Design and Optimization of Thermal Vacuum Sensor Test System Based on Thermoelectric Cooling
Abstract
:1. Introduction
2. Simulation Methods
2.1. Mathematical Modeling of TEC
2.2. Equivalent Circuit of TEC
2.3. Thermal Deformation and Goniometric Errors
2.4. Numerical System and Boundary Conditions
- (1)
- The values of temperature and heat flux are constant at both the control and non-control sides.
- (2)
- The values of thermal conductivity and emissivity of all materials are assumed to be constant.
- (3)
- The physical parameters of the thermoelectric cooler are all constants and do not vary with the external environment.
- (4)
- To improve the thermal emissivity, the surfaces of all devices are oxidized and blackened.
- (5)
- The initial temperature is 25 °C, and the ambient temperatures during heating and cooling conditions are −75 °C and 90 °C, respectively.
- (6)
- The simulation excludes the fluid domain. The transient analysis time is 200,000 s with a time step of 1000 s. The thermoelectric cooler starts operating when the internal fixture temperature reaches its boundary value.
3. Simulation Model
3.1. TEC Selection
3.2. Material Property Parameter Setting
Material Name | Density (kg/m3) | Specific Heat Capacity (J/kg × K) | Thermal Conductivity (W/m × K) |
---|---|---|---|
Duralumin | 2800 | 862 | 150 |
Bismuth telluride | 7642 | 213 | 1 |
Polyimide | 1300 | 1090 | 0.4 |
Steel616 | 7850 | 420 | 25 |
Polyurethane | 1045 | See Table 4 | 0.034 |
Temperature (K) | Specific Heat Capacity (J/kg × K) |
---|---|
150 | 720.5 |
200 | 1035.4 |
250 | 1320 |
300 | 1536.5 |
3.3. PSpice Model
3.4. Finite Element Network Division
- (1)
- It can reduce the time required to export and import three-dimensional models by up to 65%. This is because it has been designed to integrate seamlessly with traditional three-dimensional design software, such as SolidWorks. This integration allows users to perform simulations and analyses directly within the three-dimensional drawings, eliminating the need to convert them.
- (2)
- The meshing technique employed in FloEFD relies on the immersed boundary approach and rectangular adaptive mesh technology, hence obviating the necessity to take into account mesh quality. The simulation configures the global mesh to level 3. The computational domain has dimensions of 1001 mm (length), 1011 mm (width), and 1001 mm (height), and the dimensions of the assembly are 300 mm (length), 300 mm (width) 554 mm (height). A 3D mesh was applied to the model with a base size of 28 mm, resulting in a total of 601,517 elements. The utilization of local mesh refinement is implemented to enhance the convergence of intricate elements, with a refinement level of 4. Figure 5 illustrates the finalized model.
