Nutritional Analysis of Plant-Based Meat: Current Advances and Future Potential
Abstract
:1. Introduction
2. Plant-Based Meat versus Conventional Meat: A Nutritional Stance
3. Nutritional Challenges in Plant-Based Meat Products
3.1. Protein Quality
3.2. Anti-Nutritional Factors
4. Current and Potential Solutions to Improve Plant-Based Meat Nutrition
4.1. Balanced Amino Acid Composition for Better Meat Protein Quality
4.2. Phytase Treatment to Reduce Phytate Content in Plant-Based Meat
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, J.G. Feeding the World Sustainably. The Future We Want? XLIX. 2012. Available online: https://www.un.org/en/chronicle/article/feeding-world-sustainably (accessed on 5 March 2023).
- United Nations. Goal 2: Zero Hunger. Available online: https://www.un.org/sustainabledevelopment/hunger/ (accessed on 14 March 2024).
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- English, L.K.; Ard, J.D.; Bailey, R.L.; Bates, M.; Bazzano, L.A.; Boushey, C.J.; Brown, C.; Butera, G.; Callahan, E.H.; de Jesus, J.; et al. Evaluation of dietary patterns and all-cause mortality. JAMA Netw. Open 2021, 4, e2122277. [Google Scholar] [CrossRef] [PubMed]
- Zargarzadeh, N.; Mousavi, S.M.; Santos, H.O.; Aune, D.; Hasani-Ranjbar, S.; Larijani, B.; Esmaillzadeh, A. Legume consumption and risk of all-cause and cause-specific mortality: A systematic review and dose–response meta-analysis of prospective studies. Adv. Nutr. 2023, 14, 64–76. [Google Scholar] [CrossRef]
- The EAT-Lancet Commission Summary Report. Healthy Diets from Sustainable Food Systems: Food Planet Health. 2021. Available online: https://eatforum.org/content/uploads/2019/07/EAT-Lancet_Commission_Summary_Report.pdf (accessed on 14 March 2024).
- Good Food Institute, India. Smart Protein Economic Analysis. 2022. Available online: https://gfi-india.org/wp-content/uploads/2022/10/gfi_economic_analysis.pdf (accessed on 14 March 2024).
- Rajyalakshmi, G. Insights on Awareness, Trial, and Purchase Behavior—Plant-Based Meat and Dairy, India. 2023. Available online: https://gfi-india.org/insights-on-awareness-trial-and-purchase-behavior-plant-based-meat-and-dairy-india/ (accessed on 14 March 2024).
- Gibbs, J.; Leung, G.-K. The effect of plant-based and mycoprotein-based meat substitute consumption on cardiometabolic risk factors: A systematic review and meta-analysis of Controlled Intervention Trials. Dietetics 2023, 2, 104–122. [Google Scholar] [CrossRef]
- Crimarco, A.; Springfield, S.; Petlura, C.; Streaty, T.; Cunanan, K.; Lee, J.; Fielding-Singh, P.; Carter, M.M.; Topf, M.A.; Wastyk, H.C.; et al. A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study with appetizing plantfood—Meat eating alternative trial (swap-meat). Am. J. Clin. Nutr. 2020, 112, 1188–1199. [Google Scholar] [CrossRef]
- Farsi, D.N.; Gallegos, J.L.; Koutsidis, G.; Nelson, A.; Finnigan, T.J.; Cheung, W.; Muñoz-Muñoz, J.L.; Commane, D.M. Substituting meat for mycoprotein reduces genotoxicity and increases the abundance of beneficial microbes in the gut: Mycomeat, a randomised crossover control trial. Eur. J. Nutr. 2023, 62, 1479–1492. [Google Scholar] [CrossRef] [PubMed]
- Toribio-Mateas, M.A.; Bester, A.; Klimenko, N. Impact of plant-based meat alternatives on the gut microbiota of consumers: A real-world study. Foods 2021, 10, 2040. [Google Scholar] [CrossRef]
- Bottin, J.H.; Swann, J.R.; Cropp, E.; Chambers, E.S.; Ford, H.E.; Ghatei, M.A.; Frost, G.S. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: A randomised-controlled trial. Br. J. Nutr. 2016, 116, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Gavin-Smith, B. Plant-Based Meats. 2020. Available online: https://sightandlife.org/resource-hub/blog/alternative-proteins-the-nutritionists-perspective (accessed on 5 March 2024).
- Sánchez-Velázquez, O.A.; Ribéreau, S.; Mondor, M.; Cuevas-Rodríguez, E.O.; Arcand, Y.; Hernández-Álvarez, A.J. Impact of processing on the in vitro protein quality, bioactive compounds, and antioxidant potential of 10 selected pulses. Legume Sci. 2021, 3, e88. [Google Scholar] [CrossRef]
- Zahari, I.; Östbring, K.; Purhagen, J.K.; Rayner, M. Plant-based meat analogues from alternative protein: A systematic literature review. Foods 2022, 11, 2870. [Google Scholar] [CrossRef]
- GFI Europe. Plant-Based Meat and Health in Europe. 2023. Available online: https://gfieurope.org/wp-content/uploads/2023/11/Final_GFI-Europe_Plant-based-meat-and-Nutrition_Nov232023.pdf (accessed on 14 March 2024).
