Fenton-Based Treatment of Flax Biomass for Modification of Its Fiber Structure and Physicochemical Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Adsorption of Iron Species on the Flax Fiber Surface
2.2. Investigating the Effect of Operational Parameters on Modified Fenton Reaction Efficiency
2.3. FT-IR Spectroscopy
2.4. Thermal Gravimetry Analysis
2.5. NMR Spectroscopy
2.6. Fiber Surface Charge Estimation via Determination of PZC
2.7. Dye Adsorption
2.8. Scanning Electron Microscopy
3. Materials and Methods
3.1. Materials
3.2. Flax Fiber Treatment Process
3.2.1. Washing Step
3.2.2. Modified Fenton AOR Process
3.2.3. Alkali Treatment
3.3. Characterization Methods
3.3.1. X-ray Photoelectron Spectroscopy (XPS)
3.3.2. Fourier Transform Infrared (FT-IR) Spectroscopy
3.3.3. Thermal Gravimetry Analysis (TGA)
3.3.4. Optical Microscopy
3.3.5. C NMR Spectroscopy
3.3.6. Point-of-Zero-Charge (PZC)
3.3.7. Dye Adsorption
3.3.8. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suriaman, I.; Hendrarsakti, J.; Mardiyati, Y.; Pasek, A.D. Synthesis and characterization of air filter media made from cellulosic ramie fiber (Boehmeria nivea). Carbohydr. Polym. Technol. Appl. 2022, 3, 100216. [Google Scholar] [CrossRef]
- Lv, D.; Zhu, M.; Jiang, Z.; Jiang, S.; Zhang, Q.; Xiong, R.; Huang, C. Green Electrospun Nanofibers and Their Application in Air Filtration. Macromol. Mater. Eng. 2018, 303, 1800336. [Google Scholar] [CrossRef]
- Du, Y.; Pundienė, I.; Pranckevičienė, J.; Kligys, M.; Girskas, G.; Korjakins, A. A Review of Biomass Wood Ash in Alkali-Activated Materials: Treatment, Application, and Outlook. J. Compos. Sci. 2024, 8, 161. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Li, Q.; Long, Y.; Yu, T.; Li, Z. Evolution of stiffness in flax yarn within flax fiber reinforced composites during moisture absorption. Compos. Part B Eng. 2024, 268, 111096. [Google Scholar] [CrossRef]
- Hall, L.M.; Booker, H.; Siloto, R.M.P.; Jhala, A.J.; Weselake, R.J. Chapter 6—Flax (Linum usitatissimum L.). In Industrial Oil Crops; McKeon, T.A., Hayes, D.G., Hildebrand, D.F., Weselake, R.J., Eds.; AOCS Press: Urbana, IL, USA, 2016; pp. 157–194. [Google Scholar]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- More, A.P. Flax fiber–based polymer composites: A review. Adv. Compos. Hybrid Mater. 2021, 5, 1–20. [Google Scholar] [CrossRef]
- Pankaj; Jawalkar, C.S.; Kant, S. Critical Review on Chemical Treatment of Natural Fibers to Enhance Mechanical Properties of Bio Composites. Silicon 2021, 14, 5103–5124. [Google Scholar]
- Oushabi, A. The pull-out behavior of chemically treated lignocellulosic fibers/polymeric matrix interface (LF/PM): A review. Compos. Part B Eng. 2019, 174, 107059. [Google Scholar] [CrossRef]
- Hasan, A.; Rabbi, M.S.; Maruf Billah, M. Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Clean. Mater. 2022, 4, 100078. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Zhang, Y.; Yu, Q.; Tan, X.; Zhuang, X.; Yuan, Z. Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Ind. Crops Prod. 2020, 145, 112145. [Google Scholar] [CrossRef]
- Luchese, C.L.; Engel, J.B.; Tessaro, I.C. A Review on the Mercerization of Natural Fibers: Parameters and Effects. Korean J. Chem. Eng. 2024, 41, 571–587. [Google Scholar] [CrossRef]
