Enhanced Preparative-Scale Extraction from Graševina Grape Pomace Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Determination of TP Content
2.3. Development of an Environmentally Friendly Method for Extraction of Polyphenols from Graševina Grape Pomace Using NADESs
2.3.1. Selection of Optimal Extraction Method and Preparation of Extracts
2.3.2. Preparation of NADESs
2.3.3. Extraction Method Optimization Using NADES
2.4. Evaluation of Biological Activities of Prepared Extracts
2.4.1. HPLC Analyses
2.4.2. Inhibition of Collagenase Activity
2.4.3. Scratch Test
2.4.4. Permeability Simulation by the PAMPA Method
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Selection of Extraction Method
3.2. Optimization of Preparative-Scale Parameters for Ultrasound-Assisted Extraction Process
3.3. Biological Activity Evaluation of Grape Pomace Extracts Prepared in Optimal Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert-vian, M.; Fabiano-tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products.Origins, Current Status, and Future Challenges. Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; De Souza, A.; Ana, S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Lukic, K.; Brncic, M.; Curko, N.; Tomasevic, M.; Tusek, A.J.; Ganic, K.K. Quality Characteristics of White Wine: The Short- and Long-Term Impact of High Power Ultrasound Processing. Ultrason. Sonochem. 2020, 68, 105194. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.R.; Amorim, M.; Vilas-Boas, A.; Tonon, R.V.; Cabral, L.M.C.; Pastrana, L.; Pintado, M. Impact of: In Vitro Gastrointestinal Digestion on the Chemical Composition, Bioactive Properties, and Cytotoxicity of Vitis vinifera L. Cv. Syrah Grape Pomace Extract. Food Funct. 2019, 10, 1856–1869. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green Solvents for Green Technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef]
- Rente, D.; Cvjetko Bubalo, M.; Panić, M.; Paiva, A.; Caprin, B.; Radojčić Redovniković, I.; Duarte, A.R.C. Review of Deep Eutectic Systems from Laboratory to Industry, Taking the Application in the Cosmetics Industry as an Example. J. Clean. Prod. 2022, 380, 135147. [Google Scholar] [CrossRef]
- Lavaud, A.; Laguerre, M.; Birtic, S.; Tixier, A.S.F.; Roller, M.; Chemat, F.; Bily, A.C. Eutectic Extraction Solvents, Extraction Methods by Eutectigenesis Using Said Solvents, and Extracts Derived from Said Extraction Methods. U.S. Patent No. 10,960,042, 11 April 2016. [Google Scholar]
- Karlović, S.; Dujmić, F.; Brnčić, S.R.; Sabolović, M.B.; Ninčević Grassino, A.; Škegro, M.; Šimić, M.A.; Brnčić, M. Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita Moschata). Processes 2023, 11, 469. [Google Scholar] [CrossRef]
- Andaluz-Mejía, L.; Ruiz-De Anda, D.; Ozuna, C. Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes 2022, 10, 995. [Google Scholar] [CrossRef]
- Abramova, A.; Abramov, V.; Bayazitov, V.; Nikonov, R.; Fedulov, I.; Stevanato, L.; Cravotto, G. Ultrasound-Assisted Cold Pasteurization in Liquid or SC-CO2. Processes 2021, 9, 1457. [Google Scholar] [CrossRef]
- Anaya-esparza, L.M.; Aurora-vigo, E.F.; Rodr, E.; Solano-cornejo, M.Á.; Zamora-gasga, V.M.; Montalvo-gonz, E.; Horacio, G.; Aceves-aldrete, C.E. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023, 28, 7752. [Google Scholar] [CrossRef] [PubMed]
- Orphanides, A.; Goulas, V.; Gekas, V. Introducing the Concept of Sono-Chemical Potential: A Phenomenological Model for Ultrasound Assisted Extraction. J. Food Eng. 2014, 120, 191–196. [Google Scholar] [CrossRef]
- Herceg, Z.; Brncic, M.; Jambrak, A.R.; Brncic, S.R.; Badanjak, M.; Sokolic, I. Mogucnost Primjene Ultrazvuka Visokog Intenziteta u Mljekarskoj Industriji. Mljekarstvo 2009, 59, 65–69. [Google Scholar]
- Leichtweis, M.G.; Molina, A.K.; Petropoulos, S.A.; Carocho, M.; Pires, T.C.S.P.; Dias, M.I.; Calhelha, R.; Oliveira, M.B.P.P.; Pereira, C.; Barros, L. Valorization of Pumpkin Peel as a Source of Bioactive Compounds: Optimization of Heat- and Ultrasound-Assisted Extraction. Molecules 2023, 28, 3168. [Google Scholar] [CrossRef] [PubMed]
