [Google Scholar] [CrossRef]
- Papageorgiou, S.N.; Polychronis, G.; Panayi, N.; Zinelis, S.; Eliades, T. New aesthetic in-house 3D-printed brackets: Proof of concept and fundamental mechanical properties. Prog. Orthod. 2022, 23, 6. [Google Scholar] [CrossRef] [PubMed]
- Panayi, N.C. In-house three-dimensional designing and printing customized brackets. J. World Fed. Orthod. 2022, 11, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Albertini, P.; Franciosi, F.; Palone, M.; Mollica, F.; Cremonini, F. Comparative Analysis of Sliding Resistance of Different Lingual Systems. Pesqui. Bras. Odontopediatria Clínica Integr. 2022, 21, e210025. [Google Scholar] [CrossRef]
- Hodecker, L.; Bourauel, C.; Braumann, B.; Kruse, T.; Christ, H.; Scharf, S. Comparative in vitro analysis of the sliding resistance of a modern 3D-printed polymer bracket in combination with different archwire types. Clin. Oral. Investig. 2022, 26, 4049–4057. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.; Sandmair, M.; Alevizakos, V.; von See, C. The fracture resistance of 3D-printed versus milled provisional crowns: An in vitro study. PLoS ONE 2023, 18, e0285760. [Google Scholar] [CrossRef]
- Camporesi, M.; Bulhoes Galvão, M.; Tortamano, A.; Dominguez, G.C.; Defraia, N.; Defraia, E.; Franchi, L. Ceramic brackets and low friction: A possible synergy in patients requiring multiple MRI scanning. J. Orofac. Orthop. 2016, 77, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Shivapuja, P.K.; Berger, J. A comparative study of conventional ligation and self-ligation bracket systems. Am. J. Orthod. Dentofac. Orthop. 1994, 106, 472–480. [Google Scholar] [CrossRef]
- Parmagnani, E.A.; Basting, R.T. Effect of sodium bicarbonate air abrasive polishing on attrition and surface micromorphology of ceramic and stainless-steel brackets. Angle Orthod. 2012, 82, 351–362. [Google Scholar] [CrossRef]
- Franciscone, M.F.; Janson, G.; Henriques, J.F.; Freitas, K.M. Evaluation of the force generated by gradual deflection of orthodontic wire in conventional metallic, esthetic, and self-ligating brackets. J. Appl. Oral. Sci. 2016, 24, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.C.; Bishara, L.M.; Araújo, A.M.; Normando, D. Debris and friction of self-ligating and conventional orthodontic brackets after clinical use. Angle Orthod. 2015, 85, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Mascarelo, A.C.; Godoi, A.P.; Furletti, V.; Custódio, W.; Valdrighi, H.C. Evaluation of friction in metal, ceramic and self-ligation brackets sub-mitted to sliding mechanics. Rev. Odontol. UNESP 2018, 47, 244–248. [Google Scholar] [CrossRef]
- Tecco, S.; Di Lorio, D.; Cordasco, G.; Verrocchi, I.; Festa, F. An in vitro investigation of the influence of self-ligating brackets, low friction ligatures, and archwire on frictional resistance. Eur. J. Orthod. 2007, 29, 390–397. [Google Scholar] [CrossRef]
- Galavotti Viana, A.R.; Carneiro, D.P.A.; Carneiro, P.A.; Correr, A.B.; Vedovello, S.A.S.; Valdrighi, H.C. Comparison of friction of metallic and ceramic brackets during sliding mechanics after prophylaxis with sodium bicarbonate jet: An in vitro study. Int. Orthod. 2021, 19, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Cury, S.E.; Aliaga-Del Castillo, A.; Pinzan, A.; Sakoda, K.L.; Bellini-Pereira, S.A.; Janson, G. Orthodontic brackets friction changes after clinical use: A systematic review. J. Clin. Exp. Dent. 2019, 11, e482–e490. [Google Scholar] [CrossRef] [PubMed]