- Montreuil, A.; Mertz, G.; Bardon, J.; Guillot, J.; Grysan, P.; Addiego, F. Flax fiber treatment by an alkali solution and poly(dopamine) coating: Effects on the fiber physico-chemistry and flax/Elium® composite interfacial properties. Compos. Part A Appl. Sci. Manuf. 2024, 177, 107963. [Google Scholar] [CrossRef]
- Lorenci Woiciechowski, A.; Dalmas Neto, C.J.; Porto de Souza Vandenberghe, L.; de Carvalho Neto, D.P.; Novak Sydney, A.C.; Letti, L.A.J.; Karp, S.G.; Zevallos Torres, L.A.; Soccol, C.R. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance—Conventional processing and recent advances. Bioresour. Technol. 2020, 304, 122848. [Google Scholar] [CrossRef] [PubMed]
- Świątek, K.; Gaag, S.; Klier, A.; Kruse, A.; Sauer, J.; Steinbach, D. Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 2020, 10, 437. [Google Scholar] [CrossRef]
- Benali, M.; Oulmekki, A.; Toyir, J. The Impact of the Alkali-Bleaching Treatment on the Isolation of Natural Cellulosic Fibers from Juncus Effesus L Plant. Fibers Polym. 2024, 25, 525–533. [Google Scholar] [CrossRef]
- Shehap, A.M. Thermal and Spectroscopic Studies of Polyvinyl Alcohol/Sodium Carboxy Methyl Cellulose Blends. Egypt J. Solids 2008, 31, 75–91. [Google Scholar]
- Ferro, G.; Minciardi, R.; Podestà, E.; Robba, M. An optimization model for the sizing of the biomass plants’ supply chain. IFAC-PapersOnLine 2018, 51, 114–119. [Google Scholar] [CrossRef]
- Bautista, P.; Mohedano, A.F.; Casas, J.A.; Zazo, J.A.; Rodriguez, J.J. An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol. 2008, 83, 1323–1338. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Fang, L.; Zhang, C.; Xu, X. Fenton-reaction-aid selective delignification of lignocellulose by Inonotus obliquus to improve enzymatic saccharification. Fuel 2023, 333, 126355. [Google Scholar] [CrossRef]
- Qadir, M.B.; Alsaiari, M.; Ali, Z.; Afzal, A.; Khaliq, Z.; Irfan, M.; Rahman, A.; Jalalah, M.; Harraz, F.A. Conversion of sugarcane biomass into sustainable fabrics: Softening of fibers using alkali and silicone softener treatment. Mater. Res. Express 2024, 11, 025103. [Google Scholar] [CrossRef]
- Ge, J.; Lv, X.; Zhou, J.; Lv, Y.; Sun, J.; Guo, H.; Wang, C.; Hu, P.; Spitalsky, Z.; Liu, Y. Multi-level structured polylactic acid electrospun fiber membrane based on green solvents for high-performance air filtration. Sep. Purif. Technol. 2024, 331, 125659. [Google Scholar] [CrossRef]
- Karthik, A.; Bhuvaneshwaran, M.; Senthil Kumar, M.S.; Palanisamy, S.; Palaniappan, M.; Ayrilmis, N. A Review on Surface Modification of Plant Fibers for Enhancing Properties of Biocomposites. ChemistrySelect 2024, 9, e202400650. [Google Scholar] [CrossRef]
- Sun, Y.; Li, D.; Yu, Y.; Chen, J.; Fan, W. Separation and Characterization of Cellulose Fibers from Cannabis Bast Using Foamed Nickel by Cathodic Electro-Fenton Oxidation Strategy. Polymers 2022, 14, 380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, Z.; Yu, C. Property of ramie fiber degummed with Fenton reagent. Fibers Polym. 2017, 18, 1891–1897. [Google Scholar] [CrossRef]
