Performance of Ore Sand as Aggregate for Interlocking Blocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Iron Ore Tailings
2.2. Production of Pavers
2.3. Life Cycle Assessment
2.3.1. Goal and Scope
2.3.2. Inventory Analysis
2.3.3. Impact Assessment
3. Results
3.1. Compressive Strength of the Blocks
3.2. Production Impacts
3.3. Transportation Impacts
4. Discussion
5. Conclusions
- The OS block has similar strength performance compared to the conventional block, meeting the established standard of 35 MPa.
- Ore sand is an environmentally sustainable alternative for use in the replacement of conventional aggregates used for the production of interlocked blocks. This study found an average reduction of 30% for the 11 impact categories compared to the traditional block.
- The transportation of conventional aggregates has a significant impact on the production of both blocks. It represents an average of 23.7% of the total impact for the ordinary block and 26% for the block produced with ore sand.
- Using the scoring indicator (SI), it was possible to establish that the transportation of ore sand for distances of 1147 km by rail and 217 km by road results in the same environmental impact for the ore-sand block as for the conventional block.
- Transportation distances shorter than those above make the block with ore sand more environmentally friendly than the conventional alternative. Over these distances, it is possible to reach other states in Brazil, as well as many cities (mostly inside the state of Minas Gerais) around the mining area that can supply other interlocking paving block factories.
- The LCA technique in association with SI proved to be a useful decision-making tool in defining the transport distance that makes it possible to manufacture an environmentally responsible block.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Cement Market. Analysis by Production, by Consumption, Type (Blended, Portland and Others), by Application (Non-Residential and Residential), by Region, Size and Trends with Impact of COVID-19 and Forecast up to 2027; Global Cement Market: Dublin, Ireland, 2022. [Google Scholar]
- United Nations Environment Programme—UNEP. Sand and Sustainability: Finding New Solutions for Environmental Governance of Global Sand Resources: Synthesis for policy makers; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Sand, rarer than one thinks. Environ. Dev. 2014, 11, 208–218. [CrossRef]
- National Association of Aggregates Producers for Construction—ANEPAC 2019. Environmental Overview of Mining. Available online: https://www.anepac.org.br/ (accessed on 9 November 2022).
- Golev, A.; Gallagher, L.; Velpen, A.V.; Lynggaard, J.R.; Friot, D.; Stringer, M.; Chuah, S.; Arbelaez-Ruiz, D.; Mazzinghy, D.; Moura, L.; et al. Ore-Sand: A Potential New Solution to the Mine Tailings and Global Sand Sustain-Ability Crises: Final Report; The University of Queensland: Brisbane, QLD, Australia; The University of Geneva: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- United States Geological Survey—USGS. Mineral Commodity Summaries, Iron Ore. 2020. Available online: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-iron-ore.pdf (accessed on 5 September 2023).
- Kuranchie, F.A.; Shukla, S.K.; Habibi, D. Electrical resistivity of iron ore mine tailings produced in Western Australia. Int. J. Min. Reclam. Environ. 2014, 29, 191–200. [Google Scholar] [CrossRef]
- Han, F.; Li, L.; Song, S.; Liu, J. Early-age hydration characteristics of composite binder containing iron tailing powder. Powder Technol. 2017, 315, 322–331. [Google Scholar] [CrossRef]
- Das, S.K.; Kumar, S.; Ramachandrarao, P. Exploitation of iron ore tailing for the development of ceramic tiles. Waste Manag. 2000, 20, 725–729. [Google Scholar] [CrossRef]
- Dávila, R.B.; Fontes, M.P.F.; Pacheco, A.A.; Ferreira, M.S. Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Sci. Total Environ. 2020, 709, 136151. [Google Scholar] [CrossRef]
- Armstrong, M.; Petter, R.; Petter, C. Why have so many tailings dams failed in recent years? Resour. Policy 2019, 63, 101412. [Google Scholar] [CrossRef]
- Environmental State Foundation. Mining Solid Waste Inventory, Base Year 2017; Environmental State Foundation: Belo Horizonte, Brazil, 2017. [Google Scholar]
