Development and Characterization of Hybrid Burgers Made from Pork and Multi-Ingredient Plant Mixtures and Protected with Lactic Acid Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Burgers
2.3. Microbiological Analyses of Raw Burgers
2.4. Determination of the Basic Chemical Composition of Baked Burgers
2.5. Determination of the Physicochemical Properties of Baked Burgers
2.5.1. Cooking Yield
2.5.2. Water Activity
2.5.3. pH Level
2.5.4. Color Parameters
2.6. Determination of the Textural Properties of Baked Burgers
2.7. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Characteristics of Raw Meat, Hybrid, and Plant Burgers
3.2. Basic Chemical Composition of Baked Meat, Hybrid, and Plant Burgers
3.3. Physicochemical Properties of Baked Meat, Hybrid, and Plant Burgers
3.4. Textural Properties of Baked Meat, Hybrid, and Plant Burgers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.; Charles, J.; Aveyard, P.; Garnett, T.; Hall, J.; Key, T.; Lorimer, J.; Jebb, S. Meat consumption, health, and the environment. Science 2018, 361, 6399. [Google Scholar] [CrossRef]
- Cheah, I.; Shimul, A.; Liang, J.; Phau, I. Drivers and Barriers Toward Reducing Meat Consumption. Appetite 2020, 149, 104636. [Google Scholar] [CrossRef]
- Grasso, S.; Rondoni, A.; Bari, R.; Smith, R.; Mansilla, N. Effect of information on consumers’ sensory evaluation of beef, plant-based and hybrid beef burgers. Food Qual. Prefer. 2022, 96, 104417. [Google Scholar] [CrossRef]
- Ebert, S.; Baune, M.C.; Broucke, K.; Van Royen, G.; Terjung, N.; Gibis, M.; Weiss, J. Buffering capacity of wet texturized plant proteins in comparison to pork meat. Food Res. Int. 2021, 150, 110803. [Google Scholar] [CrossRef]
- Grasso, S.; Goksen, G. The best of both worlds? challenges and opportunities in the development of hybrid meat products from the last 3 years. LWT 2023, 173, 114235. [Google Scholar] [CrossRef]
- Grasso, S.; Jaworska, S. Part meat and part plant: Are hybrid meat products fad or future? Foods 2020, 9, 1888. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Consumer perception and behaviour regarding sustainable protein consumption: A systematic review. Trends Food Sci. Technol. 2017, 61, 11–25. [Google Scholar] [CrossRef]
- Chandler, D.; McSweeney, M. Food Futures: Flexitarianism and Sustainability. Future Foods 2022, 6, 100058. [Google Scholar]
- Barska, A. Convenience food products: Are they in line with current consumer trends? J. Consum. Stud. Home Econ. 2018, 42, 141–148. [Google Scholar]
- Bruner, G.C.; Hensel, P.J.; James, K.E. Marketing Scales Handbook: A Compilation of Multi-Item Measures for Consumer Behavior & Advertising Research; Gower Publishing, Ltd.: Surrey, UK, 2010. [Google Scholar]
- Jackson, P.; Viehoff, V. Reframing convenience food. Appetite 2016, 98, 1–11. [Google Scholar] [CrossRef]
- Cegiełka, A.; Kołożyn-Krajewska, D.; Dolatowski, Z.; Majewska, E.; Gajewska, D. Safety and quality of meat products through the use of plant-based ingredients. Int. J. Food Prop. 2015, 18, 1160–1169. [Google Scholar]
- Hanula, M.; Peura, M.; Kaukonen, M.; Heiniö, R.L. Consumer perception and sensory characteristics of hybrid meat products. Foods 2022, 11, 1224. [Google Scholar]
- Fernandez-Lopez, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M.; Sendra, E.; Sayas-Barberá, E. Meat products with plant-based ingredients: Nutritional and safety aspects. Food Funct. 2021, 12, 4538–4551. [Google Scholar]
- Rangel-Vargas, E.; Domínguez, J.; Parra, K.; Chávez-Jáuregui, R.; Hernández, A. improvement of the sensory characteristics and shelf life of hybrid sausages by incorporating plant-based ingredients. Foods 2021, 10, 1363. [Google Scholar]
- Mor-Mur, M.; Yuste, J. Emerging bacterial pathogens in meat and poultry: An overview. Food Bioprocess Technol. 2010, 3, 24–35. [Google Scholar] [CrossRef]