- Qin, R.-C.; Ma, Y.-Y.; Wang, D.; Bao, N.-Z.; Liu, C.-G. Preparation of Cellulose Nanofibers from Corn Stalks by Fenton Reaction: A New Insight into the Mechanism by an Experimental and Theoretical Study. J. Agric. Food Chem. 2023, 71, 1907–1920. [Google Scholar] [CrossRef] [PubMed]
- Mazarji, M.; Minkina, T.; Sushkova, S.; Antonenko, E.; Mandzhieva, S.; Dudnikova, T. Impact of humic acid on degradation of benzo(a)pyrene polluted Haplic Chernozem triggered by modified Fenton-like process. Environ. Res. 2020, 190, 109948. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.H.; Udoetok, I.A.; Solgi, M.; Steiger, B.G.K.; Zhou, Z.; Wilson, L.D. Design of Sustainable Biomaterial Composite Adsorbents for Point-of-Use Removal of Lead Ions from Water. Front. Water 2022, 4, 739492. [Google Scholar] [CrossRef]
- Kong, D.; Kusrini, E.; Wilson, L.D. Binary Pectin-Chitosan Composites for the Uptake of Lanthanum and Yttrium Species in Aqueous Media. Micromachines 2021, 12, 478. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.; Phillips, S.F. Components of fiber bind iron invitro. Am. J. Clin. Nutr. 1982, 35, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Gupta, K.; Goyal, D.; Goyal, A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ. Prog. Sustain. Energy 2016, 35, 489–511. [Google Scholar] [CrossRef]
- Lazić, B.D.; Pejić, B.M.; Kramar, A.D.; Vukčević, M.M.; Mihajlovski, K.R.; Rusmirović, J.D.; Kostić, M.M. Influence of hemicelluloses and lignin content on structure and sorption properties of flax fibers (Linum usitatissimum L.). Cellulose 2018, 25, 697–709. [Google Scholar] [CrossRef]
- Fathi, B.; Harirforoush, M.; Foruzanmehr, M.; Elkoun, S.; Robert, M. Effect of TEMPO oxidation of flax fibers on the grafting efficiency of silane coupling agents. J. Mater. Sci. 2017, 52, 10624–10636. [Google Scholar] [CrossRef]
- Dehabadi, L.; Karoyo, A.H.; Soleimani, M.; Alabi, W.O.; Simonson, C.J.; Wilson, L.D. Flax Biomass Conversion via Controlled Oxidation: Facile Tuning of Physicochemical Properties. Bioengineering 2020, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Khiari, B.; Ibn Ferjani, A.; Azzaz, A.A.; Jellali, S.; Limousy, L.; Jeguirim, M. Thermal conversion of flax shives through slow pyrolysis process: In-depth biochar characterization and future potential use. Biomass Convers. Biorefinery 2021, 11, 325–337. [Google Scholar] [CrossRef]
- Alabi, W.O.; Karoyo, A.H.; Krishnan, E.N.; Dehabadi, L.; Wilson, L.D.; Simonson, C.J. Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications. ACS Omega 2020, 5, 9529–9539. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.X.; Sun, X.F.; Zhao, H.; Sun, R.C. Isolation and characterization of cellulose from sugarcane bagasse. Polym. Degrad. Stab. 2004, 84, 331–339. [Google Scholar] [CrossRef]
- Kostryukov, S.G.; Petrov, P.S.; Kalyazin, V.A.; Masterova, Y.Y.; Tezikova, V.S.; Khluchina, N.A.; Labzina, L.Y.; Alalvan, D.K. Determination of Lignin Content in Plant Materials Using Solid-State 13C NMR Spectroscopy. Polym. Sci. Ser. B 2021, 63, 544–552. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Martínez-Alonso, A.; Castro-Muñiz, A.; Suárez-García, F.; Tascón, J.M.D. Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 2007, 45, 1941–1950. [Google Scholar] [CrossRef]
