Optimization of Green Sample Preparation for the Determination of Hydroxycinnamic Acids in Multi-Floral Honey Using Response Surface Methodology
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Honey Samples
2.3. Optimization of Sample Preparation Using Response Surface Methodology (RSM)
2.4. Chromatographic Analysis of Hydroxycinnamic Acids in Honey
2.5. Determination of Greenness for Developed Sample Preparation Method
2.6. Statistical Analysis
3. Results and Discussion
3.1. Model Fitting
3.2. Effect of Sample Preparation Variables on Hydroxycinnamic Acid Recoveries
3.3. Optimization of Sample Preparation Conditions and Model Validation
3.4. Determination of Greenness for the Developed Sample Preparation Method
3.5. Application of Optimized Sample Preparation Method on Multi-Floral Honeys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edwards, C.H.; Rossi, M.; Corpe, C.P.; Butterworth, P.J.; Ellis, P.R. The Role of Sugars and Sweeteners in Food, Diet and Health: Alternatives for the Future. Trends Food Sci. Technol. 2016, 56, 158–166. [Google Scholar] [CrossRef]
- Ayoub, W.S.; Ritu; Zahoor, I.; Dar, A.H.; Farooq, S.; Mir, T.A.; Ganaie, T.A.; Srivastava, S.; Pandey, V.K.; Altaf, A. Exploiting the Polyphenolic Potential of Honey in the Prevention of Chronic Diseases. Food Chem. Adv. 2023, 3, 100373. [Google Scholar] [CrossRef]
- Palma-Morales, M.; Huertas, J.R.; Rodríguez-Pérez, C. A Comprehensive Review of the Effect of Honey on Human Health. Nutrients 2023, 15, 3056. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.; Abdul Rasool Hassan, B. The Effects of Honey Compared to Silver Sulfadiazine for the Treatment of Burns: A Systematic Review of Randomized Controlled Trials. Burns 2017, 43, 50–57. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Wright, J.E.E.; Cox, J.A.G. Clinical Significance of Manuka and Medical-Grade Honey for Antibiotic-Resistant Infections: A Systematic Review. Antibiotics 2020, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Hizan, N.S.; Hassan, N.H.M.; Haron, J.; Abubakar, M.B.; Mahdi, N.M.N.; Gan, S.H. Tualang Honey Adjunct with Anastrozole Improve Parenchyma Enhancement of Breast Tissue in Breast Cancer Patients: A Randomized Controlled Trial. Integr. Med. Res. 2018, 7, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Akhbari, M.; Jabbari, M.; Ayati, M.H.; Namazi, N. The Effects of Oral Consumption of Honey on Key Metabolic Profiles in Adult Patients with Type 2 Diabetes Mellitus and Nondiabetic Individuals: A Systematic Review of Clinical Trials. Evid.-Based Complement. Altern. Med. 2021, 2021, 6666832. [Google Scholar] [CrossRef]
- Idrus, R.B.H.; Sainik, N.Q.A.V.; Nordin, A.; Bin Saim, A.; Sulaiman, N. Cardioprotective Effects of Honey and Its Constituent: An Evidence-Based Review of Laboratory Studies and Clinical Trials. Int. J. Environ. Res. Public Health 2020, 17, 3613. [Google Scholar] [CrossRef]
- Mazruei Arani, N.; Emam-Djomeh, Z.; Tavakolipour, H.; Sharafati-Chaleshtori, R.; Soleimani, A.; Asemi, Z. The Effects of Probiotic Honey Consumption on Metabolic Status in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, Controlled Trial. Probiotics Antimicrob. Proteins 2019, 11, 1195–1201. [Google Scholar] [CrossRef]
- Rasad, H.; Entezari, M.H.; Ghadiri, E.; Mahaki, B.; Pahlavani, N. The Effect of Honey Consumption Compared with Sucrose on Lipid Profile in Young Healthy Subjects (Randomized Clinical Trial). Clin. Nutr. ESPEN 2018, 26, 8–12. [Google Scholar] [CrossRef]