- Callaway, T.R.; Edrington, T.S.; Anderson, R.C.; Byrd, J.A.; Nisbet, D.J. Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. Foodborne Pathog. Dis. 2008, 5, 517–530. [Google Scholar]
- Gaggìa, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141, S15–S28. [Google Scholar] [CrossRef] [PubMed]
- Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; Girbés, T.; Mateos, J.A.; Rivas, R. Probiotic Lactic Acid Bacteria: A review. Food Nutr. Sci. 2016, 7, 395–409. [Google Scholar] [CrossRef]
- Fischer, M.; Titgemeyer, F. Recent advances in the use of Lactic Acid Bacteria in meat and meat products. Foods 2023, 12, 1452. [Google Scholar]
- Argel, N.S.; Ranieri, N.G.; Alvarez, M.M.; Rubio, N.R. Novel meat analogues: Assessing the sensory and physicochemical properties of 3D-printed plant-based meat. Foods 2022, 11, 492. [Google Scholar]
- Baune, M.C.; Laaninen, T.; Partanen, R.; Linderborg, K.; Jouppila, K. Composition and physicochemical properties of hybrid meat-plant food products. Foods 2023, 12, 1876. [Google Scholar]
- Pöri, P.; Aisala, H.; Liu, J.; Lille, M.; Sozer, N. Structure, Texture, and Sensory Properties of Plant-Meat Hybrids Produced by High-Moisture Extrusion. LWT 2023, 173, 114345. [Google Scholar] [CrossRef]
- PN-EN ISO Standard 4833-1:2013-12; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. Polish Committee for Standardization: Warsaw, Poland, 2022.
- PN-ISO 15214:2002; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony Count at 30 Degrees C by the Pour Plate Technique. Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN-EN ISO Standard 6887-2:2017; Microbiology of Food and Animal Feeding Stuffs. Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination. Part 2: Specific Rules for the Preparation of Meat and Meat Products. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-A-82109:2010; Meat and Meat Products—Determination of Fat, Protein and Water Content—Near Infrared Transmission Spectrometry (NIT) Method Using Calibration on Artificial Neural Networks (ANN). Polish Committee for Standardization: Warsaw, Poland, 2010.
- Vu, G.; Zhou, H.; McClements, D.J. Impact of cooking method on properties of beef and plant-based burgers: Appearance, texture, thermal properties, and shrinkage. J. Agric. Food Res. 2022, 9, 100355. [Google Scholar] [CrossRef]
- ISO 2917:2001; Meat and Meat Products—Measurement of pH—Reference Method. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Mokrzycki, W.S.; Tatol, M. Color Difference ∆E—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Kumar, Y.; Kumar, V. Sangeeta comparative antioxidant capacity of plant leaves and herbs with their antioxidative potential in meat system under accelerated oxidation conditions. J. Food Meas. Charact. 2020, 14, 3250–3262. [Google Scholar] [CrossRef]
- Tolik, D.; Słowiński, M.; Desperak, K. The influence of type of thermal treatment on changes in quality of pates from desinewed poultry meat during storage. Nauki Inż. Technol. 2015, 4, 85–93. [Google Scholar]
- Cegiełka, A.; Dasiewicz, K.; Hać-Szymańczuk, E. The effect of selected fiber preparations the quality of pork burgers. Postępy Nauki Technol. Prz. Rol. Spoż. 2017, 72, 26–40. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Experimental Designs Using ANOVA, 1st ed.; Duxbury Press: Belmont, CA, USA, 2007; pp. 25–27. [Google Scholar]
- Rabiej, M. Statistics with Statistica Software; Helion Publisher House: Gliwice, Poland, 2012; pp. 131–147, 165–172. [Google Scholar]
- Kröckel, L. The Role of lactic acid bacteria in safety and flavour development of meat and meat products. In Lactic Acid Bacteria—R & D for Food, Health and Livestock Purposes; Kongo, J.M., Ed.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/chapters/42316 (accessed on 3 June 2024).
