The Compositional and Functional Diversity of a Mediterranean Urban Lake’s Fish Fauna over the Past 120 Years
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.1.1. Position and Morphological Characteristics
2.1.2. Hydromorphological and Limnological Characteristics
2.2. Fisheries
2.3. Data Acquisition
2.4. Data Analysis
2.4.1. Compositional Changes
2.4.2. Species Functional Dissimilarity and Changes
2.4.3. Vertical CPUE Differences
2.4.4. Assessment of the Ecological Quality
3. Results
3.1. Structural Changes
3.2. Functional Changes
3.3. Current Species Abundances
3.4. Ecological Quality Assessment
4. Discussion
4.1. Compositional Changes
4.2. Functional Changes
4.3. Current Status
4.4. Ecological Quality Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- D’Alelio, D.; Russo, L.; Hay Mele, B.; Pomati, F. Intersecting ecosystem services across the aquatic continuum: From global change impacts to local, and biologically driven, synergies and trade-offs. Front. Ecol. Evol. 2021, 9, 628658. [Google Scholar] [CrossRef]
- Pandey, B.; Ghosh, A. Urban ecosystem services and climate change: A dynamic interplay. Front. Sustain. Cities 2023, 5, 1281430. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.G.; Frank, K.A.; Pokhrel, Y.; Dietz, T.; Liu, J. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sustain. 2021, 4, 1068–1075. [Google Scholar] [CrossRef]
- Engman, A.C.; Roy, A.H. Freshwater Biodiversity in Urban Ecosystems. In Routledge Handbook of Urban Biodiversity, 1st ed.; Nilon, C.H., Aronson, M.F.J., Eds.; Routledge: London, UK, 2023; pp. 289–303. [Google Scholar]
- Vitule, J.R.S.; Freire, C.A.; Simberloff, D. Introduction of non-native freshwater fish can certainly be bad. Fish Fish. 2009, 10, 98–108. [Google Scholar] [CrossRef]
- Ruesink, J.L. Global Analysis of Factors Affecting the Outcome of Freshwater Fish Introductions. Conserv. Biol. 2005, 19, 1883–1893. [Google Scholar] [CrossRef]
- Bernery, C.; Bellard, C.; Courchamp, F.; Brosse, S.; Gozlan, R.E.; Jarić, I.; Teletchea, F.; Leroy, B. Freshwater Fish Invasions: A Comprehensive Review. Annu. Rev. Ecol. Evol. Syst. 2022, 53, 427–456. [Google Scholar] [CrossRef]
- Perry, W.L.; Lodge, D.M.; Feder, J.L. Importance of Hybridization Between Indigenous and Nonindigenous Freshwater Species: An Overlooked Threat to North American Biodiversity. Syst. Biol. 2002, 51, 255–275. [Google Scholar] [CrossRef]
- Cucherousset, J.; Olden, J.D. Ecological Impacts of Nonnative Freshwater Fishes. Fisheries 2011, 36, 215–230. [Google Scholar] [CrossRef]
- Pusey, B.J.; Arthington, A.H. Importance of the riparian zone to the conservation and management of freshwater fish: A review. Mar. Freshw. Res. 2003, 54, 1–16. [Google Scholar] [CrossRef]
- Malik, D.S.; Sharma, A.K.; Sharma, A.K.; Thakur, R.; Sharma, M. A review on impact of water pollution on freshwater fish species and their aquatic environment. In Advances in Environmental Pollution Management: Wastewater Impacts and Treatment Technologies; Kumar, V., Kamboj, N., Payum, T., Singh, J., Kumar, P., Eds.; Agro Environ Media: Kankhal, India, 2020; Volume 1, pp. 10–28. [Google Scholar]
- Naselli-Flores, L. Urban lakes: Ecosystems at risk, worthy of the best care. In Proceedings of the Taal2007: The 12th World Lake Conference, Ministry of Environment, Government of India, Jaipur, India, 28 October–2 November 2008. [Google Scholar]
- Hossu, C.A.; Iojă, I.-C.; Onose, D.A.; Niță, M.R.; Popa, A.-M.; Talabă, O.; Inostroza, L. Ecosystem services appreciation of urban lakes in Romania. Synergies and trade-offs between multiple users. Ecosyst. Serv. 2019, 37, 100937. [Google Scholar] [CrossRef]