- Mir, M.; Wilson, L.D. Flax Fiber-Chitosan Biocomposites with Tailored Structure and Switchable Physicochemical Properties. Carbohydr. Polym. Technol. Appl. 2023, 6, 100397. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, C.A.; Tasqué, J.E.; Garcia, N.L.; D’Accorso, N.B. Hemicelluloses hydrogel: Synthesis, characterization, and application in dye removal. Int. J. Biol. Macromol. 2023, 253, 127010. [Google Scholar] [CrossRef]
- Feng, Q.; Cheng, H.; Chen, F.; Zhou, X.; Wang, P.; Xie, Y. Investigation of cationic dye adsorption from water onto acetic acid lignin. J. Wood Chem. Technol. 2016, 36, 173–181. [Google Scholar] [CrossRef]
- Samaei, S.E.; Mahabadi, H.A.; Mousavi, S.M.; Khavanin, A.; Faridan, M.; Taban, E. The influence of alkaline treatment on acoustical, morphological, tensile and thermal properties of Kenaf natural fibers. J. Ind. Text. 2020, 51, 8601S–8625S. [Google Scholar] [CrossRef]
- Li, Q.; Wang, A.; Long, K.; He, Z.; Cha, R. Modified Fenton Oxidation of Cellulose Fibers for Cellulose Nanofibrils Preparation. ACS Sustain. Chem. Eng. 2019, 7, 1129–1136. [Google Scholar] [CrossRef]
- Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Benyounis, K.Y.; Messeiry, M.; Hussain, A.I.; Abadir, E.F. Optimization of Alkaline Treatment Conditions of Flax Fiber Using Box–Behnken Method. J. Nat. Fibers 2012, 9, 256–276. [Google Scholar] [CrossRef]
- Anisimov, Y.A.; Evitts, R.W.; Cree, D.E.; Wilson, L.D. Polyaniline/Biopolymer Composite Systems for Humidity Sensor Applications: A Review. Polymers 2021, 13, 2722. [Google Scholar] [CrossRef] [PubMed]
Iron Concentration (wt.%) | Iron Content (wt.%) |
---|---|
0.1% | Not detected |
1.0% | Not detected |
2.5% | 1.64% |
5.0% | 4.50% |
Sample | ID Code | Experimental Conditions |
---|---|---|
Raw flax fibers | Raw | |
Treated flax fiber with Fenton AOR | F-T15 (Fenton AOR) | Flax fiber with Fenton AOR at described conditions 1 |
Treated flax fiber with Fenton AOR + alkali treatment | F-T15-Alk (Fenton AOR + Alkali) | Flax fiber with Fenton AOR at described conditions 1, followed by NaOH 5% for 1 h |
Treated flax fiber with alkali treatment | Alk (no Fenton AOR) | NaOH 5% for 1 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliasgharlou, N.; Cree, D.E.; Wilson, L.D. Fenton-Based Treatment of Flax Biomass for Modification of Its Fiber Structure and Physicochemical Properties. Appl. Sci. 2024, 14, 6133. https://doi.org/10.3390/app14146133
Aliasgharlou N, Cree DE, Wilson LD. Fenton-Based Treatment of Flax Biomass for Modification of Its Fiber Structure and Physicochemical Properties. Applied Sciences. 2024; 14(14):6133. https://doi.org/10.3390/app14146133
Chicago/Turabian StyleAliasgharlou, Nasrin, Duncan E. Cree, and Lee D. Wilson. 2024. "Fenton-Based Treatment of Flax Biomass for Modification of Its Fiber Structure and Physicochemical Properties" Applied Sciences 14, no. 14: 6133. https://doi.org/10.3390/app14146133
APA StyleAliasgharlou, N., Cree, D. E., & Wilson, L. D. (2024). Fenton-Based Treatment of Flax Biomass for Modification of Its Fiber Structure and Physicochemical Properties. Applied Sciences, 14(14), 6133. https://doi.org/10.3390/app14146133