- Zhang, L.; Langlois, E.; Williams, K.; Tejera, N.; Omieljaniuk, M.; Finglas, P.; Traka, M.H. A comparative analysis of nutritional quality, amino acid profile, and nutritional supplementations in plant-based products and their animal-based counterparts in the UK. Food Chem. 2024, 448, 139059. [Google Scholar] [CrossRef] [PubMed]
- Cutroneo, S.; Angelino, D.; Tedeschi, T.; Pellegrini, N.; Martini, D. Nutritional quality of meat analogues: Results from the food labelling of Italian Products (FLIP) project. Front. Nutr. 2022, 9, 852831. [Google Scholar] [CrossRef] [PubMed]
- Geerts, M.E.; Dekkers, B.L.; van der Padt, A.; van der Goot, A.J. Aqueous fractionation processes of soy protein for fibrous structure formation. Innov. Food Sci. Emerg. Technol. 2018, 45, 313–319. [Google Scholar] [CrossRef]
- Costa-Catala, J.; Toro-Funes, N.; Comas-Basté, O.; Hernández-Macias, S.; Sánchez-Pérez, S.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Castell-Garralda, V.; Vidal-Carou, M.C. Comparative Assessment of the Nutritional Profile of Meat Products and Their Plant-Based Analogues. Nutrients 2023, 15, 2807. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An Umbrella Review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Fan, D.; Huang, J.; Zuo, T. The gut microbiome: Linking dietary fiber to inflammatory diseases. Med. Microecol. 2022, 14, 100070. [Google Scholar] [CrossRef]
- Coffey, A.A.; Lillywhite, R.; Oyebode, O. Meat versus meat alternatives: Which is better for the environment and health? A nutritional and environmental analysis of animal-based products compared with their plant-based alternatives. J. Hum. Nutr. Diet. 2023, 36, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Kalhoff, H.; Kersting, M. Programming Long-Term Health: Nutrition and Diet in Infants Aged 6 Months to 1 Year. In Early Nutrition and Long-Term Health Mechanisms, Consequences, and Opportunities; Saavedra, J.M., Dattilo, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 499–535. [Google Scholar] [CrossRef]
- FDA. Interactive Nutrition Facts Label. 2021. Available online: https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/assets/InteractiveNFL_Protein_October2021.pdf (accessed on 18 April 2024).
- FDA. Daily Value and Percent Daily Value on the Nutrition and Supplement Facts Labels. 2023. Available online: https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels (accessed on 18 April 2024).
- FAO. Dietary Protein Quality Evaluation in Human Nutrition—Report of an FAO Expert Consultation. 2013. Available online: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf (accessed on 18 April 2024).
- De Marchi, M.; Costa, A.; Pozza, M.; Goi, A.; Manuelian, C.L. Detailed characterization of plant-based burgers. Sci. Rep. 2021, 11, 2049. [Google Scholar] [CrossRef]
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The skeletal muscle anabolic response to plant-versus animal-based protein consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef]
- Yang, Y.; Churchward-Venne, T.A.; Burd, N.A.; Breen, L.; Tarnopolsky, M.A.; Phillips, S.M. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr. Metab. 2012, 9, 57. [Google Scholar] [CrossRef]
- Gorissen, S.H.; Crombag, J.J.; Senden, J.M.; Waterval, W.A.; Bierau, J.; Verdijk, L.B.; van Loon, L.J. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Table; National Institute of Nutrition: Hyderabad, India, 2017; p. 578. [Google Scholar]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Xu, Y.; Sismour, E.; Britland, J.W.; Sellers, A.; Abraha-Eyob, Z.; Yousuf, A.; Rao, Q.; Zhao, W. Physicochemical, Structural, and Functional Properties of Hemp Protein vs Several Commercially Available Plant and Animal Proteins: A Comparative Study. ACS Food Sci. Technol. 2022, 2, 1672–1680. [Google Scholar] [CrossRef]
- Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat Protein Alternatives as Meat Extenders and Meat Analogs. Inst. Food Technol. 2010, 9, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Gemede, H.F.; Ratta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 2014, 3, 284–289. [Google Scholar] [CrossRef]