- Vilaça, A.S.I.; Simão, L.; Montedo, O.R.K.; Novaes de Oliveira, A.P.; Raupp-Pereira, F. Waste valorization of iron ore tailings in Brazil: Assessment metrics from a circular economy perspective. Resour. Policy 2022, 75, 102477. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Qiu, J.; Liu, J.; Zhao, Y.; Li, X. Effects of iron ore tailings on the compressive strength and permeability of ultra-high-performance concrete. Constr. Build. Mater. 2020, 260, 119917. [Google Scholar] [CrossRef]
- Han, G.; Zhang, J.; Sun, H.; Shen, D.; Wu, Z.; An, X.; Meye, S.M.; Huang, Y. Application of iron ore tailings and phosphogypsum to create artificial rockfills used in rock-filled concrete. Buildings 2022, 12, 555. [Google Scholar] [CrossRef]
- Arbili, M.M.; Alqurashi, M.; Majdi, A.; Ahmad, J.; Deifalla, A.F. Concrete made with iron ore tailings as a fine aggregate: A step to-wards sustainable concrete. Materials 2022, 15, 6236. [Google Scholar] [CrossRef]
- Wang, A.; Liu, H.; Hao, X.; Wang, Y.; Liu, X.; Li, Z. Geopolymer synthesis using garnet tailings from molybdenum mines. Minerals 2019, 9, 48. [Google Scholar] [CrossRef]
- Opiso, E.M.; Tabelin, C.B.; Maestre, C.V.; Aseniero, J.P.J.; Arima, T.; Villacorte-Tabelin, M. Utilization of palm oil fuel ash (POFA) as an admixture for the synthesis of a gold mine tailings-based geopolymer composite. Minerals 2023, 13, 232. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Qin, J.; Liu, Y.; Qu, Y.; Liu, J.; Cao, R.; Zhang, Y. Mechanical properties of sintered ceramsite from iron ore tailings affected by two-region structure Constr. Build. Mater. 2020, 240, 117919. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Chen, T.; Liu, T.; Huang, J. Preparation and characterization of red porcelain tiles with hematite tailings Constr. Build. Mater. 2013, 38, 1083–1088. [Google Scholar] [CrossRef]
- Carmignano, O.; Vieira, S.; Teixeira, A.P.; Lameiras, F.; Brandão, P.R.; Lago, R. Iron ore tailings: Characterization and applications. J. Braz. Chem. Soc. 2021, 32, 1895–1911. [Google Scholar] [CrossRef]
- Ravi, K.; Kumar, A.; Prashanth, M.H.; Reddy, D.V. Experimental studies on iron-ore tailing based interlocking paver blocks. Int. J. Earth Sci. Eng. 2012, 5, 501–504. [Google Scholar]
- Santana Filho, J.N.; Da Silva, S.N.; Silva, G.C.; Mendes, J.C.; Peixoto, R.A.F. Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams. J. Mater. Civ. Eng. 2017, 2017, 29. [Google Scholar] [CrossRef]
- NBR 9781 2013; Peças de Concreto Para Pavimentação—Especificação e Métodos de Ensaio. Brazilian Standards Organization: Rio de Janeiro, Brazil, 2013. (In Portuguese)
- Saldanha, R.B.; Caicedo, A.M.L.; Tonini de Araújo, M.; Scheuermann Filho, H.C.; Moncaleano, C.J.; Silva, J.P.S.; Consoli, N.C. Potential use of iron ore tailings for binder production: A life cycle assessment. Constr. Build. Mater. 2023, 365, 130008. [Google Scholar] [CrossRef]
- Garcia-Troncoso, N.; Baykara, H.; Cornejo, M.H.; Riofrio, A.; Tinoco-Hidalgo, M.; Flores-Rada, J. Comparative mechanical properties of conventional concrete mixture and concrete incorporating mining tailings sands. Case Stud. Constr. Mater. 2022, 16, e01031. [Google Scholar] [CrossRef]
- Göswein, V.; Gonçalves, A.B.; Silvestre, J.D.; Freire, F.; Habert, G.; Kurda, R. Transportation matters—Does it? GIS-based comparative environmental assessment of concrete mixes with cement, fly ash, natural and recycled aggregates. Resour. Conserv. Recycl. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Liu, K.; Wang, S.; Quan, X.; Jing, W.; Xu, J.; Zhao, N.; Liu, B.; Ying, H. Industrial byproduct iron ore tailings as ecofriendly materials in the utilization of cementitious composites. Constr. Build. Mater. 2023, 372, 130813. [Google Scholar] [CrossRef]
- Gao, S.; Cui, X.; Kang, S.; Ding, Y. Sustainable applications for utilizing molybdenum tailings in concrete. J. Clean. Prod. 2020, 266, 122020. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment; Springer International Publishing: Cham, Switzerland, 2018; pp. 59–66. [Google Scholar] [CrossRef]
- Zhang, N.; Tang, B.; Liu, X. Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete. Constr. Build. Mater. 2021, 288, 123022. [Google Scholar] [CrossRef]
- ISO 7500-1:2018; Metallic Materials-Verification of Static Uniaxial Testing Machines Tension/Compression Testing Machines-Verification and Calibration of the Force-Measuring Systems. ISO: Geneva, Switzerland, 2018. ISO: Geneva, Switzerland, 2018.