- Yahaya, R.; Zahary, M.N.; Othman, Z.; Ismail, R.; Nik Him, N.A.S.; Abd Aziz, A.; Dahlan, R.; Jusoh, A.F. Tualang Honey Supplementation as Cognitive Enhancer in Patients with Schizophrenia. Heliyon 2020, 6, e03948. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.A.; Fehily, A.M.; Pickering, J.E.; Erusalimsky, J.D.; Elwood, P.C. Honey, Health and Longevity. Curr. Aging Sci. 2010, 3, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Shamshuddin, N.S.S.; Mohd Zohdi, R. Gelam Honey Attenuates Ovalbumin-Induced Airway Inflammation in a Mice Model of Allergic Asthma. J. Tradit. Complement. Med. 2018, 8, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Ebrahimi, M.; Karimi, M.; Rezaiean, A.; Reza Kazemi, M. Effects of Dietary Honey AndArdehCombination on Chemotherapy-Induced Gastrointestinal and Infectious Complications in Patients with Acute Myeloid Leukemia: A Double-Blind. Iran. J. Pharm. Res. 2016, 15, 661. [Google Scholar] [PubMed]
- McLoone, P.; Oluwadun, A.; Warnock, M.; Fyfe, L. Honey: A Therapeutic Agent for Disorders of the Skin. Cent. Asian J. Glob. Health 2016, 5, 241. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.H.A.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial Roles of Honey Polyphenols against Some Human Degenerative Diseases: A Review. Pharmacol. Rep. 2017, 69, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zheng, Y.; Xu, B. Phenolic Profiles and Antioxidant Capacities of Chinese Unifloral Honeys from Different Botanical and Geographical Sources. Food Bioproc Tech. 2013, 6, 762–770. [Google Scholar] [CrossRef]
- Gašić, U.M.; Milojković-Opsenica, D.M.; Tešić, Ž.L. Polyphenols as Possible Markers of Botanical Origin of Honey. J. AOAC Int. 2017, 100, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Kaškoniene, V.; Venskutonis, P.R. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. [Google Scholar] [CrossRef]
- Vazquez, L.; Armada, D.; Celeiro, M.; Dagnac, T.; Llompart, M. Evaluating the Presence and Contents of Phytochemicals in Honey Samples: Phenolic Compounds as Indicators to Identify Their Botanical Origin. Foods 2021, 10, 2616. [Google Scholar] [CrossRef]
- Andrade, P.; Ferreres, F.; Gilb, M.I.; Tomk+barberhn, F.A. Determination of Phenolic Compounds in Honeys with Different Floral Origin by Capillary Zone Electrophoresis. Food Chem. 1997, 60, 79–84. [Google Scholar] [CrossRef]
- Wang, J.; Xue, X.; Du, X.; Cheng, N.; Chen, L.; Zhao, J.; Zheng, J.; Cao, W. Identification of Acacia Honey Adulteration with Rape Honey Using Liquid Chromatography–Electrochemical Detection and Chemometrics. Food Anal. Methods 2014, 7, 2003–2012. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, M.J.; Liu, R.J.; Qing, X.D.; Nie, J.F. Green Sample Preparation Techniques and Their Use in the Extraction and Separation Analysis of Phenolic Compounds in Honey. Sep. Purif. Rev. 2023, 2023, 1–18. [Google Scholar] [CrossRef]
- Pedisić, S.; Čulina, P.; Pavlešić, T.; Vahčić, N.; Elez Garofulić, I.; Zorić, Z.; Dragović-Uzelac, V.; Repajić, M. Efficiency of Microwave and Ultrasound-Assisted Extraction as a Green Tool for Polyphenolic Isolation from Monofloral Honeys. Processes 2023, 11, 3141. [Google Scholar] [CrossRef]