- Seifollahi-Aghmiuni, S.; Kalantari, Z.; Egidi, G.; Gaburova, L.; Salvati, L. Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights from Southern Europe. AMBIO 2022, 51, 1446–1458. [Google Scholar] [CrossRef] [PubMed]
- Pironon, S.; Borrell, J.S.; Ondo, I.; Douglas, R.; Phillips, C.; Khoury, C.K.; Kantar, M.B.; Fumia, N.; Gomez, M.S.; Viruel, J.; et al. Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity. Plants 2020, 9, 1128. [Google Scholar] [CrossRef]
- Halbac-Cotoara-Zamfir, R.; Smiraglia, D.; Quaranta, G.; Salvia, R.; Salvati, L.; Giménez-Morera, A. Land Degradation and Mitigation Policies in the Mediterranean Region: A Brief Commentary. Sustainability 2020, 12, 8313. [Google Scholar] [CrossRef]
- Facorellis, Y.; Sofronidou, M.; Hourmouziadis, G. Radiocarbon dating of the Neolithic lakeside settlement of Dispilio, Kastoria, northern Greece. Radiocarbon 2014, 56, 511–528. [Google Scholar] [CrossRef] [PubMed]
- Economidis, P.S.; Dimitriou, E.; Pagoni, R.; Michaloudi, E.; Natsis, L. Introduced and translocated fish species in the inland waters of Greece. Fish. Manag. Ecol. 2000, 7, 239–250. [Google Scholar] [CrossRef]
- Fotis, G. Program “Sanitation and Utilization of Lake Kastoria” Scientific Supervisor, A.P. In Economopoulos, Thematic Unit 5 “Study of Ichthyological Development”; Aristotle University: Thessaloniki, Greece, 1994; 31p. (In Greek) [Google Scholar]
- Hellenic Statistical Authority. ΕLSTAT 2021. Main Page ELSTAT—ELSTAT. Available online: https://www.statistics.gr (accessed on 2 July 2024).
- Kolios, S.; Ntogas, G.; Zervas, E. Spatial changes of forests in a coastal and a remote mountainous area of Greece over a 65-year period. Eur. J. Geogr. 2020, 11, 93–109. [Google Scholar] [CrossRef]
- Koussouris, T.; Diapoulis, A.; Balopoulos, E. Limnological situations in two shallow Greek Lakes (Kastoria and Mikri Prespa lakes). GeoJournal 1987, 14, 377–379. [Google Scholar] [CrossRef]
- Koussouris, T.; Diapoulis, A.; Bertahas, I.; Photis, G. Evaluating trophic status and restoration procedures of a polluted lake, Lake Kastoria, Greece. GeoJournal 1991, 23, 153–161. [Google Scholar] [CrossRef]
- Voulanas, D.; Theodossiou, N.; Hatzigiannakis, E. Assessment of potential hydrological climate change impacts in the Kastoria basin (Western Macedonia, Greece) using EURO-CORDEX regional climate models. Glob. NEST Int. J. 2021, 23, 43–54. [Google Scholar] [CrossRef]
- Mourkides, A.G.; Tsiouris, E.S. Lakes of Nothern Greece. The trophic status of the lakes Koronia and Kastoria. Georg. Erevna 1984, 8, 317–334. [Google Scholar]
- Moustaka-Gouni, M.; Michaloudi, E.; Kormas, K.A.; Katsiapi, M.; Vardaka, E.; Genitsaris, S. Plankton changes as critical processes for restoration plans of lakes Kastoria and Koronia. Eur. Water 2012, 40, 43–51. [Google Scholar]
- Kagalou, I.; Psilovikos, A. Assessment of the typology and the trophic status of two Mediterranean lake ecosystems in Northwestern Greece. Water Resour. 2014, 41, 335–343. [Google Scholar] [CrossRef]
- Katsiapi, M.; Moustaka-Gouni, M.; Vardaka, E.; Kormas, K.A. Different phytoplankton descriptors show asynchronous changes in a shallow urban lake (L. Kastoria, Greece) after sewage diversion. Fundam. Appl. Limnol. 2013, 182, 219–230. [Google Scholar] [CrossRef]
- Vardaka, E.; Moustaka-Gouni, M.; Lanaras, T. Temporal and spatial distribution of planktic cyanobacteria in Lake Kastoria, Greece, a shallow, urban lake. Nord. J. Bot. 2000, 20, 501–511. [Google Scholar] [CrossRef]