- Pidcock, K.; Heard, G.M.; Henriksson, A. Application of nontraditional meat starter cultures in production of Hungarian salami. Int. J. Food Microbiol. 2002, 76, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hać-Szymańczuk, E.; Roman, J. Characteristics of microorganisms enter into composition of starter cultures and their application in meat processing. PTPS 2009, 2, 131–135. [Google Scholar]
- Quinto, E.J.; Marín, J.M.; Schaffner, D.W. Effect of the competitive growth of Lactobacillus sakei MN on the growth kinetics of Listeria monocytogenes Scott A in model meat gravy. Food Control 2016, 63, 34–45. [Google Scholar] [CrossRef]
- Fischer, S.W.; Titgemeyer, F. Protective Cultures in Food Products: From Science to Market. Foods 2023, 12, 1541. [Google Scholar] [CrossRef]
- International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods 8. Use of Data for Assessing Process Control and Product Acceptance; Springer: New York, NY, USA, 2007; pp. 71–82, 160. [Google Scholar]
- Pereira, P.; Vicente, A. Meat Nutritional Composition and Nutritive Role in the Human Diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Biller, E.; Waszkiewicz-Robak, B.; Boselli, E.; Obiedziński, M. The usage of vegetables as a source of sweetness in the production of cakes with limited addition of sucrose®. PTPS 2020, 2, 57–63. [Google Scholar]
- Narciso, J.; Nyström, L. The genetic diversity and nutritional quality of proso millet (Panicum miliaceum) and its philippine ecotype, the ancient grain “kabog millet”: A review. J. Agric. Food Res. 2023, 11, 100499. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Y.; Ma, W.; Zhang, Y.; Sun, C.; Fang, Y. Meat and plant-based meat analogs: Nutritional profile and in vitro digestion comparison. Food Hydrocoll. 2023, 143, 108886. [Google Scholar] [CrossRef]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2022, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Well. 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1924 (accessed on 5 June 2024).
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R.S. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef]
- Lilic, S.; Brankovic, I.; Koricanac, V.; Vranic, D.; Spalevic, L.; Pavlovic, M.; Lakicevic, B. Reducing sodium chloride content in meat burgers by adding potassium chloride and onion. Procedia Food Sci. 2015, 5, 164–167. [Google Scholar] [CrossRef]
- El Sadig, R.; Wu, J. Are novel plant-based meat alternatives the healthier choice? Food Res Int. 2024, 183, 114184. [Google Scholar] [CrossRef]
- WHO Global Report on Sodium Intake Reduction; World Health Organization: Geneva, Switzerland, 2023.
- De Marchi, M.; Costa, A.; Pozza, M.; Goi, A.; Manuelian, C.L. Detailed Characterization of Plant-Based Burgers. Sci. Rep. 2021, 11, 2049. [Google Scholar] [CrossRef] [PubMed]
- Kondjoyan, A.; Oillic, S.; Portanguen, S.; Gros, J.B. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. Meat Sci. 2013, 95, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Vinnikova, L.; Synytsia, O.; Shlapak, H.; Azarova, N.; Glushkov, O. Establishing temperature and time factors for the post pasteurization of gourmet meat products. East. Eur. J. Enterp. Technol. 2019, 101, 33–39. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In Water Activity in Foods: Fundamentals and Applications, 2nd ed.; Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., Labuza, T.P., Eds.; Wiley: Washington, DC, USA, 2020; pp. 323–355. [Google Scholar]
- Elgadir, M.A.; Jamilah, B.; Rahman, A. Quality and sensory attributes of burger formulated from fresh beef cuts (longissmus dorsi) infused with citric acid. IJFANS 2015, 4, 1–5. [Google Scholar]
- Botella-Martínez, C.; Muñoz-Tebar, N.; Lucas-González, R.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Assessment of chemical, physico-chemical and sensory properties of low-sodium beef burgers formulated with flours from different mushroom types. Foods 2023, 12, 3591. [Google Scholar] [CrossRef] [PubMed]
- Food Authority NSW Goverment. Plant Based Alternative Products Survey. Available online: https://www.foodauthority.nsw.gov.au/sites/default/files/2021-03/FI371%202101_Plant%20based%20alternative%20survey%20final.pdf (accessed on 10 June 2024).