- Pinckaers, P.J.; Trommelen, J.; Snijders, T.; van Loon, L.J. The anabolic response to plant-based protein ingestion. Sports Med. 2021, 51, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Duodu, K.G.; Taylor JR, N.; Belton, P.S.; Hamaker, B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef] [PubMed]
- Pramitha, J.L.; Rana, S.; Aggarwal, P.R.; Ravikesavan, R.; Joel, A.J.; Muthamilarasan, M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Adv. Genet. 2021, 107, 89–120. [Google Scholar] [CrossRef]
- Thavarajah, P.; Thavarajah, D.; Vandenberg, A. Low Phytic Acid Lentils (Lens culinaris L.): A Potential Solution for Increased Micronutrient Bioavailability. J. Agric. Food Chem. 2009, 57, 9044–9049. [Google Scholar] [CrossRef]
- Feizollahi, E.; Mirmahdi, R.S.; Zoghi, A.; Zijlstra, R.T.; Roopesh, M.S.; Vasanthan, T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Res. Int. 2021, 143, 110284. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2014, 95, 878–896. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Vashishth, A.; Ram, S.; Beniwal, V. Cereal phytases and their importance in improvement of micronutrients bioavailability. 3 Biotech 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Egli, I.; Aeberli, I.; Zimmermann, M.; Hurrell, R. Strategies to Enhance Iron Absorption from Tef-injera in Young Women. Eur. J. Nutr. Food Saf. 2015, 5, 1169–1170. [Google Scholar] [CrossRef]
- Greiner, R.; Konietzny, U. Phytase for food application. Food Technol. Biotechnol. 2006, 44, 125–140. [Google Scholar]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, S.E.O.; Elhag, S.A. Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars. Food Chem. 1998, 61, 77–80. [Google Scholar] [CrossRef]
- Moretti, D.; Biebinger, R.; Bruins, M.J.; Hoeft, B.; Kraemer, K. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize. Ann. N. Y. Acad. Sci. 2013, 1312, 54–65. [Google Scholar] [CrossRef]
- Sandberg, A.S.; Andersson, H. Effect of dietary phytase on the digestion of phytate in the stomach and small intestine of humans. J. Nutr. 1988, 118, 469–473. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Damstrup, M.L.; Thomsen, A.D.; Rasmussen, S.K.; Hansen, Å. Phytase activity and degradation of phytic acid during rye bread making. Eur. Food Res. Technol. 2007, 225, 173–181. [Google Scholar] [CrossRef]
- Akhter, S.; Saeed, A.; Irfan, M.; Malik, K.A. In vitro dephytinization and bioavailability of essential minerals in several wheat varieties. J. Cereal Sci. 2012, 56, 741–746. [Google Scholar] [CrossRef]
- Sanz-Penella, J.M.; Frontela, C.; Ros, G.; Martinez, C.; Monedero, V.; Haros, M. Application of bifidobacterial phytases in infant cereals: Effect on phytate contents and mineral dialyzability. J. Agric. Food Chem. 2012, 60, 11787–11792. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.R.; Preedy, V.R.; Zibadi, S. Wheat and Rice in Disease Prevention and Health: Benefits, Risks and Mechanisms of Whole Grains in Health Promotion; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Kaleda, A.; Talvistu, K.; Tamm, M.; Viirma, M.; Rosend, J.; Tanilas, K.; Kriisa, M.; Part, N.; Tammik, M.-L. Impact of Fermentation and Phytase Treatment of Pea-Oat Protein Blend on Physicochemical, Sensory, and Nutritional Properties of Extruded Meat Analogs. Foods 2020, 9, 1059. [Google Scholar] [CrossRef] [PubMed]
- Rebellato, A.P.; Orlando, E.A.; Thedoropoulos, V.C.T.; Greiner, R.; Pallone, J.A.L. Effect of phytase treatment of sorghum flour, an alternative for gluten free foods and bioaccessibility of essential minerals. J. Food Sci. Technol. 2020, 57, 3474–3481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Egli, I.; Davidsson, L.; Juillerat, M.A.; Barclay, D.; Hurrell, R.F. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feedin. J. Food Sci. 2006, 67, 3484–3488. [Google Scholar] [CrossRef]
- Liang, J.; Han, B.Z.; Nout, M.J.; Hamer, R.J. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem. 2008, 110, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Özkaya, B.; Turksoy, S.; Özkaya, H.; Duman, B. Dephytinization of wheat and rice brans by hydrothermal autoclaving process and the evaluation of consequences for dietary fiber content, antioxidant activity and phenolics. Innov. Food Sci. Emerg. Technol. 2017, 39, 209–215. [Google Scholar] [CrossRef]
