An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection
Abstract
:1. Introduction
- (1)
- Pre-classification circuits are specifically designed to efficiently discern and handle readily classifiable samples.
- (2)
- A high-performance classifier that performs computationally intensive tasks for precise classification of challenging samples is activated by pre-classification circuits when encountering ambiguous samples beyond their discrimination threshold.
- An R-peak detection algorithm based on the Hilbert transform with some adjustments to make it more suitable for hardware implementation;
- A time-division multiplexing (TDM) based ECG R-peak detection engine with significant hardware sharing;
- A feature extraction unit based on HDWT and the ideas of approximation calculation and pruning are utilized for optimization;
- A Hybrid ECG classifier that combines linear methods and non-linear support vector machines (NLSVM) to achieve high accuracy and efficiency.
2. Algorithm Overview
3. Hardware Implementation
3.1. Overall Architecture
3.2. ECG R-Peak Detection Engine
3.2.1. R-Peak Detection State Machine
3.2.2. Process Element
3.2.3. Positive Zero-Crossing (PZC) Dection Unit
3.3. Feature Extraction Unit
3.4. Hybrid ECG Classifier
3.4.1. Linear Pre-Classifier (LPC)
3.4.2. SVM Classifier
4. Results and Discussion
4.1. ECG Database
4.2. Results of the ECG R-Peak Detection Stage
4.3. Performance of the Proposed Classifier
4.4. Latency
4.5. ASIC Implementation
4.6. Comparison with Others
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 7 December 2023).
- Xiao, Q.; Lee, K.; Mokhtar, S.A.; Ismail, I.; Pauzi, A.L.b.M.; Zhang, Q.; Lim, P.Y. Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review. Appl. Sci. 2023, 13, 4964. [Google Scholar] [CrossRef]
- Bote, J.M.; Recas, J.; Rincón, F.; Atienza, D.; Hermida, R. A Modular Low-complexity ECG Delineation Algorithm for Real-time Embedded systems. IEEE J. Biomed. Health Inform. 2017, 22, 429–441. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; He, J.; Wang, L.; Tian, Y.; Zhou, T.S.; Li, J.S. High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal. IEEE Trans. Biomed. Eng. 2016, 64, 78–86. [Google Scholar]
- Alvarado, A.S.; Lakshminarayan, C.; Principe, J.C. Time-Based Compression and Classification of Heartbeats. IEEE Trans. Biomed. Eng. 2012, 59, 1641–1648. [Google Scholar] [CrossRef]
- Kayikcioglu, I.; Akdeniz, F.; Köse, C.; Kayikcioglu, T. Time-frequency Approach to ECG Classification of Myocardial Infarction. Comput. Electr. Eng. 2022, 84, 106621. [Google Scholar] [CrossRef]
- Hurnanen, T.; Lehtonen, E.; Tadi, M.J.; Kuusela, T.; Kiviniemi, T.; Saraste, A.; Pänkäälä, M. Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms. IEEE J. Biomed. Health Inform. 2016, 21, 1233–1241. [Google Scholar] [CrossRef]
- Kumar, G.; Chatterjee, B.; Sen, S. CS-Audio: A 16 pJ/b 0.1–15 Mbps Compressive Sensing IC with DWT Sparsifier for Audio-AR. IEEE J. Solid-State Circuits 2022, 57, 2220–2235. [Google Scholar]
- Madhavi, K.R.; Kora, P.; Reddy, L.V.; Avanija, J.; Soujanya, K.L.S.; Telagarapu, P. Cardiac Arrhythmia Detection Using Dual-tree Wavelet Transform and Convolutional Neural Network. Soft Comput. 2022, 26, 3561–3571. [Google Scholar] [CrossRef]
- Athif, M.; Yasawardene, P.C.; Daluwatte, C. Detecting Atrial Fibrillation from Short Single Lead ECGs Using Statistical and Morphological Features. Physiol. Meas. 2018, 39, 064002. [Google Scholar] [CrossRef]
- Kumar, D.; Peimankar, A.; Sharma, K.; Domínguez, H.; Puthusserypady, S.; Bardram, J.E. Deepaware: A Hybrid Deep Learning and Context-aware Heuristics-based Model for Atrial Fibrillation Detection. Comput. Methods Progr. Biomed. 2022, 221, 106899. [Google Scholar] [CrossRef]
- Venkatesan, C.; Karthigaikumar, P.; Paul, A.; Satheeskumaran, S.; Kumar, R. ECG Signal Preprocessing and SVM Classifier-Based Abnormality Detection in Remote Healthcare Applications. IEEE Access 2018, 6, 9767–9773. [Google Scholar] [CrossRef]
- Ozaltin, O.; Yeniay, O. A Novel Proposed CNN–SVM Architecture for ECG Scalograms Classification. Soft Comput. 2023, 27, 4639–4658. [Google Scholar] [CrossRef]
- Pander, T. An Improved Approach for Atrial Fibrillation Detection in Long-Term ECG Using Decomposition Transforms and Least-Squares Support Vector Machine. Appl. Sci. 2023, 13, 12187. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhou, P.; Tan, Z.; Fan, H.; Zhang, Y.; Huang, R. A 148-nW Reconfigurable Event-Driven Intelligent Wake-Up System for AIoT Nodes Using an Asynchronous Pulse-Based Feature Extractor and a Convolutional Neural Network. IEEE J. Solid-State Circuits 2021, 56, 3274–3288. [Google Scholar] [CrossRef]