- Kabisch, J.; Joswig, G.; Böhnlein, C.; Fiedler, G.; Franz, C.M. Microbiological status of vegan ground meat products from German retail. J. Consum. Prot. Food Saf. 2024, 19, 33–40. [Google Scholar] [CrossRef]
- Yusufe, M.; Mohammed, A.; Satheesh, N. Effect of Duration and Drying Temperature on Characteristics of Dried Tomato (Lycopersicon esculentum L.) Cochoro Variety. Acta Univ. Cibiniensis, Ser. E Food Technol. 2017, 21, 41–50. [Google Scholar] [CrossRef]
- Ardila, P.; Honrado, A.; Marquina, P.; Beltrán, J.A.; Calanche, J.B. Innovative plant-based burger enriched with Tenebrio molitor meal: Characterization and shelf-life. Foods 2023, 12, 3460. [Google Scholar] [CrossRef]
- Tóth, A.J.; Dunay, A.; Battay, M.; Illés, C.B.; Bittsánszky, A.; Süth, M. Microbial spoilage of plant-based meat analogues. Appl. Sci. 2021, 11, 8309. [Google Scholar] [CrossRef]
- Souza, L.V.; Martins, E.; Moreira, I.M.F.B.; De Carvalho, A.F. Strategies for the development of bioprotective cultures in food preservation. Int. J. Microbiol. 2022, 2022, 6264170. [Google Scholar] [CrossRef]
- Salueña, B.H.; Gamasa, C.S.; Rubial, J.M.D.; Odriozola, C.A. CIELAB color paths during meat shelf life. Meat Sci. 2019, 157, 107889. [Google Scholar] [CrossRef] [PubMed]
- Markovic, I.; Ilic, J.; Markovic, D.; Simonovic, V.; Kosanic, N. Color measurement of food products using CIE L* a* b* and RGB color space. J. Hyg. Eng. Des. 2013, 4, 50–53. [Google Scholar]
- Rabeler, F.; Feyissa, A.H. Modelling the Transport Phenomena and Texture Changes of Chicken Breast Meat during the Roasting in a Convective Oven. J. Food Eng. 2018, 237, 60–68. [Google Scholar] [CrossRef]
- Kovaleva, O.A.; Zdrabova, E.M.; Kireeva, O.S. Influence of heat-induced changes in meat proteins on the quality characteristics of the finished product. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 012050. [Google Scholar] [CrossRef]
- Herlina, H.; Aji, S.B.; Purnomo, B.H. Physical, chemical, and sensory characteristics of chicken sausage with analog meat substitution. Ind. J. Teknol. dan Manaj. Agroindustri 2021, 10, 67–77. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Florek, M.; Wodzak, M.; Kubiak, D.; Burczyk, E. Comparison of the Quality of Selected Meat Products and Their Plant-Based Analogs. Pol. J. Food Nutr. Sci. 2023, 73, 109–119. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Wang, Y.; Hao, S.; Zhang, K.; Tian, J.; Jin, Y. Effect of Changes in the Structure of Myoglobin on the Color of Meat Products. Food Mater. Res. 2024, 4, e011. [Google Scholar] [CrossRef]
- Gonçalves, E.M.; Pinheiro, J.; Abreu, M.; Brandão, T.R.S.; Silva, C.L.M. Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. J. Food Eng. 2010, 97, 574–581. [Google Scholar] [CrossRef]
- Bao, S.; Li, X.; Lan, T.; Wang, J.; Hu, Y.; Sun, X.; Ma, T. Effects of Different Cooking Treatments on the Sensory Qualities and Pigmented Phytochemicals of Carrots. Food Chem. 2023, 405, 135015. [Google Scholar] [CrossRef]