- Coulibaly, A.; Kouakou, B.; Chen, J. Phytic Acid in Cereal Grains: Structure, Healthy or Harmful Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. Am. J. Plant Nutr. Fertil. Technol. 2011, 1, 1–22. [Google Scholar] [CrossRef]
- Makokha, A.; Oniang’o, R.; Njoroge, S.; Kamar, O. Effect of Traditional Fermentation and Malting on Phytic Acid and Mineral Availability from Sorghum (Sorghum Bicolor) and Finger Millet (Eleusine Coracana) Grain Varieties Grown in Kenya. Food Nutr. Bulletin 2002, 23, 241–255. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effect of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney bean. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, S.; Singh, B.; Dar, B.N. Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans. J. Food Sci. Technol. 2015, 52, 1670–1676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Albarracín, M.; González, R.; Drago, S. Soaking and extrusion effects on physicochemical parameters, phytic acid, nutrient content and mineral bio-accessibility of whole rice grain. Int. J. Food Sci. Nutr. 2015, 66, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, F.; Levrat-Verny, M.A.; Chanliaud, E.; Rémésy, C. Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. J. Agric. Food Chem. 2005, 53, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Penella, J.M.; Tamayo-Ramos, J.A.; Sanz, Y.; Haros, M. Phytate reduction in bran-enriched bread by phytase-producing bifidobacteria. J. Agric. Food Chem. 2009, 57, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Bohn, L.; Meyer, A.S.; Rasmussen, S.K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B 2008, 9, 165–191. [Google Scholar] [CrossRef] [PubMed]
- Rimbach, G.; Pallauf, J.; Moehring, J.; Kraemer, K.; Minihane, A.M. Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability—A literature review. Curr. Top. Nutraceutical Res. 2008, 6, 131–144. [Google Scholar]
- Nguyen, P.H.; Kachwaha, S.; Tran, L.M.; Sanghvi, T.; Ghosh, S.; Kulkarni, B.; Beesabathuni, K.; Menon, P.; Sethi, V. Maternal Diets in India: Gaps, Barriers, and Opportunities. Nutrients 2021, 13, 3534. [Google Scholar] [CrossRef]
- Troesch, B.; Jing, H.; Laillou, A.; Fowler, A. Absorption Studies Show that Phytase from Aspergillus niger Significantly Increases Iron and Zinc Bioavailability from Phytate-Rich Foods. Food Nutr. Bull. 2013, 34, S90–S101. [Google Scholar] [CrossRef]
- Layrisse, M.; Gracia-Casal, M.N.; Solano, L.; Baron, M.A.; Arguello, F.; LIovera, D.; Ramirez, J.; Leets, I.; Tropper, E. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J. Nutr. 2000, 130, 2195–2199. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, L.; Dimitriou, T.; Walczyk, T.; Hurrell, R.F. Iron absorption from experimental infant formulas based on pea (Pisum sativum)-protein isolate: The effect of phytic acid and ascorbic acid. Br. J. Nutr. 2001, 85, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.F.; Reddy, M.B.; Juillerat, M.A.; Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003, 77, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Onning, G.; Oste, R.; Gramatkovski, E.; Hulthén, L. Improved iron bioavailability in an oat-based beverage: The combined effect of citric acid addition, dephytinization and iron supplementation. Eur. J. Nutr. 2007, 46, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Troesch, B.; Egli, I.; Zeder, C.; Hurrell, R.F.; de Pee, S.; Zimmermann, M.B. Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am. J. Clin. Nutr. 2009, 89, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Cercamondi, C.I.; Egli, I.M.; Mitchikpe, E.; Tossou, F.; Hessou, J.; Zeder, C.; Hounhouigan, J.D.; Hurrell, R.F. Iron bioavailability from a lipid-based complementary food fortificant mixed with millet porridge can be optimized by adding phytase and ascorbic acid but not by using a mixture of ferrous sulfate and sodium iron EDTA. J. Nutr. 2013, 143, 1233–1239. [Google Scholar] [CrossRef]