- Kemitzoglou, D.; Karadimou, E.; Katsavouni, S.; Mavromati, E.; Moschandreou, K.; Navrozidou, V.; Patsia, A.; Seferlis, M.; Tsiaoussi, V. Ecological status and trends of Lake Kastoria: Ten years of Biological Monitoring. In Proceedings of the Marine & Inland Water Research Symposium 2022, Porto Heli, Greece, 16–20 September 2022. [Google Scholar]
- Vardaka, E.; Moustaka-Gouni, M.; Cook, C.M.; Lanaras, T. Cyanobacterial blooms and water quality in Greek waterbodies. J. Appl. Phycol. 2005, 17, 391–401. [Google Scholar] [CrossRef]
- Moustaka-Gouni, M.; Michaloudi, E.; Sommer, U. Modifying the PEG model for Mediterranean lakes—No biological winter and strong fish predation. Freshw. Biol. 2014, 59, 1136–1144. [Google Scholar] [CrossRef]
- Matzafleri, N.; Margoni, S.; Psilovikos, A. Assessment of water quality monitoring data in Lake Kastoria, Western Macedonia, Greece. In Proceedings of the 2nd International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2009) and SECOTOX Conference, Mykonos, Greece, 21–26 June 2009. [Google Scholar]
- Kraim, S. Water quality analysis in the lake of Kastoria and depiction of their intertemporal changes. Master’s Thesis, University of Piraeus, Piraeus, Greece, 2021. [Google Scholar]
- Fotis, G.; Conides, A.; Koussouris, T.; Diapoulis, A.; Gritzalis, K. Fishery Potential of lakes in Macedonia, North Greece. Fresenius Environ. Bull. 1992, 1, 523–528. [Google Scholar]
- Froese, R.; Pauly, D. (Eds.) FishBase. World Wide Web Electronic Publication. Version (02/2024). 2024. Available online: www.fishbase.org (accessed on 20 January 2024).
- EN 14757:2005; Water Quality—Sampling of Fish with Multimesh Gillnets. European Committee for Standardization: Brussels, Belgium, 2005.
- Olden, J.D.; Poff, N.L. Toward a Mechanistic Understanding and Prediction of Biotic Homogenization. Am. Nat. 2003, 162, 442–460. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 1 July 2024).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H.; Barbour, M.; et al. Vegan: Community Ecology Package. R Package Version 2.6-6.1. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 July 2024).
- Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D. A Trait-Based Test for Habitat Filtering: Convex Hull Volume. Ecology 2006, 87, 1465–1471. [Google Scholar] [CrossRef]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Villéger, S.; Grenouillet, G.; Brosse, S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob. Ecol. Biogeogr. 2013, 22, 671–681. [Google Scholar] [CrossRef]
- Petriki, O.; Lazaridou, M.; Bobori, D.C. A fish-based index for the assessment of the ecological quality of temperate lakes. Ecol. Indic. 2017, 78, 556–565. [Google Scholar] [CrossRef]
- Cucherousset, J.; Copp, G.H.; Fox, M.G.; Sterud, E.; van Kleef, H.H.; Verreycken, H.; Záhorská, E. Life-history traits and potential invasiveness of introduced pumpkinseed Lepomis gibbosus populations in northwestern Europe. Biol. Invasions 2009, 11, 2171–2180. [Google Scholar] [CrossRef]
- Gozlan, R.E.; Andreou, D.; Asaeda, T.; Beyer, K.; Bouhadad, R.; Burnard, D.; Caiola, N.; Cakic, P.; Djikanovic, V.; Esmaeili, H.R.; et al. Pan-continental invasion of Pseudorasbora parva: Towards a better understanding of freshwater fish invasions. Fish Fish. 2010, 11, 315–340. [Google Scholar] [CrossRef]
- Lusková, V.; Lusk, S.; Halačka, K.; Vetešník, L. Carassius auratus gibelio—The most successful invasive fish in waters of the Czech Republic. Russ. J. Biol. Invasions 2010, 1, 176–180. [Google Scholar] [CrossRef]