- Dujmić, F.; Ganić, K.K.; Ćurić, D.; Karlović, S.; Bosiljkov, T.; Ježek, D.; Vidrih, R.; Hribar, J.; Zlatić, E.; Prusina, T.; et al. Non-Thermal Ultrasonic Extraction of Polyphenolic Compounds from Red Wine Lees. Foods 2020, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, H.; Yang, L.; Zhang, S.; Jiang, H. Optimization of Ultrasonic-Assisted Extraction Conditions for Bioactive Components and Antioxidant Activity of Poria Cocos (Schw.) Wolf by an RSM-ANN-GA Hybrid Approach. Foods 2023, 12, 619. [Google Scholar] [CrossRef]
- Žlabur, J.Š.; Žutić, I.; Radman, S.; Pleša, M.; Brnčić, M.; Barba, F.J.; Rocchetti, G.; Lucini, L.; Lorenzo, J.M.; Domínguez, R.; et al. Effect of Different Green Extraction Methods and Solvents on Bioactive Components of Chamomile (Matricaria chamomilla L.) Flowers. Molecules 2020, 25, 810. [Google Scholar] [CrossRef]
- Ferraretto, P.; Celotti, E. Preliminary Study of the Effects of Ultrasound on Red Wine Polyphenols. CyTA-J. Food 2016, 14, 529–535. [Google Scholar] [CrossRef]
- Khadhraoui, B.; Fabiano-Tixier, A.S.; Robinet, P.; Imbert, R.; Chemat, F. Ultrasound Technology for Food Processing, Preservation, and Extraction. In Green Food Processing Techniques; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128153536. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Zhou, S.; Kang, L.; Li, C. A Straightforward Ninhydrin-Based Method for Collagenase Activity and Inhibitor Screening of Collagenase Using Spectrophotometry. Anal. Biochem. 2013, 437, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Zhang, X. Topical Insulin Application Improves Healing by Regulating the Wound Inflammatory Response. Wound Repair Regen. 2012, 20, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Krstić, M.; Popović, M.; Dobričić, V.; Ibrić, S. Influence of Solid Drug Delivery System Formulation on Poorly Water-Soluble Drug Dissolution and Permeability. Molecules 2015, 20, 14684–14698. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L.; Petusky, S.; Farris, M.; Ley, R.; Jupp, P. Combined Application of Parallel Artificial Membrane Permeability Assay and Caco-2 Permeability Assays in Drug Discovery. J. Pharm. Sci. 2004, 93, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Panić, M.; Gunjević, V.; Radošević, K.; Bubalo, M.C.; Ganić, K.K.; Redovniković, I.R. Cosmotherm as an Effective Tool for Selection of Deep Eutectic Solvents Based Ready-to-use Extracts from Graševina Grape Pomace. Molecules 2021, 26, 4722. [Google Scholar] [CrossRef]
- Panić, M.; Radić Stojković, M.; Kraljić, K.; Škevin, D.; Radojčić Redovniković, I.; Gaurina Srček, V.; Radošević, K. Ready-to-Use Green Polyphenolic Extracts from Food by-Products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Talarico, S.; Solarino, R.; Binello, A.; Cavaglià, G.; Bensaid, S.; Telysheva, G.; Cravotto, G. Batch and Flow Ultrasound-Assisted Extraction of Grape Stalks: Process Intensification Design up to a Multi-Kilo Scale. Antioxidants 2020, 9, 730. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Ćurko, N.; Tomašević, M.; Kovačević Ganić, K.; Radojcic Redovnikovic, I. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Mariatti, F.; Gunjevic, V.; Secondo, M.; Villa, M.; Parolin, J.; Cavaglià, G. Pilot Scale Cavitational Reactors and Other Enabling Technologies to Design the Industrial Recovery of Polyphenols from Agro-Food by-Products, a Technical and Economical Overview. Foods 2018, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef] [PubMed]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity. Fitoterapia 2015, 101, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.; Silas, B.; Monteiro, A.; Dias, B. Choline Chloride—Based Deep Eutectic Solvent as an Inhibitor of Metalloproteases (Collagenase and Elastase) in Cosmetic Formulation. 3 Biotech 2023, 13, 219. [Google Scholar] [CrossRef]
- Martinotti, S.; Ranzato, E. Scratch Wound Healing Assay. Methods Mol. Biol. 2020, 2109, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.; Pereira, C.V.; Mano, F.; Silva, E.; Castro, V.I.B.; Sá-Nogueira, I.; Reis, R.L.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Appl. Bio Mater. 2019, 2, 4346–4355. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, J.; Zhao, X. MiR-221 Facilitates the TGFbeta1-Induced Epithelial-Mesenchymal Transition in Human Bladder Cancer Cells by Targeting STMN1 Urological Oncology. BMC Urol. 2015, 15, 36. [Google Scholar] [CrossRef]
- Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A Comparison between Pure Active Pharmaceutical Ingredients and Therapeutic Deep Eutectic Solvents: Solubility and Permeability Studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef]
- Punzo, A.; Porru, E.; Silla, A.; Simoni, P.; Galletti, P.; Roda, A.; Tagliavini, E.; Samorì, C.; Caliceti, C. Grape Pomace for Topical Application: Green Nades Sustainable Extraction, Skin Permeation Studies, Antioxidant and Anti-Inflammatory Activities Characterization in 3d Human Keratinocytes. Biomolecules 2021, 11, 1181. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, H.; Jana, S. Evaluation of Physicochemical Properties and Intestinal Permeability of Six Dietary Polyphenols in Human Intestinal Colon Adenocarcinoma Caco-2 Cells. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 33–43. [Google Scholar] [CrossRef] [PubMed]
Experiment Number | Factor 1 % NADES [%, w/w] | Factor 2 A [%] | Factor 3 t [min] | Factor 4 Mass/Solvent [g mL−1] | Response TP [mgGAE g−1] |
---|---|---|---|---|---|
1 | 35.00 | 100.00 | 8.50 | 0.02 | 12.47 |
2 | 35.00 | 100.00 | 8.50 | 0.10 | 8.88 |
3 | 0.00 | 60.00 | 15.00 | 0.06 | 13.87 |
4 | 35.00 | 60.00 | 15.00 | 0.10 | 8.95 |
5 | 70.00 | 60.00 | 2.00 | 0.06 | 19.14 |
6 | 35.00 | 20.00 | 8.50 | 0.02 | 11.40 |
7 | 35.00 | 60.00 | 8.50 | 0.06 | 13.52 |
8 | 35.00 | 20.00 | 2.00 | 0.06 | 16.28 |
9 | 0.00 | 60.00 | 2.00 | 0.06 | 11.00 |
10 | 35.00 | 100.00 | 2.00 | 0.06 | 8.84 |
11 | 35.00 | 100.00 | 15.00 | 0.06 | 12.19 |
12 | 70.00 | 20.00 | 8.50 | 0.06 | 20.94 |
13 | 35.00 | 20.00 | 15.00 | 0.06 | 17.89 |
14 | 35.00 | 60.00 | 2.00 | 0.02 | 11.78 |
15 | 35.00 | 60.00 | 8.50 | 0.06 | 14.34 |
16 | 35.00 | 60.00 | 15.00 | 0.02 | 16.54 |
17 | 0.00 | 100.00 | 8.50 | 0.06 | 12.22 |
18 | 35.00 | 60.00 | 8.50 | 0.06 | 15.73 |
19 | 0.00 | 20.00 | 8.50 | 0.06 | 7.61 |
20 | 35.00 | 20.00 | 8.50 | 0.10 | 10.78 |
21 | 35.00 | 60.00 | 2.00 | 0.10 | 12.55 |
22 | 0.00 | 60.00 | 8.50 | 0.02 | 14.11 |
23 | 70.00 | 60.00 | 15.00 | 0.06 | 20.18 |
24 | 70.00 | 60.00 | 8.50 | 0.10 | 12.59 |
25 | 0.00 | 60.00 | 8.50 | 0.10 | 7.86 |
26 | 70.00 | 60.00 | 8.50 | 0.02 | 14.42 |
27 | 70.00 | 100.00 | 8.50 | 0.06 | 6.64 |
Extracts | ||
---|---|---|
Compound | GPBGlc | GPEtOH |
Epigallocatechin | 0.235 ± 0.010 | 0.279 ± 0.001 |
Catechin | 0.739 ± 0.006 | 0.820 ± 0.002 |
Epicatechin | 0.750 ± 0.005 | 0.471 ± 0.009 |
Gallic acid | 0.549 ± 0.008 | - |
Procyanidin B1 | 1.017 ± 0.005 | 0.505 ± 0.002 |
Procyanidin B2 | 0.265 ± 0.022 | - |
Procyanidin B3 | 0.966 ± 0.003 | 1.197 ± 0.030 |
Procyanidin C1 | 0.258 ± 0.053 | - |
Permeability (10−11 cm s−1) | |
---|---|
GPBGlc | 5.15 ± 0.47 a |
GPEtOH | 1.99 ± 0.11 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panić, M.; Damjanović, A.; Radošević, K.; Cvjetko Bubalo, M.; Dujmić, F.; Škegro, M.; Radojčić Redovniković, I.; Brnčić, M. Enhanced Preparative-Scale Extraction from Graševina Grape Pomace Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Appl. Sci. 2024, 14, 6185. https://doi.org/10.3390/app14146185
Panić M, Damjanović A, Radošević K, Cvjetko Bubalo M, Dujmić F, Škegro M, Radojčić Redovniković I, Brnčić M. Enhanced Preparative-Scale Extraction from Graševina Grape Pomace Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Applied Sciences. 2024; 14(14):6185. https://doi.org/10.3390/app14146185
Chicago/Turabian StylePanić, Manuela, Anja Damjanović, Kristina Radošević, Marina Cvjetko Bubalo, Filip Dujmić, Marko Škegro, Ivana Radojčić Redovniković, and Mladen Brnčić. 2024. "Enhanced Preparative-Scale Extraction from Graševina Grape Pomace Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents" Applied Sciences 14, no. 14: 6185. https://doi.org/10.3390/app14146185
APA StylePanić, M., Damjanović, A., Radošević, K., Cvjetko Bubalo, M., Dujmić, F., Škegro, M., Radojčić Redovniković, I., & Brnčić, M. (2024). Enhanced Preparative-Scale Extraction from Graševina Grape Pomace Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Applied Sciences, 14(14), 6185. https://doi.org/10.3390/app14146185