- Huamán, E.V.; Hurtado, V.P.; Prieto, J.M.; Pinto, E.M. Cooking quality, color, and texture profile analysis of a quinoa and lentil pasta. Ciênc. Agrotecnol. 2024, 48, e015623. [Google Scholar] [CrossRef]
- Eskin, N.A.M.; Ho, C.T.; Shahidi, F. Browning Reactions in Foods. In Biochemistry of Foods, 3rd ed.; Eskin, N.A.M., Shahidi, F., Eds.; Elsevier: Sydney, Canada, 2013; pp. 245–289. [Google Scholar]
- Croguennec, T. Non-Enzymatic Browning. In Handbook of Food Science and Technology 1: Food Alteration and Food Quality, 1st ed.; Jeantet, R., Croguennec, T., Schuck, P., Brulé, G., Eds.; Wiley: London, UK, 2016; pp. 133–157. [Google Scholar]
- Hrynets, Y.; Bhattacherjee, A.; Betti, M. Nonenzymatic Browning Reactions: Overview. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 2, pp. 233–244. [Google Scholar]
- Rudy, M.; Stanisławczyk, R.; Gil, M. The analysis of correlation between texture parameters of chosen meat products and their chemical components depending on applied measuring probe. Post. Nauki Technol. Przem. Rol. Spoż 2015, 70, 26–34. [Google Scholar]
- Dekkers, B.L.; Boom, R.M.; van der Goot, A.J. Structuring processes for meat analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Schreuders, F.K.; Schlangen, M.; Kyriakopoulou, K.; Boom, R.M.; van der Goot, A.J. Texture methods for evaluating meat and meat analogue structures: A review. Food Control 2021, 127, 108103. [Google Scholar] [CrossRef]
- Kamani, M.H.; Meera, M.S.; Bhaskar, N.; Modi, V.K. Partial and Total Replacement of Meat by Plant-Based Proteins in Chicken Sausage: Evaluation of Mechanical, Physico-Chemical and Sensory Characteristics. J. Food Sci. Technol. 2019, 56, 2660–2669. [Google Scholar] [CrossRef] [PubMed]
- Soltanizadeh, N.; Ghiasi-Esfahani, H. Qualitative improvement of low meat beef burger using Aloe vera. Meat Sci. 2015, 99, 75–80. [Google Scholar] [CrossRef]
- Arora, B.; Kamal, S.; Sharma, V.P. Effect of Binding Agents on Quality Characteristics of Mushroom Based Sausage Analogue. J. Food Process. Preserv. 2017, 41, e13134. [Google Scholar] [CrossRef]
Sample Type | Proportion of Meat and Plant Parts | Recipe Variant | |
---|---|---|---|
I | II | ||
M100_P0 | 100:0 | 100% cured pork stuffing * | |
M75_P25 | 75:25 | 75% cured pork stuffing *; 13.7% millet groats, 5% dried red tomatoes, 2.3% sunflower seeds, 2% onion, 1.2% rapeseed pomace, 0.8% spices ** | 75% cured pork stuffing *; 11.2% lentils, 5% carrots, 2.5% sunflower seeds, 2.5% oatmeal, 1.8% onion, 1.2% camelina pomace, 0.8% spices ** |
M50_P50 | 50:50 | 50% cured pork stuffing *; 27.5% millet groats, 10% dried red tomatoes, 4.5% sunflower seeds, 4% onion, 2.5% rapeseed pomace, 1.5% spices ** | 50% cured pork stuffing *; 22.5% lentils, 10% carrots, 5% sunflower seeds, 5% oatmeal, 3.5% onion, 2.5% camelina pomace, 1.5% spices ** |
