Infrared Thermography Investigation of Crystallization in Acoustically Levitated Supersaturated Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilevbare, G.A.; Liu, H.; Edgar, K.J.; Taylor, L.S. Maintaining supersaturation in aqueous drug solutions: Impact of different polymers on induction times. Cryst. Growth Des. 2013, 13, 740–751. [Google Scholar] [CrossRef]
- Moll, C.J.; Versluis, J.; Bakker, H.J. Direct observation of the orientation of urea molecules at charged interfaces. J. Phys. Chem. Lett. 2021, 12, 10823–10828. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Rohani, S.; Gong, J.; Wang, J. Recent developments in the crystallization process: Toward the pharmaceutical industry. Engineering 2017, 3, 343–353. [Google Scholar] [CrossRef]
- Guan, Q.; Li, Y.; Zhong, Y.; Liu, W.; Zhang, J.; Yu, X.; Ou, R.; Zeng, G. A review of struvite crystallization for nutrient source recovery from wastewater. J. Environ. Manag. 2023, 344, 118383. [Google Scholar] [CrossRef] [PubMed]
- Arioglu-Tuncil, S.; Bhardwaj, V.; Taylor, L.S.; Mauer, L.J. Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions. Food Res. Int. 2017, 99, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, C.; Si, Y.; Liu, M.; Xue, D. Crystallization behaviors of ferroelectric and piezoelectric materials. Mod. Phys. Lett. B 2009, 23, 3809–3815. [Google Scholar] [CrossRef]
- Sun, C.; Song, S.; Xue, D.; Zhang, H. Crystallization of oxides as functional materials. Funct. Mater. Lett. 2012, 5, 1230002. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Mohan, S.; Ghosh, S.K.; Choudhury, N. Molecular dynamics simulation of aqueous urea solution: Is urea a structure breaker? J. Phys. Chem. B 2014, 118, 11757–11768. [Google Scholar] [CrossRef]
- Rezus, Y.; Bakker, H. Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. USA 2006, 103, 18417–18420. [Google Scholar] [CrossRef]
- Hwang, H.; Cho, Y.C.; Lee, S.; Lee, Y.H.; Kim, S.; Kim, Y.; Jo, W.; Duchstein, P.; Zahn, D.; Lee, G.W. Hydration breaking and chemical ordering in a levitated NaCl solution droplet beyond the metastable zone width limit: Evidence for the early stage of two-step nucleation. Chem. Sci. 2021, 12, 179–187. [Google Scholar] [CrossRef]
- Stumpe, M.C.; Grubmüller, H. Aqueous urea solutions: Structure, energetics, and urea aggregation. J. Phys. Chem. B 2007, 111, 6220–6228. [Google Scholar] [CrossRef] [PubMed]
- Walton, A.G. Nucleation of Crystals from Solution: Mechanisms of precipitation are fundamental to analytical and physiological processes. Science 1965, 148, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef] [PubMed]
- Bhamidi, V.; Kenis, P.J.; Zukoski, C.F. Probability of nucleation in a metastable zone: Induction supersaturation and implications. Cryst. Growth Des. 2017, 17, 1132–1145. [Google Scholar] [CrossRef]
- Tang, C.; Harrowell, P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nat. Mater. 2013, 12, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Holland-Moritz, D.; Herlach, D.; Urban, K. Observation of the undercoolability of quasicrystal-forming alloys by electromagnetic levitation. Phys. Rev. Lett. 1993, 71, 1196. [Google Scholar] [CrossRef]
- Erdemir, D.; Lee, A.Y.; Myerson, A.S. Nucleation of crystals from solution: Classical and two-step models. Accounts Chem. Res. 2009, 42, 621–629. [Google Scholar] [CrossRef]
- Vekilov, P.G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2010, 2, 2346–2357. [Google Scholar] [CrossRef]
