COVID-19 as a Factor Influencing Maximal Heart Rates among Male University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Ethical Statement
2.3. Procedures, Data Collection, and Equipment
2.3.1. Anthropometric Measurements and Body Composition Analysis
2.3.2. Twelve-Minute Cooper Test on Rowing Ergometer (12-MCTRE)
2.3.3. Correct 12-MCTRE Technique
2.3.4. 12-MCTRE Procedure for Assessing HRmax
- All subjects rowed at resistance setting 10;
- Over the first 6 min, the subjects modulated exercise intensity at their own discretion to avoid excessive effort;
- Six minutes in, the subjects started to reduce their time-to-500 m by 5 s every minute, up until the 10-min mark;
- Over the last 2 min, the subjects rowed at maximum intensity so as to achieve the highest possible HR, as viewed on the PM5 monitor.
2.4. Statistical Analysis
3. Results
3.1. PA and Anthropometric Characteristics for the Entire Test Group
3.2. Physiological Characteristics for the Entire Test Group
3.3. PA and Anthropometric Characteristics by Group
3.4. Physiological Characteristics by Group
4. Discussion
Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobe, J.; Mishra, N.; Arya, V.K.; Al-Moustadi, W.; Nates, W.; Kumar, B. Cardiac output monitoring: Technology and choice. Ann. Card. Anaesth. 2019, 22, 6–17. [Google Scholar]
- Alsamir Tibana, R.; Manuel Frade de Sousa, N.; Prestes, J.; da Cunha Nascimento, D.; Ernesto, C.; Falk Neto, J.H.; Kennedy, M.D.; Azevedo Volarelli, F. Is perceived exertion a useful indicator of the metabolic and cardiovascular responses to a metabolic conditioning session of functional fitness? Sports 2019, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Norton, J.M. Toward consistent definitions for preload and afterload. Adv. Physiol. Educ. 2001, 25, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ingjer, F. Factors influencing assessment of maximal heart rate. Scand. J. Med. Sci. Sport Exerc. 2007, 1, 134–140. [Google Scholar] [CrossRef]
- Lach, J.; Śliż, D.; Wiecha, S.; Price, S.; Brzozowski, A.; Mamcarz, A. How to calculate a maximum heart rate correctly? Folia Cardiol. 2022, 17, 289–292. [Google Scholar] [CrossRef]
- Lach, J.; Wiecha, S.; Śliż, D.; Price, S.; Zaborski, M.; Cieśliński, I.; Postuła, M.; Knechtle, B.; Mamcarz, A. HR max prediction based on age. body composition. fitness level. testing modality and sex in physically active population. Front. Physiol. 2021, 12, 695950. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.M., III; Naughton, J.P.; Haskell, W.L. Physical activity and the prevention of coronary heart disease. Ann. Clin. Res. 1971, 3, 404–432. [Google Scholar] [CrossRef] [PubMed]
- Oja, P.; Tuxworth, B. Eurofit for Adults: Assessment of Health-Related Fitness; Council of Europe Publishing: Tampere, Finland, 1995. [Google Scholar]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Gulati, M.; Shaw, L.J.; Thisted, R.A.; Black, H.R.; Bairey Merz, C.N.; Arnsdorf, M.F. Heart rate response to exercise stress testing in asymptomatic women: The St. James Women Take Heart Project. Circulation 2010, 122, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Nes, B.M.; Janszky, I.; Wisløff, U.; Støylen, A.; Karlsen, T. Age-predicted maximal heart rate in healthy subjects: The HUNT Fitness Study. Scand. J. Med. Sci. Sport Exerc. 2013, 23, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A.K.; Knapp, G.; Reimers, C.D. Effects of Exercise on the Resting Heart Rate: A Systematic review and meta-analysis of interventional studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- Grässler, B.; Thielmann, B.; Böckelmann, I.; Hökelmann, A. Effects of different exercise interventions on heart rate variability and cardiovascular health factors in older adults: A systematic review. Eur. Rev. Aging Phys. Act. 2021, 18, 24. [Google Scholar] [CrossRef]
