X-ray Diffraction Study of Metallized Polyethylene for Creating Heat Storage Systems
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mourad, A.; Aissa, A.; Said, Z.; Younis, O.; Iqbal, M.; Alazzam, A. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. J. Energy Storage 2022, 49, 104186. [Google Scholar] [CrossRef]
- Deng, Z.; Nian, Y.; Liu, Q.; Cheng, W.L. Numerical analysis of borehole heat exchanger using a single shape-stabilized phase change material in heating and cooling seasons. J. Energy Storage 2023, 70, 107897. [Google Scholar] [CrossRef]
- Lin, S.; Ling, Z.; Li, S.; Cai, C.; Zhang, Z.; Fang, X. Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage. Energy 2023, 266, 126481. [Google Scholar] [CrossRef]
- Duquesne, M.; Godin, A.; Palomo del Barrio, E.; Achchaq, F. Crystal growth kinetics of sugar alcohols as phase change materials for thermal energy storage. Energy Procedia 2017, 139, 315–321. [Google Scholar] [CrossRef]
- Shao, X.F.; Yang, S.; Shi, H.Y.; Fan, L.W.; Yuan, Y.P. A comprehensive evaluation on the cycling stability of sugar alcohols for medium-temperature latent heat storage. J. Energy Storage 2023, 64, 107190. [Google Scholar] [CrossRef]
- Cao, L.; Tang, Y.; Fang, G. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage. Energy 2015, 80, 98–103. [Google Scholar] [CrossRef]
- Nosova, N.; Roiter, Y.; Samaryk, V.; Varvarenko, S.; Stetsyshyn, Y.; Minko, S.; Stamm, M.; Voronov, S. Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromol. Symp. 2004, 210, 339–348. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, R. N-octanoic acid-based phase change composites synthesized by absorption polymerization for efficient thermal energy storage. J. Energy Storage 2023, 64, 107169. [Google Scholar] [CrossRef]
- Zauner, C.; Hengstberger, F.; Etzel, M.; Lager, D.; Hofmann, R.; Walter, H. Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM. Appl. Energy 2016, 179, 237–246. [Google Scholar] [CrossRef]
- Malovanyy, M.S.; Synelnikov, S.D.; Nagurskiy, O.A.; Soloviy, K.M.; Tymchuk, I.S. Utilization of sorted secondary PET waste-raw materials in the context of sustainable development of the modern city. In IOP Conference Series: Materials Science and Engineering, Innovative Technology in Architecture and Design (ITAD 2020), Kharkiv, Ukraine, 21–22 May 2020; IOP Publishing: Bristol, UK, 2020; p. 012067. [Google Scholar] [CrossRef]
- Nagurskyy, O.; Krylova, H.; Vasiichuk, V.; Kachan, S.; Dziurakh, Y.; Nahursky, A.; Paraniak, N. Safety Usage of Encapsulated Mineral Fertilizers Based on Polymeric Waste. Ecol. Eng. Environ. Technol. 2022, 23, 156–161. [Google Scholar] [CrossRef]
- Nagurskyy, O.; Krylova, H.; Vasiichuk, V.; Kachan, S.; Nahursky, A.; Paraniak, N.; Sabadash, V.; Malovanyy, M. Utilization of Household Plastic Waste in Technologies with Final Biodegradation. Ecol. Eng. Environ. Technol. 2022, 23, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E.; Majerníková, J. Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials 2020, 13, 2856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, B.G.; Zheng, X.B.; Singh, P.K.; Ayed, H.; Mouldi, A.; Mohamed, A.; Mehrez, S. Investigation on effect of connection angle of “L” shaped fin on charging and discharging process of PCM in vertical enclosure. Case Stud. Therm. Eng. 2022, 33, 101908. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Li, P.; Qin, H.; Heng, W. Multi-parameter heat transfer analysis of molten PCM in an inclined enclosure. Appl. Therm. Eng. 2022, 208, 118209. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A.; Al-Waeli, A.; Sopian, K. Controlling the melting and solidification points temperature of PCMs on the performance and economic return of the water-cooled photovoltaic thermal system. Sol. Energy 2021, 224, 1344–1357. [Google Scholar] [CrossRef]
- Teja, P.; Gugulothu, S.K.; Reddy, P.; Deepanraj, B.; Sundar, L.S. Computational investigation of the influencing parameters on the melting of phase change material in a square enclosure with built in fin and Al2O3 nanoparticles. Appl. Therm. Eng. 2023, 232, 120942. [Google Scholar] [CrossRef]
- Zheng, S.; Li, S.; Li, M.; Dai, R.; Wei, M.; Tian, R. Experimental and numerical investigation of a rectangular finned-tube latent heat storage unit for Carnot battery. J. Energy Storage 2023, 71, 108092. [Google Scholar] [CrossRef]