- Janveja, M.; Parmar, R.; Tantuway, M.; Trivedi, G. A DNN-Based Low Power ECG Co-Processor Architecture to Classify Cardiac Arrhythmia for Wearable Devices. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2281–2285. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, S.W.; Chang, P.J.; Hua, H.T.; Lin, S.Y.; Chen, R.S. A VLSI Chip for the Abnormal Heart Beat Detection Using Convolutional Neural Network. Sensors 2022, 22, 796. [Google Scholar] [CrossRef]
- Yeh, L.R.; Chen, W.C.; Chan, H.Y.; Lu, N.H.; Wang, C.Y.; Twan, W.H.; Du, W.C.; Huang, Y.H.; Hsu, S.Y.; Chen, T.B. Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks. Biosensors 2021, 11, 188. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Trans. Biomed. Eng. 2015, 63, 664–675. [Google Scholar] [CrossRef]
- Śmigiel, S.; Pałczyński, K.; Ledziński, D. Deep Learning Techniques in the Classification of ECG Signals Using R-Peak Detection Based on the PTB-XL Dataset. Sensors 2021, 21, 8174. [Google Scholar] [CrossRef]
- Bayasi, N.; Tekeste, T.; Saleh, H.; Mohammad, B.; Khandoker, A.; Ismail, M. Low-Power ECG-Based Processor for Predicting Ventricular Arrhythmia. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 24, 1962–1974. [Google Scholar] [CrossRef]
- Dekimpe, R.; Bol, D. ECG Arrhythmia Classification on an Ultra-Low-Power Microcontroller. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Fang, C.; Yang, J.; Sawan, M. Emerging Energy-Efficient Biosignal-Dedicated Circuit Techniques: A Tutorial Brief. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2592–2597. [Google Scholar] [CrossRef]
- Wasimuddin, M.; Elleithy, K.; Abuzneid, A.S.; Faezipour, M.; Abuzaghleh, O. Stages-Based ECG Signal Analysis From Traditional Signal Processing to Machine Learning Approaches: A Survey. IEEE Access 2022, 8, 177782–177803. [Google Scholar] [CrossRef]
- Khorrami, H.; Moavenian, M. A Comparative Study of DWT, CWT and DCT Transformations in ECG Arrhythmias Classification. Expert Syst. Appl. 2010, 37, 5751–5757. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Li, F.; Wang, J.; Sangaiah, A.K.; Sheng, V.S.; Ding, X. An ECG Signal De-Noising Approach Based on Wavelet Energy and Sub-Band Smoothing Filter. Appl. Sci. 2019, 9, 4968. [Google Scholar] [CrossRef]
- Talukder, S.; Singh, R.; Bora, S.; Paily, R. An Efficient Architecture for QRS Detection in FPGA Using Integer Haar Wavelet Transform. Circuits Syst. Signal Process. 2020, 39, 3610–3625. [Google Scholar] [CrossRef]
- Mazomenos, E.B.; Biswas, D.; Acharyya, A.; Chen, T.; Maharatna, K.; Rosengarten, J.; Curzen, N. A Low-Complexity ECG Feature Extraction Algorithm for Mobile Healthcare Applications. IEEE J. Biomed. Health Inform. 2013, 17, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jiang, M.; Wei, L.; Zhang, J.; Wang, Z.; Wei, B.; Xia, L. Automated Arrhythmia Classification Using Depthwise Separable Convolutional Neural Network with Focal Loss. Biomed. Signal Process. Control 2021, 69, 102843. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Zhang, Y.; Shen, L.; Ru, J.; Fan, H.; Huang, R. A Software-Defined Always-On System with 57–75-nW Wake-Up Function Using Asynchronous Clock-Free Pipelined Event-Driven Architecture and Time-Shielding Level-Crossing ADC. IEEE J. Solid-State Circuits 2021, 56, 2804–2816. [Google Scholar] [CrossRef]
- Bauer, F.C.; Muir, D.R.; Indiveri, G. Real-Time Ultra-Low Power ECG Anomaly Detection Using an Event-Driven Neuromorphic Processor. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1575–1582. [Google Scholar] [CrossRef]
- Chu, H.; Yan, Y.; Gan, L.; Jia, H.; Qian, L.; Huan, Y.; Zou, Z. A Neuromorphic Processing System with Spike-Driven SNN Processor for Wearable ECG Classification. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Anbalagan, T.; Nath, M.K.; Vijayalakshmi, D.; Anbalagan, A. Analysis of Various Techniques for ECG Signal in Healthcare, Past, Present, and Future. Biomed. Eng. Adv. 2023, 6, 100089. [Google Scholar] [CrossRef]