M25_P75 | 25:75 | 25% cured pork stuffing *; 41.3% millet groats, 15% dried red tomatoes, 6.7% sunflower seeds, 6% onion, 3.7% rapeseed pomace, 2.3% spices ** | 25% cured pork stuffing *; 33.7% lentils, 15% carrots, 7.5% sunflower seeds, 7.5% oatmeal, 5.3% onion, 3.7% camelina pomace, 2.3% spices ** |
M0_P100 | 0:100 | 55% millet groats, 20% dried red tomatoes, 9% sunflower seeds, 8% onion, 5% rapeseed pomace, 3% spices ** | 45% lentils, 20% carrots, 10% sunflower seeds, 10% oatmeal, 7% onion, 5% camelina pomace, 3% spices ** |
Recipe Variant | Sample Type | ||||
---|---|---|---|---|---|
M100_P0 | M75_P25 | M50_P50 | M25_P75 | M0_P100 | |
Aerobic colony count (ACC) [cfu/g] | |||||
I | 1.5 ± 1.0 × 105 aA | 1.4 ± 0.8 × 105 aA | 1.4 ± 0.9 × 105 aA | 1.3 ± 1.1 × 105 aA | 9.2 ± 1.1 × 104 aA |
II | 1.3 ± 0.9 × 105 aA | 1.3 ± 1.1 × 105 aA | 1.3 ± 0.8 × 105 aA | 1.6 ± 1.0 × 105 aA | 1.6 ± 1.1 × 105 aA |
Lactic acid bacteria (LAB) count [cfu/g] | |||||
I | - | 1.5 ± 0.8 × 107 aA | 1.6 ± 1.2 × 107 aA | 1.1 ± 0.9 × 107 aA | 9.4 ± 1.6 × 106 aA |
II | - | 1.6 ± 0.9 × 107 aA | 1.6 ± 1.2 × 107 aA | 1.8 ± 1.1 × 107 aA | 2.1 ± 1.2 × 107 aA |
Recipe Variant | Sample Type | ||||
---|---|---|---|---|---|
M100_P0 | M75_P25 | M50_P50 | M25_P75 | M0_P100 | |
Water [%] | |||||
I | 60.3 ± 0.6 aA | 58.3 ± 0.7 aA | 58.1 ± 0.8 aA | 57.9 ± 0.6 aA | 57.3 ± 0.6 aA |
II | 60.3 ± 0.6 aA | 58.2 ± 0.6 aA | 58.1 ± 0.7 aA | 57.4 ± 0.9 aA | 57.9 ± 0.9 aA |
Protein [%] | |||||
I | 16.9 ± 0.9 aA | 14.9 ± 0.3 aA | 14.0 ± 0.9 aA | 12.1 ± 0.6 aA | 11.9 ± 1.1 aA |
II | 16.9 ± 0.9 aA | 15.6 ± 0.6 aA | 15.1 ± 0.7 aA | 13.6 ± 0.7 aA | 12.2 ± 0.9 aA |
Fat [%] | |||||
I | 15.6 ± 0.6 aA | 14.4 ± 0.9 aA | 14.1± 0.9 aA | 13.5± 1.1 aA | 13.1± 0.5 aA |
II | 15.6 ± 0.6 aA | 14.3 ± 1.4 aA | 13.9± 1.6 aA | 13.8± 0.7 aA | 13.6± 0.4 aA |
Fiber [%] | |||||
I | 0.0 ± 0.1 aA | 1.5 ± 0.9 bA | 3.0 ± 0.6 cA | 4.5 ± 0.7 dA | 6.3 ± 0.9 eA |
II | 0.0 ± 0.1 aA | 1.7 ± 0.7 bA | 3.3 ± 0.7 cA | 5.1 ± 0.9 dA | 6.5 ± 0.6 eA |
Salt [%] | |||||
I | 1.7± 0.3 aA | 1.7± 0.4 aA | 1.6± 0.5 aA | 1.7± 0.7 aA | 1.7± 0.4 aA |
II | 1.7± 0.3 aA | 1.7± 0.1 aA | 1.6± 0.6 aA | 1.8± 0.4 aA | 1.8± 0.3 aA |
Recipe Variant | Sample Type | ||||
---|---|---|---|---|---|
M100_P0 | M75_P25 | M50_P50 | M25_P75 | M0_P100 | |
Cooking Yield [%] | |||||
I | 81.68 ± 2.00 aA | 85.86 ± 1.78 aA | 86.88 ± 1.86 aA | 88.91 ± 1.30 aA | 89.41 ± 1.06 aA |
II | 81.68 ± 2.00 aA | 89.10 ± 1.57 aA | 90.68 ± 1.43 aA | 90.81 ± 1.28 aA | 89.74 ± 1.76 aA |
Water Activity [─] | |||||
I | 0.960 ± 0.006 aA | 0.957 ± 0.002 aA | 0.954 ± 0.006 aA | 0.950 ± 0.003 aA | 0.949 ± 0.004 aA |
II | 0.960 ± 0.006 aA | 0.962 ± 0.013 aA | 0.956 ± 0.011 aA | 0.954 ± 0.003 aA | 0.951 ± 0.010 aA |
pH Level [─] | |||||
I | 5.66 ± 0.31 aA | 5.61 ± 0.26 aA | 5.60 ± 0.53 aA | 5.58 ± 0.55 aA | 5.60 ± 0.28 aA |
II | 5.66 ± 0.31 aA | 5.79 ± 0.41 aB | 5.84 ± 0.31 aB | 5.81 ± 0.64 aB | 5.83 ± 0.43 aB |