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- PR’e Consultants. Company History. Available online: https://www.pre-sustainability.com/aboutpre/company (accessed on 5 December 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. Available online: http://link.springer.com/10.1007/s11367-016-1087-8 (accessed on 4 December 2023).
- Valverde, F.M. Agregados para construção civil. In Sumário Mineral Brasileiro de 2006; Departamento Nacional de Produção Mineral: Brasília, Brazil, 2006; pp. 37–42. [Google Scholar]
- Silva, B.S. Gravel production, crushed, BR, Allocation, APOS 2021. Ecoinvent Database Version 3.8. Available online: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-8/ (accessed on 5 September 2023).
- Kellenberger, D.; Materialprüf, E. Diesel, Burned in Building Machine, GLO, Allocation, APOS 2021. Ecoinvent DATABASE version 3.8. Available online: https://ecoinvent.org/the-ecoinvent-database (accessed on 5 September 2023).
- Moranga, G. Sand Quarry Operation, Extraction from Riverbed, BR, Allocation, APOS 2021. Ecoinvent Database Version 3.8. Available online: https://ecoinvent.org/the-ecoinvent-database (accessed on 5 September 2023).
- Guinee, J.B. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Shewhart, W.A.; Deming, W.E. Statistical Method from the Viewpoint of Quality Control; Courier Corporation: Mineola, NY, USA, 1986. [Google Scholar]
- BS EN 1338:2003; Concrete Paving Blocks—Requirements and Test Methods; The British Standards (BSI) and The European Standard (CEN). European Committee for Standardization: Brussels, Belgium, 2003.
- BIS 15658; Precast Concrete Blocks for Paving-Specification. Bureau of Indian Standards: New Delhi, India, 2006.
- ESS 4382; Egyptian Standard, Concrete Interlocking Paving Units. ASTM: West Conshohocken, PA, USA, 2004.
- ASTM C 936; Standard Specification for Solid Concrete Interlocking Paving Units. ESS: Cairo, Egypt, 2002.
- Van Vliet, M.; Van Mier, J. Softening behaviour of concrete under uniaxial compression’. In Fracture Mechanics of Concrete Structures; Proceedings FRAMCOS-2; Wittmann, F.H., Ed.; AEDIFICATIO Publishers: Freiburg, Germany, 1995; pp. 383–396. [Google Scholar]
- Zhao, S.; Fan, J.; Sun, W. Utilization of iron ore tailings as fine aggregate in ultra-high-performance concrete. Constr. Build. Mater. 2014, 50, 540–548. [Google Scholar] [CrossRef]
- Kuranchie, F.A.; Shukla, S.K.; Habibi, D.; Mohyeddin, A. Utilisation of iron ore tailings as aggregates in concrete. Cogent Eng. 2015, 2, 1083137. [Google Scholar] [CrossRef]
- Mendes Protasio, F.N.; Ribeiro de Avillez, R.; Letichevsky, S.; de Andrade Silva, F. The use of iron ore tailings obtained from the Germano dam in the production of a sustainable concrete. J. Clean. Prod. 2021, 278, 123929. [Google Scholar] [CrossRef]
- Simion, I.M.; Fortuna, M.E.; Bonoli, A.; Gavrilescu, M. Comparing environmental impacts of natural inert and recycled construction and demolition waste processing using LCA. J. Environ. Eng. Landsc. Manag. 2013, 21, 273–287. [Google Scholar] [CrossRef]
- Langer, W.H. A General Overview of the Technology of in-Stream Mining of Sand and Gravel Resources, Associated Potential Environmental Impacts, and Methods to Control Potential Impacts; US Department of the Interior: Washington, DC, USA; US Geological Survey: Reston, VA, USA, 2003. [Google Scholar]