- Liu, J.; Fan, J.; Zhong, Z.; Qiu, H.; Xiao, J.; Zhou, Y.; Zhou, J. An Ultra-low Power Reconfigurable Biomedical AI Processor with Adaptive Learning for Versatile Wearable Intelligent Health Monitoring. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 952–967. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Hu, Q.; Tang, W. A Real-Time QRS Detection System with PR/RT Interval and ST Segment Measurements for Wearable ECG Sensors Using Parallel Delta Modulators. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tompkins, W.J. A Real-time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 3, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, M.S.; Soman, K.P. A Novel Method for Detecting R-peaks in Electrocardiogram (ECG) Signal. Biomed. Signal Process. Control 2012, 7, 118–128. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, J.; Dai, G.; Huang, J.; Xie, Y. Energy-Efficient Intelligent ECG Monitoring for Wearable Devices. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Seidel, H.B.; da Rosa, M.M.A.; Paim, G.; da Costa, E.A.C.; Almeida, S.J.; Bampi, S. Approximate Pruned and Truncated Haar Discrete Wavelet Transform VLSI Hardware for Energy-Efficient ECG Signal Processing. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1814–1826. [Google Scholar] [CrossRef]
- Ye, C.; Kumar, B.V.; Coimbra, M.T. Heartbeat Classification Using Morphological and Dynamic Features of ECG Signals. IEEE Trans. Biomed. Eng. 2012, 59, 2930–2941. [Google Scholar]
- Tang, X.; Tang, W. An ECG Delineation and Arrhythmia Classification System Using Slope Variation Measurement by Ternary Second-Order Delta Modulators for Wearable ECG Sensor. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 1053–1065. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, J.; Lin, K.; Wu, J.; Zhu, T.; Xiang, X.; Meng, J. An Energy-Efficient ECG Processor with Weak-Strong Hybrid Classifier for Arrhythmia Detection. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 948–952. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 1999. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Abubakar, S.M.; Tan, S.; Shi, J.; Yang, P.; Yang, W.; Seng-Pan, U. A 2.63 μW ECG Processor With Adaptive Arrhythmia Detection and Data Compression for Implantable Cardiac Monitoring Device. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Alatoun, K.; Matrouk, K.; Mohammed, M.A.; Nedoma, J.; Martinek, R.; Zmij, P. A Novel Low-Latency and Energy-Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud System. Sensors 2022, 22, 5327. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Chen, Y.T.; Li, H.T.; Wu, A.Y.A. An Arbitrarily Reconfigurable Extreme Learning Machine Inference Engine for Robust ECG Anomaly Detection. IEEE Open J. Circuits Syst. 2021, 2, 196–209. [Google Scholar] [CrossRef]
- Abubakar, S.M.; Saadeh, W.; Altaf, M.A.B. A wearable long-term single-lead ECG processor for early detection of cardiac arrhythmia. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018. [Google Scholar]
- Hsu, S.Y.; Ho, Y.; Chang, P.Y.; Su, C.; Lee, C.Y. A 48.6-to-105.2 µW Machine Learning Assisted Cardiac Sensor SoC for Mobile Healthcare Applications. IEEE J. Solid-State Circuits 2014, 49, 801–811. [Google Scholar] [CrossRef]
Ref | Methodology | SE | +P |
---|---|---|---|
[46] | Adaptive derivative-based R-peak detection | 98.2% | 99.3% |
[37] | Haar DWT-based R-peak detection | 99.73% | 99.94% |
[15] | Pan-Tompkins algorithm based R-peak detection | 99.76% | 99.56% |
Our method | Hilbert transform based R-peak detection | 99.83% | 99.65% |
Types | Train Number | Test Number | Accuracy | Accuracy |
---|---|---|---|---|
Normal | 5000 | 1500 | 99.32% 1 | 99.44% 2 |
Abnormal | 5000 | 1500 | 95.88% 1 | 95.24% 2 |
10,000 | 3000 | 97.6% 1 | 97.34% 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Ma, J.; Yang, J.; Liu, S.; Chen, H.; Wang, X.; Zhang, X. An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection. Appl. Sci. 2024, 14, 342. https://doi.org/10.3390/app14010342
Deng J, Ma J, Yang J, Liu S, Chen H, Wang X, Zhang X. An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection. Applied Sciences. 2024; 14(1):342. https://doi.org/10.3390/app14010342
Chicago/Turabian StyleDeng, Jiawen, Jieru Ma, Jie Yang, Shuyu Liu, Hongming Chen, Xin’an Wang, and Xing Zhang. 2024. "An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection" Applied Sciences 14, no. 1: 342. https://doi.org/10.3390/app14010342
APA StyleDeng, J., Ma, J., Yang, J., Liu, S., Chen, H., Wang, X., & Zhang, X. (2024). An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection. Applied Sciences, 14(1), 342. https://doi.org/10.3390/app14010342