- Wang, Z.; Diao, Y.; Zhao, Y.; Chen, C.; Wang, T.; Liang, L. Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe. Energy 2023, 275, 127464. [Google Scholar] [CrossRef]
- Sharma, A.; Pitchumani, R.; Chauhan, R. Melting and solidification performance investigation of latent heat storage unit designs for low-temperature solar thermal applications. J. Energy Storage 2023, 66, 107323. [Google Scholar] [CrossRef]
- Diao, Y.; Wang, Z.; Zhao, Y.; Wang, Z.; Chen, C.; Zhang, D. Heat transfer enhancement of a multichannel flat tube-copper foam latent heat storage unit. Appl. Therm. Eng. 2023, 229, 120559. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, S.; Mazhar, A.R.; Wang, J.; Li, Y. Phase change materials embedded with tuned porous media to alleviate overcharging problem of cascaded latent heat storage system for building heating. Energy Build. 2023, 281, 112746. [Google Scholar] [CrossRef]
- Zhu, R.; Jing, D. Numerical study on thermal and melting performances of a horizontal latent heat storage unit with branched tree-like convergent fins. J. Energy Storage 2023, 62, 106889. [Google Scholar] [CrossRef]
- Sharma, A.; Ding, C.; Kim, S.C.; Chauhan, R. Investigation and optimization of solidification performance of concentration tube type latent heat storage unit with herringbone wavy fin designs. Appl. Therm. Eng. 2023, 222, 119924. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Z.; Qu, Z.; Xu, H.; Yang, Q. Numerical energy and exergy evaluation for a multiple-layer latent heat storage unit enhanced with nanoparticles under different seasons. J. Clean. Prod. 2023, 417, 138098. [Google Scholar] [CrossRef]
- Lauermannová, A.M.; Lojka, M.; Záleská, M.; Pavlíková, M.; Pivák, A.; Pavlík, Z.; Růžička, K.; Jankovský, O. Magnesium oxychloride cement-based composites for latent heat storage: The effect of the introduction of multi-walled carbon nanotubes. J. Build. Eng. 2023, 72, 106604. [Google Scholar] [CrossRef]
- Yu, D.; Qiu, Y.; Zhang, X. Role of nano-copper in discharging performance of latent heat storage unit. Int. Commun. Heat Mass Transf. 2023, 144, 106748. [Google Scholar] [CrossRef]
- Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E. Obtainment and characterization of metal-coated polyethylene granules as a basis for the development of heat storage systems. Polymers 2022, 14, 218. [Google Scholar] [CrossRef] [PubMed]
- White, J.L.; Choi, D.D. Polyolefins: Processing, Structure Development, and Properties; Carl Hanser Publishers: Munich, Germany, 2005; p. 271. [Google Scholar]
- Rabiej, M. Application of the particle swarm optimization method for the analysis of wide-angle X-ray diffraction curves of semicrystalline polymers. J. Appl. Crystallogr. 2017, 50, 221–230. [Google Scholar] [CrossRef]
- Rabiej, M. Application of a multicriterial optimization to the resolution of X-ray difraction curves of semicrystalline polymers. Polimery 2017, 62, 821–833. [Google Scholar] [CrossRef]
- Kucherenko, A.; Nikitchuk, O.; Dulebova, L.; Moravskyi, V. Activation of polyethylene granules by finely dispersed zinc. Chem. Technol. Appl. Subst. 2021, 4, 191–197. [Google Scholar] [CrossRef]
- Kucherenko, A.; Nikitchuk, O.; Baran, N.; Dulebova, L.; Kuznetsova, M.; Moravskyi, V. Characteristics of metallized polymeric raw materials. In Proceedings of the 11 International Conference on “Nanomaterials: Applications & Properties” (NAP-2021), Odesa, Ukraine, 5–11 September 2021. TM10. [Google Scholar] [CrossRef]
- Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Garbacz, T. Formation of copper coating on polymer granules by chemical method. In Proceedings of the 12 International Conference on “Nanomaterials: Applications & Properties” (NAP-2022), Krakow, Poland, 11–16 September 2022. MTFC13. [Google Scholar] [CrossRef]
- Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dziaman, I.; Grytsenko, O.; Dulebova, L. Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. East. -Eur. J. Enterp. Technol. 2018, 3, 40–47. [Google Scholar] [CrossRef]
- Tadayyon, G.; Zebarjad, S.M.; Sajjadi, S.A. Effect of both nano-size alumina particles and severe deformation on polyethylene crystallinity index. J. Thermoplast. Compos. Mater. 2011, 25, 479–490. [Google Scholar] [CrossRef]
- WAXSFIT—Analysis of X-RAY Diffraction Curves; Version 1.0; Informer Technologies, Inc.: Los Angeles, CA, USA, 2020.
