Excellent Color Purity and Luminescence Thermometry Performance in Germanate Tellurite Glass Doped with Eu3+ and Tb3+
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.-Q.; Feng, A.-M.; Zhang, L.-Y.; Zhao, S.-L.; Wang, B.-L.; Zhang, J.; Wang, W.; Bao, R.-Q. Thermal Stability and Spectroscopic Properties of Yb3+-Doped New Gallium–Lead–Germanate Glass. Chin. Phys. Lett. 2006, 23, 3069–3071. [Google Scholar]
- Guo, Y.; Liu, X.; Duan, H.; Yang, Y.; Zhao, G.; Huang, F.; Bai, G.; Zhang, J. Optimization by Energy Transfer Process of 2.7 Μm Emission in Highly Er3+-Doped Tungsten-Tellurite Glasses. Infrared Phys. Technol. 2019, 99, 49–54. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, L.; Xia, L.; Shen, X.; Wei, W.; You, W. Highly Efficient ~3.4 Μm Emission of Er3+-Doped TeO2 Based Glasses via Resonant Energy Transfer and Multi-Phonon Relaxation Processes. Opt. Mater. 2020, 108, 110387. [Google Scholar] [CrossRef]
- Khalid, M.; Usman, M.; Arshad, I. Germanate Glass for Laser Applications in ~2.1 Μm Spectral Region: A Review. Heliyon 2023, 9, e13031. [Google Scholar] [CrossRef] [PubMed]
- Yankov, G.; Dimowa, L.; Petrova, N.; Tarassov, M.; Dimitrov, K.; Petrov, T.; Shivachev, B.L. Synthesis, Structural and Non-Linear Optical Properties of TeO2–GeO2–Li2O Glasses. Opt. Mater. 2012, 35, 248–251. [Google Scholar] [CrossRef]
- Su, X.; Zhou, Y.; Zhu, Y.; Zhou, M.; Li, J.; Shao, H. Energy Transfer Induced 2.0 Μm Luminescent Enhancement in Ho3+/Yb3+/Ce3+ Tri-Doped Tellurite Glass. J. Lumin. 2018, 203, 26–34. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, M.; Cao, R.; Tian, Y.; Huang, F.; Xu, S.; Zhang, J. Ho3+ Doped Germanate-Tellurite Glass Sensitized by Er3+ and Yb3+ for Efficient 2.0 Μm Laser Material. Mater. Res. Bull. 2016, 84, 124–131. [Google Scholar] [CrossRef]
- Jha, A.; Richards, B.; Jose, G.; Teddy-Fernandez, T.; Joshi, P.; Jiang, X.; Lousteau, J. Rare-Earth Ion Doped TeO2 and GeO2 Glasses as Laser Materials. Prog. Mater. Sci. 2012, 57, 1426–1491. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, L.; Zuo, T.; Gu, X.; Wang, Z.; Zhu, L.; Yao, K. Sol–Gel Preparation and Photoluminescence Property of YBO3:Eu3+/Tb3+ Nanocrystalline Thin Films. Appl. Surf. Sci. 2008, 254, 6362–6365. [Google Scholar] [CrossRef]
- Thakur, J.; Dutta, D.P.; Bagla, H.; Tyagi, A.K. Effect of Host Structure and Concentration on the Luminescence of Eu3+ and Tb3+ in Borate Phosphors. J. Am. Ceram. Soc. 2012, 95, 696–704. [Google Scholar] [CrossRef]
- Shinozaki, K.; Honma, T.; Komatsu, T. High Quantum Yield and Low Concentration Quenching of Eu3+ Emission in Oxyfluoride Glass with High BaF2 and Al2O3 Contents. Opt. Mater. 2014, 36, 1384–1389. [Google Scholar] [CrossRef]
- Ma, M.; Song, W.; Ji, C.; Li, M.; Meng, Q.; Wang, Z.; Pang, L.; Liu, H. Luminescence Properties of Tunable Red-Green Emitting Phosphor Ba2Ca(BO3)2:Eu3+, Tb3+. Optoelectron. Lett. 2017, 13, 131–134. [Google Scholar] [CrossRef]
- Solarz, P.; Sobczyk, M.; Beregi, E.; Lisiecki, R.; Lengyel, K.; Kovács, L.; Ryba-Romanowski, W. VIS-VUV Spectroscopy of Heavily Tb and Eu Doped Gadolinium Aluminum Borate (GAB) Crystal. J. Lumin. 2023, 257, 119717. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Millán, A.; Carlos, L.D. Lanthanides in Luminescent Thermometry. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 339–427. [Google Scholar]