- Cooper, R.; Molan, P.; Harding, K. The Sensitivity to Honey of Gram-Positive Cocci of Clinical Significance Isolated from Wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomás-Barberán, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep–Analytical Greenness Metric for Sample Preparation. TrAC-Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ali Redha, A.; Salauddin, M.; Harahap, I.A.; Rupasinghe, H.P.V. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit. Rev. Anal. Chem. 2023, 2023, 1–22. [Google Scholar] [CrossRef]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y.; Zhang, D.; Cai, M.; Chen, G. Ultrasound Assisted Extraction of Polyphenolic Compounds from Red Sorghum (Sorghum bicolor L.) Bran and Their Biological Activities and Polyphenolic Compositions. Ind. Crops Prod. 2018, 112, 296–304. [Google Scholar] [CrossRef]
- Zuorro, A. Optimization of Polyphenol Recovery from Espresso Coffee Residues Using Factorial Design and Response Surface Methodology. Sep. Purif. Technol. 2015, 152, 64–69. [Google Scholar] [CrossRef]
- Belwal, T.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Optimization Extraction Conditions for Improving Phenolic Content and Antioxidant Activity in Berberis Asiatica Fruits Using Response Surface Methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Christou, A.; Parisis, N.A.; Venianakis, T.; Barbouti, A.; Tzakos, A.G.; Gerothanassis, I.P.; Goulas, V. Ultrasound-Assisted Extraction of Taro Leaf Antioxidants Using Natural Deep Eutectic Solvents: An Eco-Friendly Strategy for the Valorization of Crop Residues. Antioxidants 2023, 12, 1801. [Google Scholar] [CrossRef] [PubMed]
- Gašić, U.; Kečkeš, S.; Dabić, D.; Trifković, J.; Milojković-Opsenica, D.; Natić, M.; Tešić, Z. Phenolic Profile and Antioxidant Activity of Serbian Polyfloral Honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska-Matysek, M.; Stryjecka, M.; Teter, A.; Skałecki, P.; Domaradzki, P.; Florek, M. Relationships between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties as a Tool for Botanical Discrimination. Molecules 2021, 26, 1810. [Google Scholar] [CrossRef] [PubMed]
- Becerril-sánchez, A.L.; Quintero-salazar, B.; Dublán-garcía, O.; Escalona-buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Lo Dico, G.M.; Ulrici, A.; Pulvirenti, A.; Cammilleri, G.; Macaluso, A.; Vella, A.; Giaccone, V.; Lo Cascio, G.; Graci, S.; Scuto, M.; et al. Multivariate Statistical Analysis of the Polyphenols Content for the Discrimination of Honey Produced in Sicily (Southern Italy). J. Food Compos. Anal. 2019, 82, 103225. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An Investigation of Turkish Honeys: Their Physico-Chemical Properties, Antioxidant Capacities and Phenolic Profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic Profile and Antioxidant Properties of Polish Honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Ramanauskiene, K.; Stelmakiene, A.; Briedis, V.; Ivanauskas, L.; Jakštas, V. The Quantitative Analysis of Biologically Active Compounds in Lithuanian Honey. Food Chem. 2012, 132, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Jiang, Y.; Singanusong, R.; Datta, N.; Raymont, K. Phenolic Acids and Abscisic Acid in Australian Eucalyptus Honeys and Their Potential for Floral Authentication. Food Chem. 2004, 86, 169–177. [Google Scholar] [CrossRef]