- Kore’issi-Dembe’le’, Y.; Fanou-Fogny, N.; Moretti, D.; Schuth, S.; Dossa, R.A.M.; Egli, I.; Zimmermann, M.B.; Brouwer, I.D. Dephytinisation with Intrinsic Wheat Phytase and Iron Fortification Significantly Increase Iron Absorption from Fonio (Digitaria exilis) Meals in West African Women. PLoS ONE 2013, 8, e70613. [Google Scholar] [CrossRef] [PubMed]
- Monnard, A.; Moretti, D.; Zeder, C.; Steingötter, A.; Zimmermann, M.B. The effect of lipids, a lipid-rich ready-to-use therapeutic food, or a phytase on iron absorption from maize-based meals fortified with micronutrient powders. Am. J. Clin. Nutr. 2017, 105, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, L.; Ziegler, E.E.; Kastenmayer, P.; van Dael, P.; Barclay, D. Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants. Br. J. Nutr. 2004, 91, 287–294. [Google Scholar] [CrossRef]
- Egli, I.; Davidsson, L.; Zeder, C.; Walczyk, T.; Hurrell, R.F. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J. Nutr. 2004, 134, 1077–1080. [Google Scholar] [CrossRef]
- Kim, J.; Paik, H.Y.; Joung, H.; Woodhouse, L.R.; Li, S.; King, J.C. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. J. Am. Coll. Nutr. 2007, 26, 1–9. [Google Scholar] [CrossRef]
- Marica, B.; Wegmüller, R.; Zeder, C.; Gabriela, S.; Hurrell, R.F. Influence of Phytase, EDTA, and Polyphenols on Zinc Absorption in Adults from Porridges Fortified with Zinc Sulfate or Zinc Oxide. J. Nutr. 2010, 144, 1467–1473. [Google Scholar] [CrossRef]
- Brnić, M.; Hurrell, R.F.; Songré-Ouattara, L.T.; Diawara, B.; Kalmogho-Zan, A.; Tapsoba, C.; Zeder, C.; Wegmüller, R. Effect of phytase on zinc absorption from a millet-based porridge fed to young Burkinabe children. Eur. J. Clin. Nutr. 2017, 71, 137–141. [Google Scholar] [CrossRef]
- Zyba, S.J.; Wegmüller, R.; Woodhouse, L.R.; Ceesay, K.; Prentice, A.M.; Brown, K.H.; Wessells, K.R. Effect of exogenous phytase added to small-quantity lipid-based nutrient supplements (SQ-LNS) on the fractional and total absorption of zinc from a millet-based porridge consumed with SQ-LNS in young Gambian children: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 1465–1475. [Google Scholar] [CrossRef]
- Joye, I. Protein Digestibility of Cereal Products. Foods 2019, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Satyanarayana, T. Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. J. Appl. Microbiol. 2008, 105, 1858–1865. [Google Scholar] [CrossRef]
- Saito, T.; Kohno, M.; Tsumura, K.; Kugimiya, W.; Kito, M. Novel Method Using Phytase for Separating Soybean β-Conglycinin and Glycinin. Biosci. Biotechnol. Biochem. 2001, 65, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Sibakov, N.; Re, M.; Karsma, A.; Laitila, A.; Nordlund, E. Phytic Acid Reduction by Bioprocessing as a Tool to Improve the In Vitro Digestibility of Faba Bean Protein. J. Agric. Food Chem. 2018, 66, 10394–10399. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Hua, Y.; Kong, X.; Zhang, C. Effects of phytase-assisted processing method on physicochemical and functional properties of soy protein isolate. J. Agric. Food Chem. 2014, 62, 10989–10997. [Google Scholar] [CrossRef] [PubMed]
- Shaghaghian, S.; McClements, D.J.; Khalesi, M.; Garcia-Vaquero, M.; Mirzapour-Kouhdasht, A. Digestibility and bioavailability of plant-based proteins intended for use in meat analogues: A Review. Trends Food Sci. Technol. 2022, 129, 646–656. [Google Scholar] [CrossRef]
Product (per 100 g) | Product | Calories (kcal) | Saturated Fat (g) | Protein (g) | Fiber (g) |
---|---|---|---|---|---|
Sausages | Conventional meat | 277 (17) | 6.8 (1.4) | 15 (1.3) | 1.0 (0.8) |
279 (42.5) | 7.5 (1.3) | 20 (3.3) | 0.9 (0.85) | ||
Plant-based | 149 (15.5) | 2.5 (2.23) | 8.6 (6.55) | 6.4 (2.25) | |
Beef patties | Conventional meat | 247.5 (35.25) | 7.6 (0.68) | 20 (1.48) | 0.5 (0.28) |
255.5 (57.75) | 7.5 (3.78) | 21 (3.9) | 0.5 (0.23) | ||
Plant-based | 212.5 (48.5) | 1.6 (0.8) | 16.6 (1.38) | 6.1 (1.5) | |
Chicken nuggets | Conventional meat | 262.5 (17) | 2.1 (0.88) | 14.0 (1.15) | 1.6 (0.48) |
Plant-based | 253 (23.25) | 0.9 (0.13) | 12.4 (0.85) | 4.9 (1.78) | |