- Xing, J.; Gao, Z.; Luo, Y.; Shang, F.; Chen, G. Eu3+/Tb3+ Co-Doped Transparent Fluorophosphate Glass Ceramics for Optical Thermometry. Opt. Mater. 2023, 135, 113313. [Google Scholar] [CrossRef]
- Xia, P.J.; Zheng, X.Z.; Yue, L.; Lei, Y.F.; Xu, M.; Dai, W.B. Stable Color-Tunable Ca3Y(GaO)3(BO3)4:Bi3+/Tb3+/Eu3+ Phosphors for Application in n-UV-Pumped w LEDs. Dalton Trans. 2024, 53, 4325–4341. [Google Scholar] [CrossRef] [PubMed]
- Patnam, H.; Hussain, S.K.; Yu, J.S. Luminescence Properties of Tb3+/Eu3+ Ions Activated LiLaSiO4 Phosphors for Solid-State Lighting and Flexible Display Applications. J. Lumin. 2023, 263, 120063. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Mamonova, D.V.; Kurochkin, M.A.; Medvedev, V.A.; Borisov, E.V.; Kolesnikov, E.Y. Effect of Calcination Temperature on Thermometric Performances of Ratiometric Co-Doped Gd2O3:Tb3+,Eu3+ Nanothermometers. Ceram. Int. 2023, 49, 6899–6905. [Google Scholar] [CrossRef]
- Bondzior, B.; Hoang, T.; Vu, T.H.Q.; Dereń, P.J.; Petit, L. Unveiling the Thermometric Sensitivity of Eu3+ Doped Glasses in Various System from Theory to Experimental. Scr. Mater. 2023, 227, 115310. [Google Scholar] [CrossRef]
- Bondzior, B.; Nguyen, C.; Quan Vu, T.H.; Pugliese, D.; Dereń, P.J.; Petit, L. The Usability of the Judd-Ofelt Theory for Luminescent Thermometry Using Eu3+-Doped Phosphate Glass. J. Lumin. 2022, 252, 119386. [Google Scholar] [CrossRef]
- Łukaszewicz, M.; Klimesz, B.; Szmalenberg, A.; Ptak, M.; Lisiecki, R. Neodymium-Doped Germanotellurite Glasses for Laser Materials and Temperature Sensing. J. Alloys Compd. 2021, 860, 157923. [Google Scholar] [CrossRef]
- Judd, B.R. Optical Absorption Intensities of Rare-Earth Ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of Crystal Spectra of Rare-Earth Ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Lisiecki, R. Oxyfluoride Germanatetellurite Glasses Doped with Dysprosium—Spectroscopic Characteristic and Luminescence Thermometry Qualities. J. Non Cryst. Solids 2022, 597, 121922. [Google Scholar] [CrossRef]
- De Mello Donegá, C.; Alves, S.; De Sá, G.F. Synthesis, Luminescence and Quantum Yields of Eu(III) Mixed Complexes with 4,4,4-Trifluoro-1-Phenyl-1,3-Butanedione and 1,10-Phenanthroline-N-Oxide. J. Alloys Compd. 1997, 250, 422–426. [Google Scholar] [CrossRef]
- Sreena, T.S.; Prabhakar Rao, P.; Linda Francis, T.; Raj, A.K.V.; Babu, P.S. Structural and Photoluminescence Properties of Stannate Based Displaced Pyrochlore-Type Red Phosphors: Ca3−xSn3Nb2O14:XEu3+. Dalton Trans. 2015, 44, 8718–8728. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. J. Chem. Phys. 1968, 49, 4412–4423. [Google Scholar] [CrossRef]
- Weber, M.J. Probabilities for Radiative and Nonradiative Decay of Er3+ in LaF3. Phys. Rev. 1967, 157, 262–272. [Google Scholar] [CrossRef]
- Mattarelli, M.; Chiappini, A.; Montagna, M.; Martucci, A.; Ribaudo, A.; Guglielmi, M.; Ferrari, M.; Chiasera, A. Optical Spectroscopy of TeO2–GeO2 Glasses Activated with Er3+ and Tm3+ Ions. J. Non Cryst. Solids 2005, 351, 1759–1763. [Google Scholar] [CrossRef]
- He, B.; Yang, K.; Chen, L.; Hua, Y.; Huang, F.; Zhang, J.; Xu, S. Effect of Gd2O3 on Luminescence Properties of RE Ions in Germanium-Tellurite Glasses. J. Lumin. 2020, 220, 116977. [Google Scholar] [CrossRef]