- Rabiej, M.; Rabiej, S. Application of the artificial neural network for identification of polymers based on their X-ray diffraction curves. Comput. Mater. Sci. 2021, 186, 110042. [Google Scholar] [CrossRef]
Element | Mass% | Atomic% |
---|---|---|
Cu L | 100.00 | 100.00 |
Sum | 100.00 |
Sample | Degree of Crystallinity | Position | Height | Width | Size L | Distance d |
---|---|---|---|---|---|---|
Initial PE granules | 0.479 | 21.1 | 323.2 | 0.9 | 101.7 | 4.2 |
23.4 | 101.1 | 1.0 | 89.2 | 3.8 | ||
19.9 * | 65.8 | 5.4 | - | - | ||
Plate made of initial PE granules | 0.547 | 20.9 | 549.1 | 0.5 | 173.7 | 4.2 |
23.3 | 141.6 | 0.7 | 133.0 | 3.8 | ||
20.1 * | 75.3 | 4.1 | - | - |
Sample | Degree of Crystallinity | Position | Height | Width | Size L | Distance d |
---|---|---|---|---|---|---|
Metallized PE granules | 0.388 | 21.4 | 191.2 | 1.2 | 73.0 | 4.2 |
23.7 | 60.1 | 1.2 | 73.7 | 3.8 | ||
19.7 * | 53.0 | 8.9 | - | - | ||
Plate made of metallized PE granules | 0.501 | 21.1 | 386.4 | 0.5 | 187.5 | 4.2 |
23.5 | 128.0 | 0.6 | 151.3 | 3.8 | ||
20.1 * | 54.0 | 5.3 | - | - |
Number of Heating and Cooling Cycles | Degree of Crystallinity | Position | Height | Width | Size L | Distance d | QPE kJ/kg |
---|---|---|---|---|---|---|---|
1 | 0.501 | 21.1 | 386.4 | 0.5 | 187.5 | 4.2 | 996.2 |
23.5 | 128.0 | 0.6 | 151.3 | 3.8 | |||
20.1 * | 54.0 | 5.3 | - | - | |||
100 | 0.494 | 21.2 | 476.6 | 0.5 | 196.6 | 4.2 | 990.5 |
23.5 | 117.0 | 0.6 | 124.4 | 3.8 | |||
20.0 * | 65.2 | 4.8 | - | - | |||
200 | 0.459 | 20.9 | 399.4 | 0.5 | 178.0 | 4.3 | 962.1 |
23.2 | 112.5 | 0.7 | 133.8 | 3.8 | |||
19.9 * | 75.1 | 4.7 | - | - | |||
300 | 0.405 | 21.2 | 336.3 | 0.5 | 179.6 | 4.2 | 918.3 |
23.6 | 61.8 | 0.7 | 132.2 | 3.8 | |||
20.1 * | 72.4 | 5.6 | - | - | |||
400 | 0.284 | 21.1 | 187.2 | 0.6 | 156.6 | 4.2 | 820.0 |
23.5 | 50.8 | 0.8 | 118.3 | 3.8 | |||
20.0 * | 70.7 | 5.7 | - | - | |||
500 | 0.268 | 21.0 | 182.4 | 0.6 | 160.3 | 4.2 | 807.0 |
23.4 | 38.0 | 0.8 | 108.7 | 3.8 | |||
19.8 * | 73.6 | 6.0 | - | - | |||
600 | 0.248 | 21.0 | 175.2 | 0.5 | 165.2 | 4.2 | 790.8 |
23.4 | 47.0 | 0.7 | 124.5 | 3.8 | |||
19.8 * | 73.9 | 6.5 | - | - | |||
700 | 0.224 | 21.0 | 172.8 | 0.6 | 161.6 | 4.2 | 771.3 |
23.4 | 40.1 | 0.8 | 113.7 | 3.8 | |||
19.8 * | 71.1 | 6,2 | - | - | |||
800 | 0.209 | 21.0 | 164.3 | 0.6 | 162.7 | 4.2 | 759.1 |
23.3 | 36.0 | 0.8 | 117.7 | 3.8 | |||
19.8 * | 75.4 | 6.9 | - | - | |||
900 | 0.196 | 21.0 | 153.7 | 0.5 | 163.7 | 4.2 | 748.6 |
23.3 | 44.7 | 0.7 | 122.2 | 3.8 | |||
19.7 * | 72.6 | 6.8 | - | - | |||
1000 | 0.192 | 20.9 | 145.4 | 0.6 | 159.7 | 4.2 | 745.3 |
23.3 | 50.2 | 0.8 | 107.7 | 3.8 | |||
19.3 * | 62.8 | 6.7 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E. X-ray Diffraction Study of Metallized Polyethylene for Creating Heat Storage Systems. Appl. Sci. 2024, 14, 4183. https://doi.org/10.3390/app14104183
Moravskyi V, Kucherenko A, Kuznetsova M, Dulebova L, Spišák E. X-ray Diffraction Study of Metallized Polyethylene for Creating Heat Storage Systems. Applied Sciences. 2024; 14(10):4183. https://doi.org/10.3390/app14104183
Chicago/Turabian StyleMoravskyi, Volodymyr, Anastasiia Kucherenko, Marta Kuznetsova, Ludmila Dulebova, and Emil Spišák. 2024. "X-ray Diffraction Study of Metallized Polyethylene for Creating Heat Storage Systems" Applied Sciences 14, no. 10: 4183. https://doi.org/10.3390/app14104183
APA StyleMoravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., & Spišák, E. (2024). X-ray Diffraction Study of Metallized Polyethylene for Creating Heat Storage Systems. Applied Sciences, 14(10), 4183. https://doi.org/10.3390/app14104183