- De Yoreo, J. More than one pathway. Nat. Mater. 2013, 12, 284–285. [Google Scholar] [CrossRef]
- Baumgartner, J.; Dey, A.; Bomans, P.H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N.A.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314. [Google Scholar] [CrossRef]
- Nielsen, M.H.; Aloni, S.; De Yoreo, J.J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wi, H.S.; Jo, W.; Cho, Y.C.; Lee, H.H.; Jeong, S.Y.; Kim, Y.I.; Lee, G.W. Multiple pathways of crystal nucleation in an extremely supersaturated aqueous potassium dihydrogen phosphate (KDP) solution droplet. Proc. Natl. Acad. Sci. USA 2016, 113, 13618–13623. [Google Scholar] [CrossRef] [PubMed]
- Dachraoui, W.; Henninen, T.R.; Keller, D.; Erni, R. Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM. Sci. Rep. 2021, 11, 23965. [Google Scholar] [CrossRef] [PubMed]
- De Yoreo, J.J.; Gilbert, P.U.; Sommerdijk, N.A.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F.; et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Kellermeier, M.; Gebauer, D.; Lu, Z.; Rosenberg, R.; Moise, A.; Przybylski, M.; Cölfen, H. Growth of organic crystals via attachment and transformation of nanoscopic precursors. Nat. Commun. 2017, 8, 15933. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jo, W.; Lee, H.H.; Lee, G.W. Solution electrostatic levitator for measuring surface properties and bulk structures of an extremely supersaturated solution drop above metastable zone width limit. Rev. Sci. Instrum. 2017, 88, 055101. [Google Scholar] [CrossRef] [PubMed]
- Marzo, A.; Barnes, A.; Drinkwater, B.W. TinyLev: A multi-emitter single-axis acoustic levitator. Rev. Sci. Instrum. 2017, 88, 085105. [Google Scholar] [CrossRef]
- MatthewáReichert, W.; McCardle, H.; Reichert, W.M.; Davis, J.H. Acoustic levitation and infrared thermography: A sound approach to studying droplet evaporation. Chem. Commun. 2020, 56, 4224–4227. [Google Scholar]
- Kulkarni, S.A.; Kadam, S.S.; Meekes, H.; Stankiewicz, A.I.; ter Horst, J.H. Crystal nucleation kinetics from induction times and metastable zone widths. Cryst. Growth Des. 2013, 13, 2435–2440. [Google Scholar] [CrossRef]
- Maruyama, Y.; Hasegawa, K. Evaporation and drying kinetics of water-NaCl droplets via acoustic levitation. RSC Adv. 2020, 10, 1870–1877. [Google Scholar] [CrossRef]
- Schall, J.M.; Capellades, G.; Myerson, A.S. Methods for estimating supersaturation in antisolvent crystallization systems. CrystEngComm 2019, 21, 5811–5817. [Google Scholar] [CrossRef]
- Halonen, S.; Kangas, T.; Haataja, M.; Lassi, U. Urea-water-solution properties: Density, viscosity, and surface tension in an under-saturated solution. Emiss. Control. Sci. Technol. 2017, 3, 161–170. [Google Scholar] [CrossRef]
- Schmid, J.; Zarikos, I.; Terzis, A.; Roth, N.; Weigand, B. Crystallization of urea from an evaporative aqueous solution sessile droplet at sub-boiling temperatures and surfaces with different wettability. Exp. Therm. Fluid Sci. 2018, 91, 80–88. [Google Scholar] [CrossRef]
- Skripov, V. Current Topics in Materials Science: Crystal Growth and Material; North-Holland Publishing Company: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Herlach, D.M.; Palberg, T.; Klassen, I.; Klein, S.; Kobold, R. Overview: Experimental studies of crystal nucleation: Metals and colloids. J. Chem. Phys. 2016, 145, 211703. [Google Scholar] [CrossRef] [PubMed]