- Monteiro, G.; Santos, L.F.; Pereira, J.C.G.; Almeida, R.M. Optical and Spectroscopic Properties of Germanotellurite Glasses. J. Non Cryst. Solids 2011, 357, 2695–2701. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of Europium(III) Spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Li, J.; Long, Y.; Zhao, Q.; Zheng, S.; Fang, Z.; Guan, B.-O. Efficient White Upconversion Luminescence in Yb3+/Eu3+ Doubly-Doped Transparent Glass Ceramic. Opt. Express 2021, 29, 21763. [Google Scholar] [CrossRef]
- Đorđević, V.; Antić, Ž.; Nikolić, M.G.; Dramićanin, M.D. The Concentration Quenching of Photoluminescence in Eu3+-Doped La2O3. J. Res. Phys. 2013, 37, 2231–2232. [Google Scholar] [CrossRef]
- Boruc, Z.; Fetlinski, B.; Kaczkan, M.; Turczynski, S.; Pawlak, D.; Malinowski, M. Temperature and Concentration Quenching of Tb3+ Emissions in Y4Al2O9 Crystals. J. Alloys Compd. 2012, 532, 92–97. [Google Scholar] [CrossRef]
- McCamy, C.S. Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates. Color. Res. Appl. 1992, 17, 142–144. [Google Scholar] [CrossRef]
- Görller-Walrand, C.; Binnemans, K. Chapter 167 Spectral Intensities of f-f Transitions. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 1998; pp. 101–264. [Google Scholar]
- Dorenbos, P. Thermal Quenching of Eu2+ 5d-4f Luminescence in Inorganic Compounds. J. Phys. Condens. Matter 2005, 17, 8103–8111. [Google Scholar] [CrossRef]
- Dorenbos, P. Absolute Location of Lanthanide Energy Levels and the Performance of Phosphors. J. Lumin. 2007, 122–123, 315–317. [Google Scholar] [CrossRef]
- Zhang, X.; Tsai, Y.-T.; Wu, S.-M.; Lin, Y.-C.; Lee, J.-F.; Sheu, H.-S.; Cheng, B.-M.; Liu, R.-S. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu2+ Phosphor for High Color Rendering Index White Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2016, 8, 19612–19617. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.; Pan, F.; Wu, M.; Wang, J.; Chen, Y.; Su, Q. Highly Thermally Stable Single-Component White-Emitting Silicate Glass for Organic-Resin-Free White-Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2014, 6, 2709–2717. [Google Scholar] [CrossRef]
- Jiang, C.; Brik, M.G.; Li, L.; Li, L.; Peng, J.; Wu, J.; Molokeev, M.S.; Wong, K.-L.; Peng, M. The Electronic and Optical Properties of a Narrow-Band Red-Emitting Nanophosphor K2NaGaF6:Mn4+ for Warm White Light-Emitting Diodes. J. Mater. Chem. C Mater. 2018, 6, 3016–3025. [Google Scholar] [CrossRef]
- Guo, N.; Pan, Y.; Lv, W.; Ouyang, R.; Shao, B. Optical Thermometric Properties in Tb3+ and Eu3+-Coactivated Dual-Emissive Fluorophosphate Phosphors. Opt. Laser Technol. 2020, 123, 105938. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Z.; Zhou, W.; Yu, M.; Min, J.; Jiang, X.; Xue, Z.; Ma, C.; Cheng, Z.; Luo, G. Energy Transfer of Tb3+→Eu3+ in Ca2Al2SiO7 Phosphors with Multicolor Tunable and Optical Temperature Sensing Properties. Ceram. Int. 2023, 49, 14478–14486. [Google Scholar] [CrossRef]
- Yao, L.-Q.; Chen, G.-H.; Yang, T.; Cui, S.-C.; Li, Z.-C.; Yang, Y. Energy Transfer, Tunable Emission and Optical Thermometry in Tb3+ /Eu3+ Co-Doped Transparent NaCaPO4 Glass Ceramics. Ceram. Int. 2016, 42, 13086–13090. [Google Scholar] [CrossRef]
- Han, L.; Liu, J.; Liu, P.; Li, B.; Li, X.; Xu, Y. Dual-Emissive Eu3+, Tb3+ Co-Doped Gd2(MoO4)3 Phosphor for Optical Thermometry Application. J. Phys. Chem. Solids 2021, 153, 110032. [Google Scholar] [CrossRef]