- Pavlešić, T.; Poljak, S.; Mišetić Ostojić, D.; Lučin, I.; Reynolds, C.A.; Kalafatovic, D.; Saftić Martinović, L. Mint (Mentha spp.) Honey: Analysis of the Phenolic Profile and Antioxidant Activity. Food Technol. Biotechnol. 2022, 60, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Gašić, U.M.; Natić, M.M.; Mišić, D.M.; Lušić, D.V.; Milojković-Opsenica, D.M.; Tešić, Ž.L.; Lušić, D. Chemical Markers for the Authentication of Unifloral Salvia Officinalis L. Honey. J. Food Compos. Anal. 2015, 44, 128–138. [Google Scholar] [CrossRef]
- Andrade, P.; Ferreres, F.; Teresa Amaral, M. Analysis of Honey Phenolic Acids by HPLC, Its Application to Honey Botanical Characterization. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 2281–2288. [Google Scholar] [CrossRef]
Independent Variables | Symbol | Factor Level | ||
---|---|---|---|---|
Low (−1) | Medium (0) | High (+1) | ||
Ethanol concentration (%, v/v) | A | 60 | 75 | 90 |
Temperature (°C) | B | 30 | 45 | 60 |
Solvent-to-sample ratio (mL g−1) | C | 10 | 20 | 30 |
Sonication time (min) | D | 10 | 25 | 40 |
Run | A Ethanol Concentration (%) | B Temperature (°C) | C Solvent-to-Sample Ratio (mL g−1) | D Time (min) | Y1 Caffeic Acid (Peak Area) | Y2 Chlorogenic Acid (Peak Area) | Y3 Ferulic Acid (Peak Area) |
---|---|---|---|---|---|---|---|
1 | 75 (0) | 30 (−1) | 20 (0) | 40 (+1) | 12,722.5 | 15,773.5 | 23,352.5 |
2 | 75 (0) | 45 (0) | 20 (0) | 25 (0) | 17,466.0 | 18,789.3 | 28,028.7 |
3 | 75 (0) | 45 (0) | 20 (0) | 25 (0) | 16,776.3 | 19,438.7 | 29,551.6 |
4 | 75 (0) | 45 (0) | 20 (0) | 25 (0) | 17,572.0 | 19,909.7 | 31,064.8 |
5 | 75 (0) | 30 (−1) | 30 (+1) | 25 (0) | 10,413.7 | 13,209.7 | 17,216.8 |
6 | 60 (−1) | 30 (−1) | 20 (0) | 25 (0) | 20,375.3 | 21,522.7 | 30,233.8 |
7 | 60 (−1) | 45 (0) | 10 (−1) | 25 (0) | 38,171.3 | 39,178.0 | 60,649.7 |
8 | 75 (0) | 60 (+1) | 30 (+1) | 25 (0) | 9574.0 | 11,310.7 | 13,541.3 |
9 | 60 (−1) | 60 (+1) | 20 (0) | 25 (0) | 16,840.3 | 19,251.0 | 27,750.7 |
10 | 75 (0) | 60 (+1) | 20 (0) | 10 (−1) | 15,862.3 | 19,454.7 | 28,462.3 |
11 | 75 (0) | 45 (0) | 10 (−1) | 10 (−1) | 34,675.7 | 36,232.0 | 60,867.0 |
12 | 90 (+1) | 30 (−1) | 20 (0) | 25 (0) | 10,882.3 | 17,449.3 | 28,437.7 |
13 | 75 (0) | 45 (0) | 20 (0) | 25 (0) | 17,864.0 | 19,771.7 | 30,452.4 |
14 | 75 (0) | 60 (+1) | 20 (0) | 40 (+1) | 10,951.0 | 18,405.3 | 28,492.7 |
15 | 75 (0) | 45 (0) | 30 (+1) | 40 (+1) | 6921.33 | 11,361.0 | 13,380.7 |
16 | 60 (−1) | 45 (0) | 30 (+1) | 25 (0) | 10,464.7 | 13,882.0 | 18,576.3 |
17 | 75 (0) | 45 (0) | 30 (+1) | 10 (−1) | 10,129.7 | 12,203.3 | 16,713.0 |
18 | 75 (0) | 60 (+1) | 10 (−1) | 25 (0) | 34,704.0 | 35,736.9 | 61,265.7 |
19 | 90 (+1) | 60 (+1) | 20 (0) | 25 (0) | 14,985.3 | 19,461.7 | 27,290.7 |
20 | 75 (0) | 30 (−1) | 10 (−1) | 25 (0) | 31,777.7 | 30,114.3 | 45,641.5 |
21 | 90 (+1) | 45 (0) | 30 (+1) | 25 (0) | 9452.33 | 11,552.8 | 18,012.7 |
22 | 90 (+1) | 45 (0) | 20 (0) | 10 (−1) | 13,375.7 | 18,080.3 | 25,066.3 |
23 | 60 (−1) | 45 (0) | 20 (0) | 10 (−1) | 18,730.3 | 21,060.6 | 28,810.7 |
24 | 75 (0) | 45 (0) | 10 (−1) | 40 (+1) | 30,953.7 | 36,263.3 | 52,651.3 |
25 | 90 (+1) | 45 (0) | 20 (0) | 40 (+1) | 12,233.0 | 16,806.6 | 25,643.7 |
26 | 75 (0) | 30 (−1) | 20 (0) | 10 (−1) | 6904.0 | 12,291.7 | 11,082.4 |
27 | 75 (0) | 45 (0) | 20 (0) | 25 (0) | 14,266.0 | 17,522.3 | 24,905.3 |
28 | 90 (+1) | 45 (0) | 10 (−1) | 25 (0) | 31,235.7 | 36,688.7 | 58,2017 |
29 | 60 (−1) | 45 (0) | 20 (0) | 40 (+1) | 17,162.3 | 19,673.7 | 27,895.3 |