- Nikolaidis, P.T. Age-predicted vs. measured maximal heart rate in young team sport athletes. Niger. Med. J. 2014, 55, 314–320. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Karvonen, M.J.; Kentala, E.; Mustala, O. The effects of training on heart rate; a longitudinal study. Ann. Med. Exp. Biol. Fenn. 1957, 35, 307–315. [Google Scholar]
- Chhabra, L.; Goel, N.; Prajapat, L.; Spodick, D.H.; Goyal, S. Mouse heart rate in a human: Diagnostic mystery of an extreme tachyarrhythmia. Indian Pacing Electrophysiol. J. 2012, 12, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation 2016, 133, e694–e711. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Vleck, V.E.; Bentley, D.J. Physiological differences between cycling and running: Lessons from triathletes. Sports Med. 2009, 39, 179–206. [Google Scholar] [CrossRef]
- Price, S.; Wiecha, S.; Cieśliński, I.; Śliż, D.; Kasiak, P.S.; Lach, J.; Gruba, G.; Kowalski, T.; Mamcarz, A. Differences between treadmill and cycle ergometer cardiopulmonary exercise testing results in triathletes and their association with body composition and Body Mass Index. Int. J. Environ. Res. Public Health 2022, 19, 3557. [Google Scholar] [CrossRef] [PubMed]
- Hanson, N.J.; Scheadler, C.M.; Lee, T.L.; Neuenfeldt, N.C.; Michael, T.J.; Miller, M.G. Modality determines VO2max achieved in self-paced exercise tests: Validation with the Bruce protocol. Eur. J. Appl. Physiol. 2016, 116, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Kasiak, P.S.; Wiecha, S.; Cieśliński, I.; Takken, T.; Lach, J.; Lewandowski, M.; Barylski, M.; Mamcarz, A.; Śliż, D. Validity of the maximal heart rate prediction models among runners and cyclists. J. Clin. Med. 2023, 12, 2884. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Togni, M.; Schaub, M.C.; Wenaweser, P.; Hess, O.M. High heart rate: A cardiovascular risk factor? Eur. Heart J. 2006, 27, 2387–2393. [Google Scholar] [CrossRef] [PubMed]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Sarzynski, M.A.; Rankinen, T.; Earnest, C.P.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C. Measured maximal heart rates compared to commonly used age-based prediction equations in the Heritage Family Study. Am. J. Hum. Biol. 2013, 25, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Flockhart, M.; Nilsson, L.C.; Tais, S.; Ekblom, B.; Apró Larsen, F.J. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. 2021, 33, 957–970.e6. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Rice, T.K.; Després, J.P.; Pérusse, L.; Tremblay, A.; Stanforth, P.R.; Tchernof, A.; Barber, J.L.; Falciani, F.; Clish, C.; et al. The HERITAGE Family Study: A Review of the Effects of Exercise Training on Cardiometabolic Health, with Insights into Molecular Transducers. Med. Sci. Sports Exerc. 2022, 54, S1–S43. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.C.; Wallace, J.P.; Eggert, K.E. Predicting max HR and the HR-VO2 relationship for exercise prescription in obesity. Med. Sci. Sports Exerc. 1993, 25, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Franckowiak, S.C.; Dobrosielski, D.A.; Reilley, S.M.; Walston, J.D.; Andersen, R.E. Maximal heart rate prediction in adults that are overweight or obese. J. Strength Cond. Res. 2011, 25, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Baillot, A.; Chenail, S.; Barros Polita, N.; Simoneau, M.; Libourel, M.; Nazon, E.; Riesco, E.; Bond, D.S.; Romain, A.J. Physical activity motives, barriers, and preferences in people with obesity: A systematic review. PLoS ONE 2021, 16, e0253114. [Google Scholar] [CrossRef] [PubMed]