- Xia, W.; Li, L.; Yang, P.; Ling, F.; Wang, Y.; Cao, Z.; Jiang, S.; Xiang, G.; Zhou, X.; Hua, Y. Synthesis of Color-Tunable Sr8MgLa(PO4)7:Eu3+/Tb3+ Phosphors for Designing Dual-Model Thermometers. J. Lumin. 2021, 239, 118383. [Google Scholar] [CrossRef]
- Yao, L.; Zeng, Z.; Chen, G.; Zhong, H.; Cui, S.; Wen, C. Tunable Luminescence and Temperature Sensing Behavior of Tb3+/Eu3+ Co-Doped Borate Glasses. J. Mater. Sci. Mater. Electron. 2016, 27, 8402–8407. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, G.; Liu, X.; Xu, J.; Yang, T.; Yuan, C.; Zhou, C. Down-Conversion Luminescence and Optical Thermometric Performance of Tb3+/Eu3+ Doped Phosphate Glass. J. Non Cryst. Solids 2018, 484, 111–117. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, F.; Lin, H.; Zhou, J.; Xu, J.; Wang, Y. A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States. Adv. Funct. Mater. 2016, 26, 3139–3145. [Google Scholar] [CrossRef]
- Vu, T.H.Q.; Bondzior, B.; Stefańska, D.; Miniajluk, N.; Dereń, P.J. Synthesis, Structure, Morphology, and Luminescent Properties of Ba2MgWO6:Eu3+ Double Perovskite Obtained by a Novel Co-Precipitation Method. Materials 2020, 13, 1614. [Google Scholar] [CrossRef]
- Senden, T.; van Dijk-Moes, R.J.A.; Meijerink, A. Quenching of the Red Mn4+ Luminescence in Mn4+-Doped Fluoride LED Phosphors. Light. Sci. Appl. 2018, 7, 8. [Google Scholar] [CrossRef]
- He, P.; Luo, Z.; Liang, H.; Liu, X.; Tong, J.; Zhou, Z.; Lu, A. Study on the Structure and Optical Properties of the Tb3+-Doped SrO–MgO–SiO2–TiO2–B2O3 Glasses. Opt. Mater. 2023, 144, 114349. [Google Scholar] [CrossRef]
- Suta, M. Performance of Boltzmann and Crossover Single-Emitter Luminescent Thermometers and Their Recommended Operation Modes. Opt. Mater. X 2022, 16, 100195. [Google Scholar] [CrossRef]
- Ryadun, A.; Rakhmanova, M.I.; Trifonov, V.A.; Pavluk, A.A. Energy Transfer in Tb3+–Yb3+ Doubly Doped CsGd(MoO4)2 Single Crystals for Contactless Thermometry, Solid-State Lighting and Solar Cells. Mater. Technol. 2022, 37, 1001–1007. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, T.; Li, H.; Yu, J.S.; Li, L. Charge Transfer Band Excited (Sr,Ba)2YTaO6:Eu3+ Reddish-Orange-Emitting Phosphors for Luminescence Lifetime Thermometry and Flexible Anti-Counterfeiting Labels. J. Alloys Compd. 2023, 930, 167454. [Google Scholar] [CrossRef]
Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | Ω6 (10−20 cm2) | τr (ms) | τexp (ms) | η (%) |
---|---|---|---|---|---|
6.7 | 4.3 | 6.4 | 1.6 | 1.4 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondzior, B.; Lisiecki, R. Excellent Color Purity and Luminescence Thermometry Performance in Germanate Tellurite Glass Doped with Eu3+ and Tb3+. Appl. Sci. 2024, 14, 4198. https://doi.org/10.3390/app14104198
Bondzior B, Lisiecki R. Excellent Color Purity and Luminescence Thermometry Performance in Germanate Tellurite Glass Doped with Eu3+ and Tb3+. Applied Sciences. 2024; 14(10):4198. https://doi.org/10.3390/app14104198
Chicago/Turabian StyleBondzior, Bartosz, and Radosław Lisiecki. 2024. "Excellent Color Purity and Luminescence Thermometry Performance in Germanate Tellurite Glass Doped with Eu3+ and Tb3+" Applied Sciences 14, no. 10: 4198. https://doi.org/10.3390/app14104198
APA StyleBondzior, B., & Lisiecki, R. (2024). Excellent Color Purity and Luminescence Thermometry Performance in Germanate Tellurite Glass Doped with Eu3+ and Tb3+. Applied Sciences, 14(10), 4198. https://doi.org/10.3390/app14104198