- Perdikaris, C.; Ergolavou, A.; Gouva, E.; Nathanailides, C.; Chantzaropoulos, A.; Paschos, I. Carassius gibelio in Greece: The dominant naturalised invader of freshwaters. Rev. Fish Biol. Fish. 2011, 22, 17–27. [Google Scholar] [CrossRef]
- Castro, S.A.; Rojas, P.; Vila, I.; Habit, E.; Pizarro-Konczak, J.; Abades, S.; Jaksic, F.M. Partitioning β-diversity reveals that invasions and extinctions promote the biotic homogenization of Chilean freshwater fish fauna. PLoS ONE 2020, 15, e0238767. [Google Scholar] [CrossRef]
- McKinney, M.L.; Lockwood, J.L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 1999, 14, 450–453. [Google Scholar] [CrossRef]
- Olden, J.D.; Lockwood, J.L.; Parr, C.L. Biological invasions and the homogenization of faunas and floras. In Conservation Biogeography; Ladle, R.J., Whittaker, R.J., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 24–244. [Google Scholar]
- Rahel, F.J. Homogenization of freshwater faunas. Annu. Rev. Ecol. Evol. Syst. 2002, 33, 291–315. [Google Scholar] [CrossRef]
- Toussaint, A.; Beauchard, O.; Oberdorff, T.; Brosse, S.; Villéger, S. Worldwide freshwater fish homogenization is driven by a few widespread non-native species. Biol. Invasions 2016, 18, 1295–1304. [Google Scholar] [CrossRef]
- Winter, M.; Schweiger, O.; Klotz, S.; Nentwig, W.; Andriopoulos, P.; Arianoutsou, M.; Basnou, C.; Delipetrou, P.; Didžiulis, V.; Hejda, M.; et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl. Acad. Sci. USA 2009, 106, 21721–21725. [Google Scholar] [CrossRef] [PubMed]
- Villéger, S.; Grenouillet, G.; Brosse, S. Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Glob. Ecol. Biogeogr. 2014, 23, 1450–1460. [Google Scholar] [CrossRef]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The Functions of Biological Diversity in an Age of Extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Pavoine, S.; Ricotta, C. Measuring functional dissimilarity among plots: Adapting old methods to new questions. Ecol. Indic. 2019, 97, 67–72. [Google Scholar] [CrossRef]
- Ricotta, C.; Pavoine, S. A new parametric measure of functional dissimilarity: Bridging the gap between the Bray-Curtis dissimilarity and the Euclidean distance. Ecol. Model. 2022, 466, 109880. [Google Scholar] [CrossRef]
- Stokes, G.L.; Lynch, A.J.; Lowe, B.S.; Funge-Smith, S.; Valbo-Jørgensen, J.; Smidt, S.J. COVID-19 pandemic impacts on global inland fisheries. Proc. Natl. Acad. Sci. USA 2020, 117, 29419–29421. [Google Scholar] [CrossRef]
- van Kleef, H.; van der Velde, G.; Leuven, R.S.E.W.; Esselink, H. Pumpkinseed sunfish (Lepomis gibbosus) invasions facilitated by introductions and nature management strongly reduce macroinvertebrate abundance in isolated water bodies. Biol. Invasions 2008, 10, 1481–1490. [Google Scholar] [CrossRef]
- Vašek, M.; Kubečka, J.; Peterka, J.; Čech, M.; Draštík, V.; Hladík, M.; Prchalová, M.; Frouzová, J. Longitudinal and Vertical Spatial Gradients in the Distribution of Fish within a Canyon-shaped Reservoir. Int. Rev. Hydrobiol. 2004, 89, 352–362. [Google Scholar] [CrossRef]
- Vašek, M.; Kubečka, J.; Čech, M.; Draštík, V.; Matěna, J.; Mrkvička, T.; Peterka, J.; Prchalová, M. Diel variation in gillnet catches and vertical distribution of pelagic fishes in a stratified European reservoir. Fish. Res. 2009, 96, 64–69. [Google Scholar] [CrossRef]
- Lauridsen, T.L.; Landkildehus, F.; Jeppesen, E.; Jørgensen, T.B.; Søndergaard, M. A comparison of methods for calculating Catch Per Unit Effort (CPUE) of gill net catches in lakes. Fish. Res. 2008, 93, 204–211. [Google Scholar] [CrossRef]