- Sjunnesson, J. Life Cycle Assessment of Concrete. Master’s Thesis, Department of Technology and Society, Environmental and Energy Systems Studies, Lund University, Lund, Sweden, 2005. [Google Scholar]
- Teillard, F.; Maia de Souza, D.; Thoma, G.; Gerber, P.J.; Finn, J.A. What does life-cycle assessment of agricultural products need for more meaningful inclusion of biodiversity. J. Appl. Ecol. 2016, 53, 1422–1429. [Google Scholar] [CrossRef]
- McClelland, S.C.; Arndt, C.; Gordon, D.R.; Thomas, G. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review. Livest. Sci. 2018, 209, 39–45. [Google Scholar] [CrossRef]
- da Rocha, C.G.; Passuello, A.; Consoli, N.C.; Quiñónez Samaniego, R.A.; Kanazawa, N.M. Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco. J. Clean. Prod. 2016, 139, 309–318. [Google Scholar] [CrossRef]
- Shan, X.; Zhou, J.; Chang, V.W.-C.; Yang, E.-H. Life cycle assessment of adoption of local recycled aggregates and green concrete in Singapore perspective. J. Clean. Prod. 2017, 164, 918–926. [Google Scholar] [CrossRef]
- Tosti, L.; van Zomeren, A.; Pels, J.R.; Damgaard, A.; Comans, R.N.J. Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products. J. Clean. Prod. 2020, 245, 118937. [Google Scholar] [CrossRef]
- Van Hoof, G.; Vieira, M.; Gausman, M.; Weisbrod, A. Indicator selection in life cycle assessment to enable decision making: Issues and solutions. Int. J. Life Cycle Assess. 2013, 18, 1568–1580. [Google Scholar] [CrossRef]
- Pons, O.; de la Fuente, A.; Aguado, A. The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. Sustainability 2016, 8, 460. [Google Scholar] [CrossRef]
- Alzard, M.H.; El-Hassan, H.; El-Maaddawy, T. Environmental and Economic Life Cycle Assessment of Recycled Aggregates Concrete in the United Arab Emirates. Sustainability 2021, 13, 10348. [Google Scholar] [CrossRef]
- Estanqueiro, B.; Dinis Silvestre, J.; de Brito, J.; Duarte Pinheiro, M. Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. Eur. J. Environ. Civ. Eng. 2016, 22, 429–449. [Google Scholar] [CrossRef]
- lQGIS Development Team. QGIS Geographic Information System 2009. Open-Source Geospatial Foundation. Available online: http://qgis.org (accessed on 4 December 2023).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Geoscience Products. Brasília, DF. Available online: https://www.ibge.gov.br/geociencias/todos-os-produtos-geociencias.html (accessed on 8 September 2023).
Material | Conventional Block | OS Block | ||
---|---|---|---|---|
Weight (t) | Percentage (wt%) | Weight (t) | Percentage (wt%) | |
Natural Sand * | 98.2 | 51.4 | 85.1 | 44.5 |
Limestone Sand * | 26.2 | 13.7 | - | 0.0 |
Gravel * | 39.3 | 20.5 | 39.3 | 20.5 |
Ore sand * | - | 0.0 | 39.3 | 20.5 |
Cement (OPC) * | 27.5 | 14.4 | 27.5 | 14.4 |
Water | 8.4 | 4 | 8.4 | 4 |
Plasticizer Additive | 10.5 | 5 | 10.5 | 5 |
Process | Amount | Unit | Inventory Impact Data Source |
---|---|---|---|
Ore Sand Block | |||
Gravel | 39.3 | tons | Gravel, crushed {BR}—gravel production, crushed [38]. |
Transportation of Gravel | 7.46 (10 km) | liters | Diesel, burned in building machine {GLO}—market [39]. |
Natural Sand | 85.1 | tons | Sand {BR}—sand-quarry operation, extraction from riverbed [40]. |
Transportation of Natural Sand | 106.69 (66 km) | liters | Diesel, burned in building machine {GLO}—market [39]. |
Transportation of ore sand—freight train | 7.07 (50 km) | liters | Diesel, burned in building machine {GLO}—market [39]. |
14.4 (100 km) | |||
28.27 (200 km) | |||