4. Results and Discussion
4.1. PSpice Simulation
4.2. FloEFD Simulation
4.2.1. Steady-State Analysis
4.2.2. Transient Analysis
4.3. Orthogonal Test Optimization
5. Numerical Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarkar, S.; Bose, A. Lifetime performances of modernized GLONASS satellites: A review. Artif. Satell. 2017, 52, 85–97. [Google Scholar] [CrossRef]
- Anonymous. Rocket Crash, Alcohol Warnings and Astronomy’s Leaky Pipeline. Nature 2018, 562, 312–313. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.C.; Juarez, P.D. Emerging needs for pervasive passive wireless sensor networks on aerospace vehicles. Procedia Comput. Sci. 2014, 37, 101–108. [Google Scholar] [CrossRef]
- Arockiyadoss, M.A.; Dehnaw, A.M.; Manie, Y.C.; Hayle, S.T.; Yao, C.-K.; Peng, C.-H.; Kumar, P.; Peng, P.-C. Self-Healing Fiber Bragg Grating Sensor System Using Free-Space Optics Link and Machine Learning for Enhancing Temperature Measurement. Electronics 2024, 13, 1276. [Google Scholar] [CrossRef]
- Jiang, Q.; Leu, K.; Gong, X.; Wang, F.; Li, R.; Wang, K.; Zhu, P.; Zhao, Y.; Zang, Y.; Zhang, R. High-Performance Airflow Sensors Based on Suspended Ultralong Carbon Nanotube Crossed Networks. ACS Appl. Mater. Interfaces 2024, 16, 20949–20958. [Google Scholar] [CrossRef] [PubMed]
- Mang, J.; Qiu, Z.; Pan, W.; Dong, M.; Wu, M. GGTS: FPGA-Based General Ground Test System for Space-Borne Equipment. In Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), Chengdu, China, 23–26 April 2021; pp. 976–981. [Google Scholar]
- Nguyen, H.D.; Miller, I.A. Cost impact of automated acceptance testing of electrical ground support equipment for spacecraft testing. IEEE Instrum. Meas. Mag. 2012, 15, 28–33. [Google Scholar] [CrossRef]
- Teague, S.; Chahl, J. Bootstrap geometric ground calibration method for wide angle star sensors. JOSA A 2024, 41, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zheng, Y.; Xing, L.; Hou, B. Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications. Therm. Sci. Eng. Prog. 2023, 45, 102064. [Google Scholar] [CrossRef]
- Pourkiaei, S.M.; Ahmadi, M.H.; Sadeghzadeh, M.; Moosavi, S.; Pourfayaz, F.; Chen, L.; Yazdi, M.A.P.; Kumar, R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy 2019, 186, 115849. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.-D.; Liu, Q.; Chen, Z.-G. Advances in thermoelectric devices for localized cooling. Chem. Eng. J. 2022, 450, 138389. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X. Application of Thermoelectric Technology in Direct Air Cooling System of Thermal Power Plant. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Chengdu, China, 9–11 July 2021; p. 012003. [Google Scholar]
- Ling, Y.; Min, E.; Dong, G.; Zhao, L.; Feng, J.; Li, J.; Zhang, P.; Liu, R.; Sun, R. Precise temperature control of electronic devices under ultra-high thermal shock via thermoelectric transient pulse cooling. Appl. Energy 2023, 351, 121870. [Google Scholar] [CrossRef]
- Wiriyasart, S.; Naphon, P.; Hommalee, C. Sensible air cool-warm fan with thermoelectric module systems development. Case Stud. Therm. Eng. 2019, 13, 100369. [Google Scholar] [CrossRef]
- Ponce, L.G.L.; Chejne, F.; Aristeguieta, L.M.R.; Gómez, C.A.; Cano, A.F.M. Predicting a thermal stimulator’s heating/cooling rate for medical applications. Appl. Therm. Eng. 2019, 163, 114376. [Google Scholar] [CrossRef]