- Heinzmann-Filho, J.P.; Zanatta, L.B.; Vendrusculo, F.M.; Silva, J.S.D.; Gheller, M.F.; Campos, N.E.; Oliveira, M.D.S.; Feoli, A.M.P.; Gustavo, A.D.S.; Donadio, M.V.F. Maximum heart rate measured versusestimated by different equations during the cardiopulmonary exercise test in obese adolescents. Rev. Paul. Pediatr. 2018, 36, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Allensworth, E.M.; Moore, P.T.; Sartain, L.; de la Torre, M. The educational benefits of attending higher performing schools: Evidence from Chicago high schools. Educ. Eval. Policy Anal. 2017, 39, 175–197. [Google Scholar] [CrossRef]
- Podstawski, R.; Finn, K.J.; Borysławski, K.; Omelan, A.A.; Podstawska, A.M.; Skrzypczak, A.R.; Pomianowski, A. The influence of COVID-19 on university students’ well-being, physical activity, body composition, and strength endurance. Int. J. Environ. Res. Public Health 2022, 19, 15680. [Google Scholar] [CrossRef] [PubMed]
- Ripley-Gonzalez, J.W.; Zhou, N.; Zeng, T.; You, B.; Zhang, W.; Liu, J.; Dong, Y.; Guo, Y.; Dun, Y.; Liu, S. The long-term impact of the COVID-19 pandemic on physical fitness in young adults: A historical control study. Sci. Rep. 2023, 13, 15430. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Healy, G.N.; Dempsey, P.C.; Salmon, J.; Timperio, A.; Clark, B.K.; Goode, A.D.; Koorts, H.; Ridgers, N.D.; Hadgraft, N.T.; et al. Sedentary Behavior and Public Health: Integrating the Evidence and Identifying Potential Solutions. Ann. Rev. Public Health 2020, 41, 265–287. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Peng, S.; Khairani, A.Z.; Liang, J. A Systematic Review and Meta-Analysis of the Efficacy of Physical Activity Interventions among University Students. Sustainability 2024, 16, 1369. [Google Scholar] [CrossRef]
- Santana, E.E.S.; Neves, L.M.; Souza, K.C.; Mendes, T.B.; Rossi, F.E.; Silva, A.A.D.; Oliveira, R.; Perilhão, M.S.; Roschel, H.; Gil, S. Physically Inactive Undergraduate Students Exhibit More Symptoms of Anxiety, Depression, and Poor Quality of Life than Physically Active Students. Int. J. Environ. Res. Public Health 2023, 20, 4494. [Google Scholar] [CrossRef] [PubMed]
- Kljajević, V.; Stanković, M.; Đorđević, D.; Trkulja-Petković, D.; Jovanović, R.; Plazibat, K.; Oršolić, M.; Čurić, M.; Sporiš, G. Physical Activity and Physical Fitness among University Students—A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 158. [Google Scholar] [CrossRef] [PubMed]
- Faff, J.; Sitkowski, D.; Ładyga, M.; Klusiewicz, A.; Borkowski, L.; Starczewska-Czapowska, J. Maximal heart rate in athletes. Biol. Sport 2007, 24, 129–142. [Google Scholar]
- Lakomy, H.K.; Lakomy, J. Estimation of maximum oxygen uptake from submaximal exercise on a Concept II rowing ergometer. J. Sports Sci. 1993, 11, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Biernat, E.; Stupnicki, R.; Gajewski, A.K. International Physical Activity Questionnaire (IPAQ)—Polish version. Phys. Educ. Sport 2007, 51, 47–54. [Google Scholar]
- Podstawski, R.; Boryslawski, K.; Hinca, B.; Finn, K.; Dziełak, A. Effect of repeated alternative thermal stress on the physiological and body composition characteristics of young women sporadically using sauna. Phys. Act. Rev. 2023, 11, 49–59. [Google Scholar] [CrossRef]
- Gibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-componentmodel percentage body fat in Hispanic. black. and white adults. Am. J. Clin. Nutr. 2008, 87, 332–338. [Google Scholar] [CrossRef]