Mince | Conventional meat | 195.5 (33.75) | 4.5 (1.83) | 20.8 (3.88) | 0.0 (0.2) |
Plant-based | 141 (30.25) | 0.9 (2.48) | 17.4 (3.48) | 5.3 (1.05) | |
Meatballs | Conventional meat | 216.5 (47) | 5.4 (2.45) | 20.5 (3.38) | 0.5 (0.60) |
Plant-based | 177 (31.75) | 1.3 (0.55) | 15.6 (2.38) | 5.1 (1.53) |
Essential Amino Acid/Protein Source | Histidine | Lysine | Isoleucine | Leucine | Methionine | Phenylalanine | Threonine | Tryptophan | Valine | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Finger millet | 2.37 ± 0.46 | 2.83 ± 0.34 | 3.70 ± 0.44 | 8.86 ± 0.54 | 2.74 ± 0.27 | 5.70 ± 1.27 | 3.8 ± 0.45 | 0.91 ± 0.30 | 5.65 ± 0.44 | [33] |
Pearl millet | 2.15 ± 0.37 | 3.19 ± 0.49 | 3.45 ± 0.74 | 8.52 ± 0.86 | 2.11 ± 0.50 | 4.82 ± 1.18 | 3.55 ± 0.40 | 1.33 ± 0.30 | 4.79 ± 1.04 | |
Sorghum | 2.07 ± 0.20 | 2.31 ± 0.40 | 3.45 ± 0.63 | 12.03 ± 1.51 | 1.52 ± 0.50 | 5.10 ± 0.50 | 2.96 ± 0.17 | 1.03 ± 0.21 | 4.51 ± 0.71 | |
Little millet | 2.35 ± 0.18 | 2.42 ± 0.10 | 4.14 ± 0.08 | 8.08 ± 0.06 | 2.21 ± 0.10 | 6.14 ± 0.10 | 4.24 ± 0.12 | 1.35 ± 0.10 | 5.31 ± 0.16 | |
Kodo millet | 2.14 ± 0.07 | 1.42 ± 0.17 | 4.55 ± 0.22 | 11.96 ± 1.65 | 2.69 ± 0.16 | 6.27 ± 0.34 | 3.89 ± 0.16 | 1.32 ± 0.19 | 5.49 ± 0.23 | |
Amaranth seed (pale brown) | 1.98 ± 0.50 | 5.50 ± 0.35 | 2.85 ± 0.04 | 4.94 ± 0.17 | 1.95 ± 0.12 | 4.75 ± 0.41 | 2.99 ± 0.21 | 1.69 ± 0.10 | 4.30 ± 0.27 | |
Quinoa | 2.98 | 5.55 | 3.75 | 6.08 | 2.24 | 4.35 | 3.01 | 1.25 | 4.55 | |
Bengal gram | 2.39 ± 0.34 | 6.06 ± 0.52 | 4.25 ± 0.26 | 6.91 ± 0.65 | 1.12 ± 0.31 | 5.97 ± 1.06 | 3.24 ± 0.34 | 1.09 ± 0.25 | 4.09 ± 0.41 | |
Black gram | 2.64 ± 0.11 | 6.22 ± 0.21 | 3.75 ± 0.92 | 7.93 ± 0.45 | 1.31 ± 0.35 | 5.68 ± 0.91 | 2.99 ± 0.19 | 1.07 ± 0.12 | 4.61 ± 1.06 | |
Field bean, black | 3.21 | 6.79 | 4.57 | 8.91 | 1.36 | 5.88 | 4.12 | 0.73 | 5.24 | |
Field bean, brown | 3.23 | 6.75 | 4.59 | 8.88 | 1.38 | 5.72 | 3.97 | 0.78 | 5.16 | |
Field bean, white | 2.82 ± 0.76 | 6.13 ± 0.68 | 4.41 ± 0.36 | 8.48 ± 0.66 | 1.40 ± 0.18 | 5.76 ± 0.32 | 3.97 ± 0.31 | 0.89 ± 0.07 | 4.96 ± 0.36 | |
Green gram | 2.55 ± 0.26 | 6.09 ± 1.06 | 4.07 ± 1.11 | 7.90 ± 0.99 | 1.05 ± 0.23 | 6.20 ± 0.61 | 3.36 ± 0.60 | 1.24 ± 0.42 | 5.21 ± 1.28 | |
Lentil | 1.93 ± 0.32 | 6.12 ± 0.71 | 3.74 ± 0.91 | 7.10 ± 0.86 | 0.54 ± 0.19 | 5.10 ± 0.73 | 3.31 ± 0.24 | 0.81 ± 0.07 | 5.02 ± 0.39 | |
Cowpea, brown | 2.93 ± 0.42 | 6.67 ± 1.26 | 4.10 ± 0.58 | 7.49 ± 1.23 | 1.38 ± 0.16 | 5.47 ± 0.49 | 3.80 ± 0.61 | 1.05 ± 0.03 | 4.87 ± 0.59 | |
Cowpea, white | 3.25 | 7.14 | 4.40 | 7.96 | 1.53 | 5.63 | 4.10 | 0.92 | 5.31 | |
Black gram | 2.64 ± 0.11 | 6.22 ± 0.21 | 4.34 ± 0.23 | 7.40 ± 0.31 | 1.16 ± 0.16 | 6.26 ± 0.70 | 3.55 ± 0.31 | 0.95 ± 0.07 | 4.58 ± 0.51 | |
Animal-derived proteins | ||||||||||
Chicken (poultry, leg, skinless) | 4.47 ± 0.17 | 7.26 ± 0.28 | 2.76 ± 0.18 | 7.84 ± 0.17 | 6.04 ± 0.32 | 7.07 ± 0.21 | 5.66 ± 0.29 | 1.16 ± 0.22 | 4.92 ± 0.22 | [33] |
Goat, liver | 4.23 ± 0.47 | 8.39 ± 0.98 | 3.04 ± 0.42 | 6.02 ± 0.25 | 6.27 ± 0.18 | 5.64 ± 1.19 | 6.58 ± 0.68 | 1.22 ± 0.11 | 4.53 ± 0.99 | |
Beef, round (leg) | 5.07 ± 0.36 | 8.09 ± 0.22 | 3.67 ± 0.50 | 6.43 ± 0.16 | 5.41 ± 0.17 | 7.00 ± 0.85 | 5.10 ± 0.13 | 1.42 ± 0.16 | 4.67 ± 0.18 | |
Pork, shoulder | 4.83 ± 0.29 | 8.39 ± 0.12 | 3.86 ± 0.46 | 5.50 ± 0.13 | 5.32 ± 0.44 | 6.51 ± 0.58 | 4.39 ± 0.43 | 1.32 ± 0.11 | 4.41 ± 0.29 | |
Whole egg | 4.65 ± 0.07 | 8.37 ± 0.19 | 2.15 ± 0.07 | 7.95 ± 0.18 | 6.72 ± 0.27 | 6.29 ± 0.32 | 6.34 ± 0.23 | 1.59 ± 0.15 | 5.82 ± 0.20 | |
Egg white | 4.54 ± 0.17 | 8.35 ± 0.20 | 2.25 ± 0.14 | 7.94 ± 0.25 | 6.24 ± 0.33 | 5.28 ± 0.56 | 6.90 ± 0.21 | 1.50 ± 0.11 | 6.89 ± 0.19 | |
Egg yolk | 5.69 ± 0.09 | 8.58 ± 0.29 | 2.19 ± 0.08 | 7.24 ± 0.23 | 6.17 ± 0.22 | 7.08 ± 0.38 | 6.14 ± 0.10 | 1.47 ± 0.12 | 5.66 ± 0.33 | [34] |
Cow milk | 2.14 ± 0.13 | 8.59 ± 0.20 | 6.20 ± 0.55 | 10.66 ± 0.41 | 2.51 ± 0.12 | 5.09 ± 0.42 | 4.81 ± 0.07 | 1.46 ± 0.11 | 6.40 ± 0.24 | [33] |
Whey | 1.53 ± 0.03 | 7.37 ± 0.18 | 5.30 ± 0.04 | 8.52 ± 0.15 | 1.69 ± 0.03 | 2.59 ± 0.02 | 5.47 ± 0.11 | 1.63 ± 0.02 | 4.97 ± 0.05 | [35] |
Anti-Nutrients | Source | Interaction with Nutrients |