- Ismailov, T.; Yevdulov, O.; Nasrulaev, A. A mathematical model of a thermoelectric device for extracting foreign objects from the human body by freezing. Biomed. Eng. 2021, 55, 219–223. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization. Mater. Sci. Eng. R Rep. 2022, 151, 100700. [Google Scholar] [CrossRef]
- Kellermann, H.; Fuhrmann, S.; Shamiyeh, M.; Hornung, M. Design of a battery cooling system for hybrid electric aircraft. J. Propuls. Power 2022, 38, 736–751. [Google Scholar] [CrossRef]
- Morozov, S. Stimulated Emission in 2.8–3.5 μm Wavelength Range from Peltier Cooled Hgte/Cdhgte Quantum Well Heterostructures. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; pp. 1–2. [Google Scholar]
- Kudryavtsev, K.; Rumyantsev, V.; Utochkin, V.; Fadeev, M.; Aleshkin, V.Y.; Dubinov, A.; Zholudev, M.; Mikhailov, N.; Dvoretskii, S.; Remesnik, V. Toward Peltier-cooled mid-infrared HgCdTe lasers: Analyzing the temperature quenching of stimulated emission at ~6 μm wavelength from HgCdTe quantum wells. J. Appl. Phys. 2021, 130, 214302. [Google Scholar] [CrossRef]
- Sarris, A.; Bhatti, B.; Ciampa, F. Thermoelectric energy harvesting using vapour chamber coolers for aerospace applications. J. Intell. Mater. Syst. Struct. 2022, 33, 1602–1612. [Google Scholar] [CrossRef]
- Naigert, K.V.; Tselischev, V.A. Modeling of Thermoelectric Elements in Cooling Circuits of Drive Systems. In Proceedings of the 2019 International Ural Conference on Electrical Power Engineering (UralCon), Chelyabinsk, Russia, 1–3 October 2019; pp. 467–471. [Google Scholar]
- Ding, D.; Wu, J.; Zhu, Y.; Gao, C.; Xiao, J. Thermal-hydraulic performance study of swiftlet-type fins for supercritical carbon dioxide precooler. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 5412–5433. [Google Scholar] [CrossRef]
- Al Adel, Z.; Bouabidi, A.; Cherigui, M. Improving solar still productivity via fin optimization: Computational and experimental investigations. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 1260–1283. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Yang, L.; Cui, Y.; Song, L.; Yue, G. Multi-objective optimization of heat charging performance of phase change materials in tree-shaped perforated fin heat exchangers. Energy 2024, 294, 130839. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Y.; Zhuang, N.; Zhao, H.; Tang, X. Optimization design of surface microstructure of high-efficiency space radiation heat dissipation fins. Ann. Nucl. Energy 2023, 182, 109590. [Google Scholar] [CrossRef]
- Fan, K.; Xiao, J.; Wang, R.; Gao, R. Thermoelectric-based cooling system for high-speed motorized spindle I: Design and control mechanism. Int. J. Adv. Manuf. Technol. 2022, 121, 3787–3800. [Google Scholar] [CrossRef]
- Cheng, M.; Li, S.; Xie, Z.; Qin, L. The Analysis of Numerical Simulation About Thermal Management on Frequency Converter. IEEE Access 2019, 7, 145677–145684. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, J.-N.; Liu, Z.-Y.; Ding, C.; Sui, G.-R.; Jia, H.-Z.; Gao, X.-M. An enhanced thermoelectric collaborative cooling system with thermoelectric generator serving as a supplementary power source. IEEE Trans. Electron Devices 2021, 68, 1847–1854. [Google Scholar] [CrossRef]
- Kominek, J.; Zachar, M.; Guzej, M.; Bartuli, E.; Kotrbacek, P. Influence of ambient temperature on radiative and convective heat dissipation ratio in polymer heat sinks. Polymers 2021, 13, 2286. [Google Scholar] [CrossRef]