- Podstawski, R.; Borysławski, K.; Józefacka, N.M.; Snarska, J.; Hinca, B.; Biernat, E.; Podstawska, A. The influence of extreme thermal stress on the physiological and psychological characteristics of young women who sporadically use the sauna: Practical implications for the safe use of the sauna. Front. Public Health 2024, 11, 1303804. [Google Scholar] [CrossRef] [PubMed]
- Alföldi, Z.; Borysławski, K.; Ihasz, F.; Soos, I.; Podstawski, R.S. Differences in the anthropometric and physiological profiles of Hungarian male rowers of various age categories. Rankings and career lengths: Selection problems. Front. Physiol. 2021, 12, e747781. [Google Scholar] [CrossRef] [PubMed]
- Fradkin, A.J.; Zazryn, T.R.; Smoliga, J.M. Effects of warming-up on physical performance: A systematic review with meta-analysis. J. Strength Cond. Res. 2010, 24, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Berglund, I.J.; Sørås, S.E.; Relling, B.E.; Lundgren, K.M.; Kiel, I.A.; Moholdt, T. The relationship between maximum heart rate in a cardiorespiratory fitness test and in a maximum heart rate test. J. Sci. Med. Sport 2019, 22, 607–610. [Google Scholar] [CrossRef]
- Mizera, K.M. Effect of diet on body composition and performance parameters-VO2max. HR and power. among young football players. J. Educ. Health Sport 2023, 13, 115–122. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Barker, A.R.; Wilkinson, K.M.; Abbott, R.A.; Williams, C.A. Is Cardiac Autonomic Function Associated with Cardiorespiratory Fitness and Physical Activity in Children and Adolescents? A Systematic Review of Cross-Sectional Studies. Int. J. Cardiol. 2017, 236, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Farrell, C.; Turgeon, D.R. Normal versus Chronic Adaptations to Aerobic Exercise; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Lester, M.; Sheffield, L.T.; Trammell, P.; Reeves, T.J. The effect of age and athletic training on the maximal heart rate during muscular exercise. Am. Heart J. 1968, 76, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Balassiano, D.H.; Soares de Araújo, C.G. Maximal Heart Rate: Influence of Sport Practice during Childhood and Adolescence. Arq. Bras. Cardiol. 2013, 100, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Whyte, G.P.; George, K.; Shave, R.; Middleton, N.; Nevill, A.M. Training Induced Changes in Maximum Heart Rate. Int. J. Sports Med. 2008, 29, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Londeree, B.R.; Moeschberger, M.L. Effect of Age and Other Factors on Maximal Heart Rate. Res. Quart. Exerc. Sport 1982, 53, 297–304. [Google Scholar] [CrossRef]
- Yadav, R.L.; Yadav, P.K.; Yadav, L.K.; Agrawal, K.; Sah, S.K.; Islam, M.N. Association between obesity and heart rate variability indices: An intuition toward cardiac autonomic alteration—A risk of CVD. Diabetes Metab. Syndr. Obes. 2017, 10, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global. regional. and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Laederach-Hofmann, K.; Mussgay, L.; Ruddel, H. Autonomic cardiovascular regulation in obesity. J. Endocrinol. 2000, 164, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Aneni, E.C.; Oni, E.T.; Osondu, C.U.; Martin, S.S.; Blaha, M.J.; Veledar, E.; Agatston, A.S.; Feldman, T.; Carvalho, J.A.; Conceição, R.D.; et al. Obesity Modifies the Effect of Fitness on Heart Rate Indices during Exercise Stress Testing in Asymptomatic Individuals. Cardiology 2015, 132, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Sui, X.; Ortega, F.B.; Kim, Y.S.; Church, T.S.; Winett, R.A.; Ekelund, U.; Katzmarzyk, P.T.; Blair, S.N. Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. Br. J. Sport Med. 2011, 45, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.N.; Haskell, W.L. Objectively measured physical activity and mortality in older adults. JAMA 2006, 296, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D. Time to move beyond a brainless exercise physiology: The evidence for complex regulation of human exercise performance. Appl. Physiol. Nutr. Metab. 2011, 36, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Marcora, S.M.; Staiano, W. The limit to exercise tolerance in humans: Mind over muscle? Eur. J. Appl. Physiol. 2010, 109, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Mozolev, A.; Polishchuk, O.; Shorobura, I.; Miroshnichenko, V.; Tushko, K.; Voloshyn, V.; Tomkiv, I.; Binkovskyi, O. Motor Activity and Physical Abilities of Students in the Conditions of Restrictions of COVID-19. Int. J. Hum. Mov. Sports Sci. 2021, 9, 428–435. [Google Scholar] [CrossRef]
- Sunda, M.; Gilic, B.; Peric, I.; Jurcev Savicevic, A.; Sekulic, D. Evidencing the Influence of the COVID-19 Pandemic and Imposed Lockdown Measures on Fitness Status in Adolescents: A Preliminary Report. Healthcare 2021, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Bielikova, N.; Tsos, A.; Indyka, S.; Contiero, D.; Pantik, V.; Tomaschuk, O.; Dedeliuk, N.; Podubinska, S. The Motor Activity Status and Students Self-Assessment of Health During a COVID-19 Pandemic. Sport Mont. 2021, 19, 95–99. [Google Scholar] [CrossRef]
Characteristic | Mean | SD | Min. | Max. | As * |
---|---|---|---|---|---|
PA and Anthropometric Characteristics | |||||
Age [years] | 19.93 | 1.66 | 17.4 | 24.0 | 0.694 |
PA [METs/min/week] | 1975.33 | 429.48 | 750.0 | 3100.0 | −0.379 |
Body height [cm] | 179.75 | 5.69 | 168.0 | 191.0 | −0.178 |
Body mass [kg] | 77.10 | 10.96 | 55.9 | 111.0 | 0.551 |
TBW [kg] | 46.46 | 5.63 | 32.9 | 57.8 | −0.054 |
Proteins [kg] | 12.61 | 1.53 | 8.9 | 15.7 | −0.046 |
Minerals [kg] | 4.38 | 0.59 | 3.2 | 5.7 | 0.094 |
BFM [kg] | 13.64 | 6.16 | 4.0 | 31.8 | 0.908 |
FFM [kg] | 63.46 | 7.75 | 45.0 | 79.2 | −0.046 |
SMM [kg] | 36.04 | 4.65 | 24.7 | 45.5 | −0.073 |
BMI [kg/m2] | 23.83 | 2.96 | 19.2 | 32.4 | 0.851 |
PBF [%] | 17.29 | 6.02 | 6.0 | 30.6 | 0.391 |
Target weight [kg] | 74.92 | 7.41 | 62.1 | 93.2 | 0.379 |
Weight control [kg] | −2.18 | 5.76 | −17.8 | 7.9 | −0.767 |
BFM control [kg] | −3.14 | 5.18 | −17.8 | 4.9 | −1.082 |
FFM control [kg] | 0.96 | 2.02 | 0.0 | 9.1 | 2.407 |
BMR [Kcal] | 1740.70 | 167.32 | 1342.0 | 2082.0 | −0.044 |
WHR | 0.85 | 0.07 | 0.7 | 1.0 | 0.529 |
Visceral Fat Level | 5.08 | 2.91 | 1.0 | 14.0 | 0.846 |
Physiological characteristics | |||||
Distance [m] | 2412.61 | 377.16 | 1769.0 | 3115.0 | 0.007 |
Power [W] | 112.05 | 50.78 | 42.0 | 227.0 | 0.407 |
Calories [kcal] | 135.73 | 34.94 | 87.0 | 215.0 | 0.398 |
S/M [strokes/min] | 27.20 | 3.23 | 20.0 | 34.0 | −0.203 |
Pace/500 m [s] | 150.74 | 25.51 | 104.0 | 203.0 | 0.229 |
HRavg [bpm] | 166.50 | 17.24 | 109.0 | 197.0 | −0.81 |
HRmax [bpm] | 186.70 | 13.47 | 144.0 | 219.0 | −0.570 |
Intensity of effort [s] | |||||
Zone 1: 90–108 [bpm] | 17.82 | 65.03 | 0.0 | 429.0 | 5.365 |
Zone 2: 108–125 [bpm] | 52.97 | 105.85 | 0.0 | 474.0 | 2.932 |
Zone 3: 126–144 [bpm] | 128.96 | 174.44 | 0.0 | 607.0 | 1.606 |
Zone 4: 145–162 [bpm] | 149.83 | 164.25 | 0.0 | 603.0 | 1.154 |
Zone 5: >162 [bpm] | 370.42 | 286.31 | 0.0 | 715.0 | −0.189 |
Parameter | Group * | Difference | ||||||
---|---|---|---|---|---|---|---|---|
G1 (n = 33) | G2 (n = 22) | G3 (n = 11) | ||||||
Mean | SD | Mean | SD | Mean | SD | F | p | |