- Angolkar, P.V.; Kapila, S.; Duncanson, M.G., Jr.; Nanda, R.S. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. Am. J. Orthod. Dentofac. Orthop. 1990, 98, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Tselepis, M.; Brockhurst, P.; West, V.C. The dynamic frictional resistance between orthodontic brackets and arch wires. Am. J. Orthod. Dentofac. Orthop. 1994, 106, 131–138. [Google Scholar] [CrossRef]
Configuration | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0° Tip | 3° Tip | 6° Tip | 10° Tip | 1 mm Vertical Translation | |||||||||||
HD3DB | Composite | Metallic | HD3DB | Composite | Metallic | HD3DB | Composite | Metallic | HD3DB | Composite | Metallic | HD3DB | Composite | Metallic | |
0.016-inch Niti | 3.627 ± 0.090 | 4.628 ± 0.143 | 3.997 ± 0.111 | 4.08 ± 0.092 | 5.187 ± 0.143 | 4.134 ± 0.045 | 4.314 ± 0.038 | 7.133 ± 0.127 | 4.26 ± 0.025 | 5.178 ± 0.090 | 8.432 ± 0.101 | 5.307 ± 0.541 | 4.411 ± 0.651 | 6.746 ± 0.306 | 3.836 ± 0.423 |
0.019 × 0.025-inch Niti | 5.976 ± 0.031 | 9.028 ± 0.065 | 5.125 ± 0.030 | 9.195 ± 0.133 | 10.42 ± 0.126 | 7.35 ± 0.237 | 10.34 ± 0.160 | 12.55 ± 0.335 | 9.2 ± 0.228 | 10.79 ± 0.130 | 20.07 ± 0.162 | 15.27 ± 0.154 | 11.64 ± 0.240 | 18 ± 0.167 | 13.13 ± 0.371 |
0.019 × 0.025-inch SS | 4.221 ± 0.031 | 13.95 ± 0.147 | 4.668 ± 0.270 | 6.364 ± 0.359 | 14.56 ± 0.204 | 9.251 ± 0.248 | 8.549 ± 0.473 | 16.13 ± 0.112 | 13.72 ± 0.153 | 14.17 ± 0.259 | 22.85 ± 0.135 | 14.11 ± 0.207 | 10.13 ± 0.140 | 25.02 ± 0.078 | 10.29 ± 0.272 |
Archwire | Sig. a,b |
---|---|
0.016-inch NiTi | 0.026 * |
0.019 × 0.025-inch NiTi | 0.336 |
0.019 × 0.025-inch SS | 0.017 * |
Sample 1–Sample 2 | Test Statistic | Std. Error | Std. Test Statistic | Sig. | Adj. Sig. a |
---|---|---|---|---|---|
Metallic–IH3DB | 0.400 | 2.828 | 0.141 | 0.888 | 1.000 |
Metallic–Composite | 6.800 | 2.828 | 2.404 | 0.016 * | 0.049 |
IH3DB–Composite | 6.400 | 2.828 | 2.263 | 0.024 * | 0.071 |
Sample 1–Sample 2 | Test Statistic | Std. Error | Std. Test Statistic | Sig. | Adj. Sig. a |
---|---|---|---|---|---|
IH3DB–Metallic | −1.400 | 2.828 | −0.495 | 0.621 | 1.000 |
IH3DB–Composite | 7.600 | 2.828 | 2.687 | 0.007 * | 0.022 |
Metallic–Composite | 6.200 | 2.828 | 2.192 | 0.028 * | 0.085 |
Comparison | Archwire | Significance | |
---|---|---|---|
Composite bracket | T0–T1 | 0.016-inch NiTi | 0.225 |
0.019 × 0.025-inch NiTi | 0.345 | ||
0.019 × 0.025-inch SS | 0.223 | ||
IH3DB | T0–T1 | 0.016-inch NiTi | 0.080 |
0.019 × 0.025-inch NiTi | 0.345 | ||
0.019 × 0.025-inch SS | 0.786 | ||
Metallic bracket | T0–T1 | 0.016-inch NiTi | 0.500 |
0.019 × 0.025-inch NiTi | 0.893 | ||
0.019 × 0.025-inch SS | 0.500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brucculeri, L.; Pellitteri, F.; Palone, M.; Lombardo, L. Comparison of the Sliding Resistance of Metallic, Composite and In-House 3D-Printed Brackets: An In Vitro Study. Appl. Sci. 2024, 14, 6303. https://doi.org/10.3390/app14146303
Brucculeri L, Pellitteri F, Palone M, Lombardo L. Comparison of the Sliding Resistance of Metallic, Composite and In-House 3D-Printed Brackets: An In Vitro Study. Applied Sciences. 2024; 14(14):6303. https://doi.org/10.3390/app14146303
Chicago/Turabian StyleBrucculeri, Luca, Federica Pellitteri, Mario Palone, and Luca Lombardo. 2024. "Comparison of the Sliding Resistance of Metallic, Composite and In-House 3D-Printed Brackets: An In Vitro Study" Applied Sciences 14, no. 14: 6303. https://doi.org/10.3390/app14146303
APA StyleBrucculeri, L., Pellitteri, F., Palone, M., & Lombardo, L. (2024). Comparison of the Sliding Resistance of Metallic, Composite and In-House 3D-Printed Brackets: An In Vitro Study. Applied Sciences, 14(14), 6303. https://doi.org/10.3390/app14146303