Term | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | |||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Model | 95.57 | <0.0001 | 108.57 | <0.0001 | 89.46 | <0.0001 |
A | 28.10 | 0.0001 | 5.97 | 0.0231 | - | - |
B | 3.11 | 0.0939 | 4.97 | 0.0363 | 4.99 | 0.0351 |
C | 671.19 | <0.0001 | 559.43 | <0.0001 | 306.70 | <0.0001 |
D | 2.45 | 0.1340 | - | - | - | - |
AB | 5.62 | 0.0285 | - | - | - | - |
AC | - | - | - | - | - | - |
AD | - | - | - | - | - | - |
BC | - | - | 4.80 | 0.0394 | 5.86 | 0.0234 |
BD | 11.09 | 0.0035 | - | - | - | - |
CD | - | - | - | - | - | - |
A2 | - | - | - | - | - | - |
B2 | 9.12 | 0.0070 | 4.80 | 0.0394 | - | - |
C2 | 91.30 | <0.0001 | 64.99 | <0.0001 | 40.28 | <0.0001 |
D2 | 16.82 | 0.0006 | 2.31 | 0.1509 | - | - |
Lack of fit | 1.26 | 0.4514 | 3.56 | 0.1133 | 2.95 | 0.1513 |
R2 | 0.9784 | 0.9673 | 0.9371 | |||
R2adj | 0.9682 | 0.9584 | 0.9267 | |||
R2pred | 0.9365 | 0.9304 | 0.9064 | |||
Adeq Precision | 31.540 | 32.2520 | 30.1803 | |||
C.V. (%) | 9.10 | 8.27 | 9.94 |
Variable | Predicted Value | Experimental Value | Absolute Error (%) |
---|---|---|---|
(Y1) Caffeic acid (Peak Area) | 36,650.6 | 37,002.5 ± 204.1 | 0.9 |
(Y2) Chlorogenic acid (Peak Area) | 38,710.7 | 39,711.9 ± 333.6 | 2.6 |
(Y3) Ferulic acid (Peak Area) | 61,265.2 | 63,354.3 ± 485.2 | 3.4 |
Desirability | 0.98 |
Samples | Caffeic Acid | Chlorogenic Acid | p-Coumaric Acid | Ferulic Acid | Rosmarinic Acid | Total |
---|---|---|---|---|---|---|
C1 | 0.84 ± 0.10 | 0.46 ± 0.03 | 0.56 ± 0.03 | nd | 0.16 ± 0.03 | 2.02 |
C2 | 0.66 ± 0.05 | 0.57 ± 0.05 | 0.94 ± 0.05 | 0.02 ± 0.00 | 0.19 ± 0.01 | 2.38 |
C3 | 0.83 ± 0.07 | 0.75 ± 0.06 | 0.91 ± 0.10 | 0.04 ± 0.01 | 0.21 ± 0.01 | 2.74 |
C4 | 0.66 ± 0.05 | 0.56 ± 0.05 | 1.00 ± 0.09 | 0.10 ± 0.02 | 0.20 ± 0.03 | 2.52 |
C5 | 0.97 ± 0.11 | 1.04 ± 0.10 | 1.11 ± 0.11 | nd | 0.23 ± 0.02 | 3.35 |
C6 | 1.22 ± 0.09 | 22.14 ± 1.32 | 1.64 ± 0.08 | 0.05 ± 0.01 | 0.45 ± 0.03 | 25.5 |
C7 | 0.46 ± 0.03 | nd | 0.94 ± 0.07 | nd | 0.16 ± 0.02 | 1.56 |
C8 | 0.72 ± 0.04 | 0.69 ± 0.04 | 2.39 ± 0.18 | nd | 0.18 ± 0.03 | 3.98 |
C9 | 0.30 ± 0.03 | 1.74 ± 0.11 | 2.59 ± 0.20 | 0.06 ± 0.01 | 0.30 ± 0.03 | 4.99 |
C10 | 1.04 ± 0.10 | nd | 0.35 ± 0.01 | nd | 0.20 ± 0.02 | 1.59 |
Range | 0.46–1.22 | nd–22.14 | 0.35–2.59 | nd–0.10 | 0.16–0.45 | 1.56–25.5 |
Median value | 0.78 | 0.63 | 0.97 | 0.01 | 0.20 | 2.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrou, K.; Christou, A.; Goulas, V. Optimization of Green Sample Preparation for the Determination of Hydroxycinnamic Acids in Multi-Floral Honey Using Response Surface Methodology. Appl. Sci. 2024, 14, 5781. https://doi.org/10.3390/app14135781
Stavrou K, Christou A, Goulas V. Optimization of Green Sample Preparation for the Determination of Hydroxycinnamic Acids in Multi-Floral Honey Using Response Surface Methodology. Applied Sciences. 2024; 14(13):5781. https://doi.org/10.3390/app14135781
Chicago/Turabian StyleStavrou, Konstantina, Atalanti Christou, and Vlasios Goulas. 2024. "Optimization of Green Sample Preparation for the Determination of Hydroxycinnamic Acids in Multi-Floral Honey Using Response Surface Methodology" Applied Sciences 14, no. 13: 5781. https://doi.org/10.3390/app14135781
APA StyleStavrou, K., Christou, A., & Goulas, V. (2024). Optimization of Green Sample Preparation for the Determination of Hydroxycinnamic Acids in Multi-Floral Honey Using Response Surface Methodology. Applied Sciences, 14(13), 5781. https://doi.org/10.3390/app14135781