PA and Anthropometric Characteristics | ||||||||
PA [METs/min/week] | 2116.27 3 | 341.22 | 2013.41 3 | 324.17 | 1476.36 1,2 | 512.90 | 12.60 | <0.001 |
Body height [cm] | 178.97 | 5.61 | 180.43 | 6.42 | 180.73 | 4.38 | 0.62 | ns |
Body mass [kg] | 73.31 3 | 8.99 | 76.07 3 | 8.96 | 90.53 1,2 | 10.27 | 14.68 | <0.001 |
TBW [kg] | 45.08 3 | 5.56 | 46.45 | 5.06 | 50.64 1 | 5.31 | 4.43 | 0.016 |
Proteins [kg] | 12.23 3 | 1.52 | 12.59 | 1.34 | 13.77 1 | 1.45 | 4.63 | 0.013 |
Minerals [kg] | 4.23 3 | 0.57 | 4.39 | 0.58 | 4.81 1 | 0.55 | 4.36 | 0.017 |
BFM [kg] | 11.76 3 | 4.25 | 12.63 3 | 5.58 | 21.29 1,2 | 6.74 | 14.62 | <0.001 |
FFM [kg] | 61.55 3 | 7.64 | 63.44 | 6.96 | 69.24 1 | 7.28 | 4.50 | 0.015 |
SMM [kg] | 34.90 3 | 4.65 | 63.44 | 6.96 | 69.24 1 | 7.28 | 4.69 | 0.013 |
BMI [kg/m2] | 22.85 3 | 2.25 | 23.34 3 | 2.28 | 27.74 1,2 | 3.06 | 17.69 | <0.001 |
PBF [%] | 15.93 3 | 4.88 | 16.35 3 | 5.88 | 23.25 1,2 | 6.31 | 7.86 | <0.001 |
Target weight [kg] | 73.10 3 | 6.51 | 74.24 3 | 6.90 | 81.74 1,2 | 7.60 | 6.77 | 0.002 |
Weight control [kg] | −0.21 3 | 4.03 | −1.84 3 | 5.20 | −8.79 1,2 | 6.74 | 12.49 | <0.001 |
BFM control [kg] | −1.57 3 | 3.42 | −2.41 3 | 4.76 | −9.31 1,2 | 6.21 | 13.05 | <0.001 |
FFM control [kg] | 1.36 | 2.54 | 0.58 | 1.27 | 0.52 | 1.18 | 1.32 | ns |
BMR [Kcal] | 1699.39 3 | 165.07 | 1740.27 | 150.17 | 1865.46 1 | 157.10 | 4.50 | 0.015 |
WHR | 0.84 3 | 0.06 | 0.83 3 | 0.06 | 0.91 1,2 | 0.08 | 8.05 | <0.001 |
Visceral Fat Level | 4.27 3 | 2.07 | 4.50 3 | 2.60 | 8.64 1,2 | 3.20 | 13.91 | <0.001 |
Physiological characteristics | ||||||||
Distance [m] | 2648.67 2,3 | 315.01 | 2304.96 1,3 | 230.53 | 1919.73 1,2 | 137.48 | 33.51 | <0.001 |
Power [W] | 144.58 2,3 | 46.20 | 92.36 1,3 | 28.55 | 53.82 1,2 | 12.12 | 29.27 | <0.001 |
Calories [Kcal] | 157.88 2,3 | 31.99 | 123.09 1,3 | 18.89 | 94.55 1,2 | 8.58 | 29.49 | <0.001 |
S/M [strokes/min] | 28.52 2,3 | 2.67 | 25.95 1 | 3.27 | 25.73 1 | 3.29 | 6.46 | 0.003 |
Pace/500 m [s] | 136.30 2,3 | 19.69 | 155.82 1,3 | 18.89 | 183.91 1,2 | 16.88 | 27.06 | <0.001 |
HRavg [bpm] | 174.21 2,3 | 13.53 | 159.82 1 | 18.27 | 156.73 1 | 15.65 | 8.22 | <0.001 |
HRmax [bpm] | 191.82 3 | 12.28 | 184.36 | 11.60 | 176.00 1 | 13.76 | 7.41 | 0.001 |
Intensity of effort [s] | ||||||||
Zone 1: 90–108 [bpm] | 6.61 | 19.92 | 27.36 | 90.72 | 32.36 | 89.93 | 1.00 | ns |
Zone 2: 108–125 [bpm] | 22.12 2 | 34.25 | 96.73 1 | 150.28 | 58.00 | 119.46 | 3.55 | 0.034 |
Zone 3: 126–144 [bpm] | 123.18 | 195.02 | 113.50 | 132.78 | 177.18 | 189.35 | 0.52 | ns |
Zone 4: 145–162 [bpm] | 87.27 3 | 107.75 | 184.18 | 180.59 | 268.82 1 | 196.54 | 6.78 | 0.002 |
Zone 5: >162 [bpm] | 480.82 3 | 250.33 | 298.73 | 299.97 | 183.64 1 | 230.79 | 6.41 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podstawski, R.; Borysławski, K.; Wąsik, J. COVID-19 as a Factor Influencing Maximal Heart Rates among Male University Students. Appl. Sci. 2024, 14, 6146. https://doi.org/10.3390/app14146146
Podstawski R, Borysławski K, Wąsik J. COVID-19 as a Factor Influencing Maximal Heart Rates among Male University Students. Applied Sciences. 2024; 14(14):6146. https://doi.org/10.3390/app14146146
Chicago/Turabian StylePodstawski, Robert, Krzysztof Borysławski, and Jacek Wąsik. 2024. "COVID-19 as a Factor Influencing Maximal Heart Rates among Male University Students" Applied Sciences 14, no. 14: 6146. https://doi.org/10.3390/app14146146
APA StylePodstawski, R., Borysławski, K., & Wąsik, J. (2024). COVID-19 as a Factor Influencing Maximal Heart Rates among Male University Students. Applied Sciences, 14(14), 6146. https://doi.org/10.3390/app14146146