- Kobold, R.; Kolbe, M.; Hornfeck, W.; Herlach, D. Nucleation study for an undercooled melt of intermetallic NiZr. J. Chem. Phys. 2018, 148, 114502. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, K.; Tanford, C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 1966, 241, 3228–3232. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, Y.; Gong, J.; Wang, J. Interplay between kinetics and thermodynamics on the probability nucleation rate of a urea–water crystallization system. Cryst. Growth Des. 2018, 18, 2305–2315. [Google Scholar] [CrossRef]
- Boomadevi, S.; Dhanasekaran, R.; Ramasamy, P. Investigations on nucleation and growth kinetics of urea crystals from methanol. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2002, 37, 159–168. [Google Scholar] [CrossRef]
- Kavitha, J.; Seethalakshmi, K.; Mahadevan, C.; Rachelin, Y.P. Nucleation studies in supersaturated aqueous solutions of urea and thiourea doped with inorganic dopants. Bull. Mater. Sci. 1999, 22, 821–826. [Google Scholar] [CrossRef]
- Burton, R.; Ferrari, E.; Davey, R.; Hopwood, J.; Quayle, M.; Finney, J.; Bowron, D. The structure of a supersaturated solution: A neutron scattering study of aqueous urea. Cryst. Growth Des. 2008, 8, 1559–1565. [Google Scholar] [CrossRef]
- Frost, R.L.; Kristof, J.; Rintoul, L.; Kloprogge, J.T. Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2000, 56, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Mandal, T.; Larson, R.G. Nucleation of urea from aqueous solution: Structure, critical size, and rate. J. Chem. Phys. 2017, 146, 134501. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, C.; Wu, S.; Yu, Y.; Xue, D. Molecular paradigm dependent nucleation in urea aqueous solution. Cryst. Growth Des. 2017, 17, 2594–2599. [Google Scholar] [CrossRef]
- Kustov, A.V.; Smirnova, N.L. Standard enthalpies and heat capacities of solution of urea and tetramethylurea in water. J. Chem. Eng. Data 2010, 55, 3055–3058. [Google Scholar] [CrossRef]
- Egan, E.P., Jr.; Luff, B.B. Heat of Solution, Heat Capacity, and Density of Aqueous Urea Solutions at 25 °C. J. Chem. Eng. Data 1966, 11, 192–194. [Google Scholar] [CrossRef]
- Atahar, A.; Mafy, N.N.; Rahman, M.M.; Mollah, M.Y.A.; Susan, M.A.B.H. Aggregation of urea in water: Dynamic light scattering analyses. J. Mol. Liq. 2019, 294, 111612. [Google Scholar] [CrossRef]
- Sun, C.; Xue, D. IR spectral study of mesoscale process during urea crystallization from aqueous solution. Cryst. Growth Des. 2015, 15, 2867–2873. [Google Scholar] [CrossRef]
- Gebauer, D.; Kellermeier, M.; Gale, J.D.; Bergström, L.; Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 2014, 43, 2348–2371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kwon, J.-H.; Lee, S. Infrared Thermography Investigation of Crystallization in Acoustically Levitated Supersaturated Aqueous Solution. Appl. Sci. 2024, 14, 131. https://doi.org/10.3390/app14010131
Lee J, Kwon J-H, Lee S. Infrared Thermography Investigation of Crystallization in Acoustically Levitated Supersaturated Aqueous Solution. Applied Sciences. 2024; 14(1):131. https://doi.org/10.3390/app14010131
Chicago/Turabian StyleLee, Joohyun, Ji-Hwan Kwon, and Sooheyong Lee. 2024. "Infrared Thermography Investigation of Crystallization in Acoustically Levitated Supersaturated Aqueous Solution" Applied Sciences 14, no. 1: 131. https://doi.org/10.3390/app14010131
APA StyleLee, J., Kwon, J.-H., & Lee, S. (2024). Infrared Thermography Investigation of Crystallization in Acoustically Levitated Supersaturated Aqueous Solution. Applied Sciences, 14(1), 131. https://doi.org/10.3390/app14010131