Recipe Variant | Measurement | Sample Type | ||||
---|---|---|---|---|---|---|
M100_P0 | M75_P25 | M50_P50 | M25_P75 | M0_P100 | ||
L* [−] | ||||||
I | Surface | 53.1 ± 2.0 cA | 51.2 ± 2.0 bcA | 48.9 ± 2.4 abc | 47.0 ± 1.5 abA | 44.1 ± 1.7 aA |
Cross-section | 62.2 ± 1.9 cA | 58.6 ± 2.3 bc | 56.7 ± 1.0 abA | 53.0 ± 2.4 aA | 51.8 ± 2.3 aA | |
II | Surface | 53.1 ± 2.0 cA | 51.2 ± 1.0 bcA | 47.4 ± 1.8 abA | 45.2 ± 1.2 aA | 45.8 ± 0.6 aA |
Cross-section | 62.2 ± 1.9 dA | 59.4 ± 1.3 cdA | 55.6 ± 1.0 bcA | 54.4 ± 1.3 abA | 50.4 ± 0.9 aA | |
a* [−] | ||||||
I | Surface | 14.2 ± 0.6 bA | 10.1 ± 1.6 abA | 9.1 ± 1.9 aA | 9.1 ± 1.8 aA | 8.8 ± 2.5 aA |
Cross-section | 14.7 ± 0.8 aA | 10.2 ± 2.1 bA | 8.0 ± 1.2 abA | 5.8 ± 2.1 aA | 6.6 ± 1.4 abA | |
II | Surface | 14.2 ± 0.6 bA | 11.6 ± 0.9 aA | 11.6 ± 0.4 aA | 12.5 ± 1.2 abA | 13.0 ± 0.7 abA |
Cross-section | 14.7 ± 0.8 bA | 10.0 ± 1.2 aA | 10.4 ± 0.5 aA | 9.4 ± 0.9 aA | 9.6 ± 0.4 aA | |
b* [−] | ||||||
I | Surface | 5.1 ± 0.7 aA | 8.0 ± 0.4 abA | 10.6 ± 1.4 bcA | 12.7 ± 1.8 cA | 10.9 ± 0.9 bcA |
Cross-section | 4.2 ± 0.3 aA | 9.5 ± 1.1 bA | 11.2 ± 1.3 bcA | 14.0 ± 1.5 cdA | 15.0 ± 1.8 dA | |
II | Surface | 5.1 ± 0.7 aA | 12.7 ± 2.0 bA | 14.3 ± 2.3 bA | 14.7 ± 2.2 bA | 16.8 ± 3.0 bB |
Cross-section | 4.2 ± 0.3 aA | 11.9 ± 3.2 bA | 15.9 ± 0.9 bcA | 18.7 ± 1.8 cB | 19.6 ± 1.1 cA | |
ΔE1 [−] | ||||||
I | Surface | - | 6.1 ± 1.6 aA | 9.0 ± 1.4 abA | 11.1 ± 1.3 bcA | 12.2 ± 0.4 cA |
Cross-section | - | 8.0 ± 2.8 aA | 11.3 ± 2.1 aA | 16.3 ± 0.9 bA | 17.3 ± 0.9 bA | |
II | Surface | - | 8.3 ± 2.2 aA | 11.1 ± 1.4 abA | 12.6 ± 1.6 abA | 14.0 ± 2.4 bA |
Cross-section | - | 11.6 ± 1.8 aA | 13.6 ± 1.5 aA | 17.5 ± 1.1 bA | 20.2 ± 0.9 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasiewicz, K.; Szymanska, I.; Opat, D.; Hac-Szymanczuk, E. Development and Characterization of Hybrid Burgers Made from Pork and Multi-Ingredient Plant Mixtures and Protected with Lactic Acid Bacteria. Appl. Sci. 2024, 14, 6272. https://doi.org/10.3390/app14146272
Dasiewicz K, Szymanska I, Opat D, Hac-Szymanczuk E. Development and Characterization of Hybrid Burgers Made from Pork and Multi-Ingredient Plant Mixtures and Protected with Lactic Acid Bacteria. Applied Sciences. 2024; 14(14):6272. https://doi.org/10.3390/app14146272
Chicago/Turabian StyleDasiewicz, Krzysztof, Iwona Szymanska, Dominika Opat, and Elzbieta Hac-Szymanczuk. 2024. "Development and Characterization of Hybrid Burgers Made from Pork and Multi-Ingredient Plant Mixtures and Protected with Lactic Acid Bacteria" Applied Sciences 14, no. 14: 6272. https://doi.org/10.3390/app14146272
APA StyleDasiewicz, K., Szymanska, I., Opat, D., & Hac-Szymanczuk, E. (2024). Development and Characterization of Hybrid Burgers Made from Pork and Multi-Ingredient Plant Mixtures and Protected with Lactic Acid Bacteria. Applied Sciences, 14(14), 6272. https://doi.org/10.3390/app14146272