- Ning, B.; Zhang, M.; Li, J.; Chen, Y. A revised radiant time series method (RTSM) to calculate the cooling load for pipe-embedded radiant systems. Energy Build. 2022, 268, 112199. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, X.; Wang, Q.; Qiu, Y.; Shu, Z.; Guo, Z.; Tong, Y.; Cui, J.; Gu, M.; He, J. Realizing record high performance in n-type Bi 2 Te 3-based thermoelectric materials. Energy Environ. Sci. 2020, 13, 2106–2114. [Google Scholar] [CrossRef]
- Hassan, M.A.; Kaood, A. Multi-criteria assessment of enhanced radiant ceiling panels using internal longitudinal fins. Build. Environ. 2022, 224, 109554. [Google Scholar] [CrossRef]
- Ko, D.-G.; Kim, M.-S. A Study on the Radiant Heat Performance of Ballast according to the Aspect Ratio of UCD-Lamp Ballast Fin. J. Korean Soc. Mech. Technol. 2017, 19, 579–584. [Google Scholar]
Thermal Quantities | Units | Analogous Electrical Quantities | Units |
---|---|---|---|
Heat | W | Current | A |
Temperature | K | Voltage | V |
Thermal resistance | K/W | Resistance | Ω |
Heat capacity | J/K | Capacity | F |
Absolute zero temperature | 0 K | Ground | 0 V |
16.6 | 3.2 | 83 | 31.4 |
Load Power (W) | Characteristic Equations | Coefficient of Determination |
---|---|---|
0 | U = 5.48I + 1.47 | 0.995 |
5 | U = 5.56I + 0.52 | 0.994 |
10 | U = 5.61I − 0.34 | 0.997 |
15 | U = 5.63I − 1.08 | 0.995 |
20 | U = 5.64I − 1.82 | 0.995 |
Experimental No | Factor A Shape | Factor B Space (mm) | Factor C Thickness (mm) | (°C) | (°C) |
---|---|---|---|---|---|
1 | Rectangle | 9 | 5 | 1.46 | 3.20 |
2 | Rectangle | 10 | 6 | 1.44 | 3.22 |
3 | Rectangle | 11 | 7 | 1.37 | 3.20 |
4 | Rectangle | 12 | 8 | 1.18 | 3.23 |
5 | Isosceles trapezoid | 9 | 6 | 1.24 | 3.19 |
6 | Isosceles trapezoid | 10 | 5 | 1.43 | 3.22 |
7 | Isosceles trapezoid | 11 | 8 | 1.22 | 3.21 |
8 | Isosceles trapezoid | 12 | 7 | 1.43 | 3.24 |
9 | Hackle | 9 | 7 | 1.12 | 3.22 |
10 | Hackle | 10 | 8 | 1.22 | 3.22 |
11 | Hackle | 11 | 5 | 1.36 | 3.20 |
12 | Hackle | 12 | 6 | 1.44 | 3.26 |
13 | Slot | 9 | 8 | 1.13 | 3.22 |
14 | Slot | 10 | 7 | 1.35 | 3.20 |
15 | Slot | 11 | 6 | 1.35 | 3.22 |
16 | Slot | 12 | 5 | 1.37 | 3.23 |
Level | Fin Shape | Fin Spacing | Fin Thickness |
---|---|---|---|
1 | 1.362 | 1.238 | 1.405 |
2 | 1.330 | 1.360 | 1.367 |
3 | 1.285 | 1.325 | 1.317 |
4 | 1.300 | 1.355 | 1.188 |
Delta | 0.077 | 0.122 | 0.218 |
Rank | 3 | 2 | 1 |
Name | External Radiator Temperature | Internal Radiator Temperature | Insulation Layer Heat Flux |
---|---|---|---|
Simulation Value | 398 K | 334 K | 11.12 W |
Theoretical Value | 383 K | 333 K | 11.73 W |
Error | 3.9% | 0.3% | 5.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, X.; Zhao, M.; Li, G. Design and Optimization of Thermal Vacuum Sensor Test System Based on Thermoelectric Cooling. Appl. Sci. 2024, 14, 6144. https://doi.org/10.3390/app14146144
Shan X, Zhao M, Li G. Design and Optimization of Thermal Vacuum Sensor Test System Based on Thermoelectric Cooling. Applied Sciences. 2024; 14(14):6144. https://doi.org/10.3390/app14146144
Chicago/Turabian StyleShan, Xiaohang, Min Zhao, and Gang Li. 2024. "Design and Optimization of Thermal Vacuum Sensor Test System Based on Thermoelectric Cooling" Applied Sciences 14, no. 14: 6144. https://doi.org/10.3390/app14146144
APA StyleShan, X., Zhao, M., & Li, G. (2024). Design and Optimization of Thermal Vacuum Sensor Test System Based on Thermoelectric Cooling. Applied Sciences, 14(14), 6144. https://doi.org/10.3390/app14146144