---|---|---|
Phytic acid | Cereals, legumes, nuts, and seeds that are used to produce extruded plant-based meat products | It can bind to amino acids and minerals such as iron, zinc, and calcium, making them less bioavailable for absorption by the body. |
Lectins | Legumes, grains, and vegetables belonging to the group of plants in the Solanaceae family (ex. tomatoes, eggplant) | Some lectins may interfere with nutrient absorption and cause digestive issues. |
Oxalates | Spinach, beet greens, and nuts | Oxalates can bind to calcium and other minerals, potentially reducing their absorption. |
Tannins | Tea, coffee, and certain plant foods like legumes, nuts, and some fruits. | Tannins can interfere with iron absorption and may cause digestive discomfort. |
Protease inhibitors | Legumes and grains | Protease inhibitors can interfere with protein digestion. |
Saponins | Legumes, whole grains, and some vegetables | Saponins may interfere with nutrient absorption and cause digestive issues. |
Food | Phytic Acid |
---|---|
Almonds | 0.4–9.4% |
Beans | 0.6–2.4% |
Brazil nuts | 0.3–6.3% |
Hazelnuts | 0.2–0.9% |
Lentils | 0.3–1.5% |
Maize, corn | 0.7–2.2% |
Peanuts | 0.2–4.5% |
Peas | 0.2–1.2% |
Rice | 0.1–1.1% |
Rice bran | 2.6–8.7% |
Sesame seeds | 1.4–5.4% |
Soybeans | 1.0–2.2% |
Tofu | 0.1–2.9% |
Walnuts | 0.2–6.7% |
Wheat | 0.4–1.4% |
Wheat bran | 2.1–7.3% |
Wheat germ | 1.1–3.9% |
Method | Variables Analyzed | Food Source | Phytic Acid Reduction (%) | Conditions | Study |
---|---|---|---|---|---|
Phytase addition | Phytase activity | Dark rye bread | 99% IP6 degraded | Sourdough fermented 10–12 h | Engelsen et al., 2007 [54] |
Phytase addition | Phytic acid content | Whole wheat flour | 35.3–69.2 | N/D | Akhter et al., 2012 [55] |
Phytase addition | Phytic acid reduction | Infant cereals | 68.6–93.4 | Cereal mix roasted in oven at 120 °C for 30 min. 60 g roasted flour suspended in 124 mL deionized water. Phytase added to the suspension 20 min incubation at 55 °C and pH 5.5 under gentle agitation. | Sanz-Penella at al., 2012 [56] |
Phytase addition | Phytase activity | Bread with bran | 90% | N/D | Watson W et al., 2014 [57] |
Phytase addition | Phytic acid content | 70:30 blend of pea and oat protein | 32% | 15% dry matter; pH = 6.7. The suspension was heated to 40 °C. 1.5% of phytase (Phyzyme® XP) added to the suspension 4-h incubation at 40 °C under minimum agitator speed. | Kaleda et al., 2020 [58] |
Phytase addition | Phytase activity | Sorghum flour | 65% IP6 degraded | Grains (four varieties) washed and dried in an oven at 50 °C for 4 h. Grains milled in a knife mill and sieved in a 20-mesh sieve. Flour stored at −18 °C | Rebellato et al., 2020 [59] |
Soaking | Phytase activity | Grains and seeds | 10–60 | 100 g whole grains or seeds soaked in 500 mL water in a covered beaker for 16 h in the dark at 25 °C | Egli et al., 2002 [60] |
Soaking | Heat pretreatment | Brown rice | 14–28 | Soaking in demineralized water for 24 h at 25 °C | Liang, Han, Nout, and Hamer, 2008 [61] |
Autoclave | Autoclaving time, pH | Wheat and rice bran | Wheat: max 95 | Autoclave at 121 °C for 0.5, 1.0, or 1.5 h, pH levels of 3.5–6.5 | Özkaya, Turksoy, Özkaya, and Duman, 2017 [62] |
Rice: max 95.6 | |||||
Germination | Time of malting | Millet | 72 h: 23.9 | Germination for 72 or 96 h | Coulibaly et al., 2011, Makokha et al., 2002 [63,64] |
96 h: 45.3 | |||||
Germination | Time (steeping and sprouting) | Brown rice | Steeping: <20 | Steeping: 24 h | Liang et al., 2008 [61] |
Sprouting: 60 | Sprouting: 72 h | ||||
Red kidney beans: 35.90 | |||||
Extrusion | Type of beans | Fava and red kidney beans | Fava beans: 26.7 | 156 °C, 100 rpm, 385 g/min | Alonso et al., 2000 [65] |
Red kidney beans: 21.4 | |||||
Extrusion | Moisture- | Bran of wheat, rice, barley, oat | Wheat: 64.4 | 115 °C and moisture content of 20% | Kaur et al., 2015 [66] |
Temperature | Barley: 63.5 | ||||
Oat: 26.4 | |||||
Extrusion | Moisture- | Whole rice grain | 25 | 160 °C and moisture content of 16.5% | Albarracín et al., 2015 [67] |
Temperature | |||||