- Deceliere-Vergès, C.; Argillier, C.; Lanoiselée, C.; De Bortoli, J.; Guillard, J. Stability and precision of the fish metrics obtained using CEN multi-mesh gillnets in natural and artificial lakes in France. Fish. Res. 2009, 99, 17–25. [Google Scholar] [CrossRef]
- Draštík, V.; Kubečka, J.; Čech, M.; Frouzová, J.; Říha, M.; Juza, T.; Tušer, M.; Jarolím, O.; Prchalová, M.; Peterka, J.; et al. Hydroacoustic estimates of fish stocks in temperate reservoirs: Day or night surveys? Aquat. Living Resour. 2009, 22, 69–77. [Google Scholar] [CrossRef]
- Emmrich, M.; Winfield, I.J.; Guillard, J.; Rustadbakken, A.; Vergès, C.; Volta, P.; Jeppesen, E.; Lauridsen, T.L.; Brucet, S.; Holmgren, K.; et al. Strong correspondence between gillnet catch per unit effort and hydroacoustically derived fish biomass in stratified lakes. Freshw. Biol. 2012, 57, 2436–2448. [Google Scholar] [CrossRef]
- Menezes, R.F.; Borchsenius, F.; Svenning, J.-C.; Søndergaard, M.; Lauridsen, T.L.; Landkildehus, F.; Jeppesen, E. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: Does the method matter? Hydrobiologia 2012, 710, 47–59. [Google Scholar] [CrossRef]
- Prchalová, M.; Kubečka, J.; Říha, M.; Litvín, R.; Čech, M.; Frouzová, J.; Hladík, M.; Hohausová, E.; Peterka, J.; Vašek, M. Overestimation of percid fishes (Percidae) in gillnet sampling. Fish. Res. 2008, 91, 79–87. [Google Scholar] [CrossRef]
- Achleitner, D.; Gassner, H.; Luger, M. Comparison of three standardised fish sampling methods in 14 alpine lakes in Austria. Fish. Manag. Ecol. 2012, 19, 352–361. [Google Scholar] [CrossRef]
Family | Species | Origin |
---|---|---|
Anguillidae | Anguilla anguilla (Linnaeus, 1758) | N |
Centrarchidae | Lepomis gibbosus (Linnaeus, 1758) | A |
Cyprinidae | Carassius gibelio (Bloch, 1782) | A |
Cyprinus carpio (Linnaeus, 1758) | N | |
Esocidae | Esox lucius (Linnaeus, 1758) | T |
Gobionidae | Pseudorasbora parva (Temminck and Schlegel, 1846) | A |
Leuciscidae | Rutilus rutilus (Linnaeus, 1758) | Ν |
Scardinius erythrophthalmus (Linnaeus, 1758) | N | |
Squalius vardarensis (Karaman, 1928) | Ν | |
Percidae | Perca fluviatilis (Linnaeus, 1758) | T |
Poeciliidae | Gambusia holbrooki (Girard, 1859) | A |
Siluridae | Silurus glanis (Linnaeus, 1758) | N |
Tincidae | Tinca tinca (Linnaeus, 1758) | T |
Xenocyprididae | Ctenopharyngodon idella (Valenciennes, 1844) | A |
Hypophthalmichthys molitrix (Valenciennes, 1844) | A | |
Hypophthalmichthys nobilis (Richardson, 1845) | A | |
Total | 16 |
Parameter | 2010 | 2022 |
---|---|---|
OΜΝΙb | 60.69 | 46.60 |
Introduceda | 51.22 | 49.04 |
EQR-OMNIb | 0.32 | 0.47 |
EQR-Introduceda | 0.44 | 0.45 |
GLFI | 0.38 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petriki, O.; Bobori, D.C. The Compositional and Functional Diversity of a Mediterranean Urban Lake’s Fish Fauna over the Past 120 Years. Appl. Sci. 2024, 14, 6099. https://doi.org/10.3390/app14146099
Petriki O, Bobori DC. The Compositional and Functional Diversity of a Mediterranean Urban Lake’s Fish Fauna over the Past 120 Years. Applied Sciences. 2024; 14(14):6099. https://doi.org/10.3390/app14146099
Chicago/Turabian StylePetriki, Olga, and Dimitra C. Bobori. 2024. "The Compositional and Functional Diversity of a Mediterranean Urban Lake’s Fish Fauna over the Past 120 Years" Applied Sciences 14, no. 14: 6099. https://doi.org/10.3390/app14146099
APA StylePetriki, O., & Bobori, D. C. (2024). The Compositional and Functional Diversity of a Mediterranean Urban Lake’s Fish Fauna over the Past 120 Years. Applied Sciences, 14(14), 6099. https://doi.org/10.3390/app14146099