56.54 (400 km) | |||
113.09 (800 km) | |||
226.18 (1600 km) | |||
Transportation of ore sand—freight truck | 37.3 (50 km) | liters | Diesel, burned in building machine {GLO}—market [39]. |
74.61(100 km) | |||
149.22 (200 km) | |||
298.43 (400 km) | |||
596.86 (800 km) | |||
1193.72 (1600 km) | |||
Conventional Block | |||
Gravel | 39.3 | tons | Gravel, crushed {BR}- gravel production, crushed [38]. |
Transportation of Gravel | 7.46 (10 km) | liters | Diesel, burned in building machine {GLO}—market [39]. |
Natural Sand | 98.2 | tons | Sand {BR}—sand quarry operation, extraction from riverbed [40]. |
Transportation of Natural Sand | 123.10 (66 km) | liters | Diesel, burned in building machine {GLO}—market [39]. |
Limestone Sand | 26.2 | tons | Gravel, crushed {BR}—gravel production, crushed [38]. |
Transportation of Limestone Sand | 4.97 (10 km) | liters | Diesel, burned in building machine {GLO}—market [39]. |
Impact Category | Unit | Conventional Block | OS Block | Reduction |
---|---|---|---|---|
Abiotic depletion | kg Sb eq | 3.6 × 10−4 | 2.3 × 10−4 | 35% |
Abiotic depletion (fossil fuels) | MJ | 9.3 × 103 | 7.2 × 103 | 23% |
Global warming (GWP100a) | kg CO2 eq | 7.2 × 102 | 5.5 × 102 | 24% |
Ozone-layer depletion (ODP) | kg CFC-11 eq | 1.1 × 10−4 | 0.86 × 10−4 | 22% |
Human toxicity | kg 1,4-DB eq | 9.2 × 101 | 6.4 × 101 | 31% |
Freshwater aquatic ecotoxicity | kg 1,4-DB eq | 5.9 × 101 | 3.9 × 101 | 33% |
Marine aquatic ecotoxicity | kg 1,4-DB eq | 1.7 × 105 | 1.1 × 105 | 35% |
Terrestrial ecotoxicity | kg 1,4-DB eq | 2.4 × 10−1 | 1.7 × 10−1 | 31% |
Photochemical oxidation | kg C2H4 eq | 1.8 × 10−1 | 1.2 × 10−1 | 30% |
Acidification | kg SO2 eq | 1.1 × 101 | 0.77 × 101 | 32% |
Eutrophication | kg PO4 eq | 2.7 | 1.8 | 33% |
Impact Category | Unit | Transport of Ordinary Aggregates | |
---|---|---|---|
Conventional Block | Ore-Sand Block | ||
Abiotic depletion | kg Sb eq | 2.20 × 10−5 | 1.86 × 10−5 |
Abiotic depletion (fossil fuels) | MJ | 5.77 × 103 | 4.86 × 103 |
Global warming | kg CO2 eq | 4.14 × 102 | 3.49 × 102 |
Ozone-layer depletion (ODP) | kg CFC-11 eq | 7.40 × 10−5 | 6.23 × 10−5 |
Human toxicity | kg 1,4-DB eq | 2.57 × 101 | 2.17 × 101 |
Fresh water aquatic ecotox. | kg 1,4-DB eq | 4.33 | 3.65 |
Marine aquatic ecotox. | kg 1,4-DB eq | 1.78 × 104 | 1.50 × 104 |
Terrestrial ecotox. | kg 1,4-DB eq | 6.79 × 10−2 | 5.72 × 10−2 |
Photochemical oxidation | kg C2H4 eq | 6.28 × 10−2 | 5.29 × 10−2 |
Acidification | kg SO2 eq | 3.20 | 2.70 |
Eutrophication | kg PO4 eq | 7.17 × 10−1 | 6.04 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldanha, R.B.; Menezes, M.F.L.; Bittar, R.J.; Consoli, N.C. Performance of Ore Sand as Aggregate for Interlocking Blocks. Appl. Sci. 2024, 14, 48. https://doi.org/10.3390/app14010048
Saldanha RB, Menezes MFL, Bittar RJ, Consoli NC. Performance of Ore Sand as Aggregate for Interlocking Blocks. Applied Sciences. 2024; 14(1):48. https://doi.org/10.3390/app14010048
Chicago/Turabian StyleSaldanha, Rodrigo Beck, Mariana Figueira Lacerda Menezes, Rafael Jabur Bittar, and Nilo Cesar Consoli. 2024. "Performance of Ore Sand as Aggregate for Interlocking Blocks" Applied Sciences 14, no. 1: 48. https://doi.org/10.3390/app14010048
APA StyleSaldanha, R. B., Menezes, M. F. L., Bittar, R. J., & Consoli, N. C. (2024). Performance of Ore Sand as Aggregate for Interlocking Blocks. Applied Sciences, 14(1), 48. https://doi.org/10.3390/app14010048