Fermentation | Type of fermented microorganism | Whole wheat dough | 70 | Sourdough fermentation or lactic acid (pH 5.5) | Leenhardt, Levrat-Verny, Chanliaud, and Rémésy, 2005 [68] |
Fermentation | Use starter enrichment (0/1/2/3 cycles) | Brown rice | 56–96 | Brown rice and demineralized water were fermented naturally (24 h at 30 °C) | Liang et al., 2008 [61] |
Fermentation | Type of flour | Bran-enriched bread | Whole-wheat bread: 44 | Bifidobacterium strains | Sanz-Penella, Tamayo-Ramos, Sanz, and Haros, 2009 [69] |
Whole–wheat flour | Bran-enriched bread: 67 |
Study | Study Subjects | Sample Size | Test Meal | Phytase | Outcome | |
---|---|---|---|---|---|---|
Adults/Women/Children/Infants | Details | |||||
Iron absorption studies | ||||||
Layrisse et al., 2000 [74] | Adults | 15 to 50 years | 14 | Bread with white wheat flour | A. niger; ~300 FTU/100 g flour | p < 0.05; Fe absorption increased 1.7- to 2-fold |
Davidsson et al., 2001 [75] | Women | 20 to 28 years | 10 | Pea formula | Not disclosed | p < 0.0001; Fe absorption increased 1.6-fold |
Hurrell et al., 2003 [76] | Adults | 21 to 38 years | 6 to 11 per study | Cereal porridges (wheat, rice, oat, maize, sorghum) | Aspergillus niger | p < 0.0001 to <0.05; Fe absorption increased 1.3- to 11.6-fold |
Zhang et al., 2007 [77] | Adults | 19 to 35 years | 20 | Oat drink | Exogenous phytase | p = 0.003; Fe absorption increased 1.8-fold |
Troesch et al., 2009 [78] | Women | NA | 16 to 18 | Maize porridge | Genetically modified culture of Aspergillus niger; ~190 FTU/serving | p < 0.05; Fe absorption increased 1.2- to 1.8-fold |
Cercamondi et al., 2013 [79] | Children | 19 to 36 months | 16 to 18 | Millet porridge | Aspergillus niger; 400 FTU/serving | p < 0.001 to <0.05; Fe absorption increased 1.6- to 2.8-fold |
Koréissi-Dembélé et al., 2013 [80] | Women | 18 to 30 years | 16 | Fonio wheat flour porridge | Endogenous wheat phytase; dose not disclosed | p < 0.0001; Fe absorption increased 3.2-fold |
Monnard et al., 2017 [81] | Women | 18 to 45 years | 14 | Whole-grain maize flour-based meal | A. niger; 190 FTU/portion | p < 0.001; Fe absorption increased 1.9-fold |
Zinc absorption | ||||||
Davidsson et al., 2004 [82] | Infants | 61 to 191 days | 9 | Soy formula | Aspergillus niger | p = 0.03; Zn absorption increased 1.4-fold |
Egli et al., 2004 [83] | Adults | Not disclosed | 9 | Wheat and soy porridge enriched with | Endogenous wheat phytase | p = 0.005; Zn absorption increased 1.5 fold |
Kim et al., 2007 [84] | Women | 22 to 75 years | 7 to 10 | High- vs. low-phytate diet of common Korean food | Aspergillus niger; 10 FTU/100 g brown rice; 20 FTU/100 g soybean curd residue; 3 months | p < 0.001; Zn absorption increased 1.7 to 1.9-fold |
Brnic et al., 2010 [85] | Adults | 18 to 45 years | 9 | Maize porridge | Genetically modified culture of Aspergillus niger; 190 FTU/portion | p < 0.001; Zn absorption increased 1.9-fold |
Brnic et al., 2017 [86] | Children | 12 to 24 months | 35 | Millet-based porridge | Genetically modified culture of Aspergillus niger; 20.5 FTU/portion | p < 0.0001; Fe absorption increased 1.7-fold |
Zyba et al., 2019 [87] | Children | 18 to 23 months | 26 | Millet-based porridge | A. niger—exogenous phytase; 588 FTUs/portion | p < 0.001; Zn absorption increased 1.9-fold |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishwarya Shankaran, P.; Kumari, P. Nutritional Analysis of Plant-Based Meat: Current Advances and Future Potential. Appl. Sci. 2024, 14, 4154. https://doi.org/10.3390/app14104154
Ishwarya Shankaran P, Kumari P. Nutritional Analysis of Plant-Based Meat: Current Advances and Future Potential. Applied Sciences. 2024; 14(10):4154. https://doi.org/10.3390/app14104154
Chicago/Turabian StyleIshwarya Shankaran, Padma, and Priyanka Kumari. 2024. "Nutritional Analysis of Plant-Based Meat: Current Advances and Future Potential" Applied Sciences 14, no. 10: 4154. https://doi.org/10.3390/app14104154
APA StyleIshwarya Shankaran, P., & Kumari, P. (2024). Nutritional Analysis of Plant-Based Meat: Current Advances and Future Potential. Applied Sciences, 14(10), 4154. https://doi.org/10.3390/app14104154