Diagenetic Study of Marrón Emperador Ornamental Stone (Upper Cretaceous, SE Spain)
Abstract
:1. Introduction
2. Geological Setting
2.1. Breccia Types and Spatial Distribution of Dolomitic Breccia Bodies
2.2. Dolostone Petrography and Geochemistry
3. Materials and Methods
4. Results
4.1. Petrography
4.2. Geochemistry
5. Discussion
5.1. Dolomitization Process
5.2. Brecciation Processes
- In facies where cement dominate, regardless of the type of brecciation mechanism considered, a dilation process has occurred during fragmentation. In this sense, we could take into account the concept of dilation breccias [90].
- Blocky textures imply a filling of a pre-existing hole, contrary to the fibrous textures in venules that are indicative of filling during the opening of the fractures [91].
- Blocky textures also tend to indicate rapid brecciation [92]. The fibrous textures would be more indicative of a slow opening of holes or brecciation.
- All textures are phreatic. Only textures that can be interpreted as vadose have been recognised in complex breccia types (e.g., Mv).
- The predominant existence of a single cementation phase in all types of venules (different sizes and orientations, for example) favours the existence of a single and probably rapid fracturing phase (brecciation). However, by cathodoluminescence, it has been possible to observe some venules with more than one cementation phase.
- Locally, transgranular fractures have been observed parallel to venules filled by one or more cement phases that could be related to crack-seal processes in which fluid overpressure plays a major role in their genesis [93,94]. However, other typical textures, such as fibrous cements, calcite bridges, etc., have not been observed [95,96,97,98].
5.3. Diagenetic (Paragenetic) Sequence
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Cantrell, D.; Swart, P.; Hagerty, R. Genesis and characterization of dolomite, Arab-D reservoir, Ghawar field, Saudi Arabia. GeoArabia 2004, 9, 11–36. [Google Scholar] [CrossRef]
- Davies, G.R.; Smith, L.B., Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview. Aapg Bull. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Reid, S.; Dewing, K.; Sharp, R. Structural and diagenetic origin of breccias in the carbonate-hosted Polaris Zn–Pb deposit, Nunavut, Canada. Ore Geol. Rev. 2013, 55, 110–124. [Google Scholar] [CrossRef]
- Shelton, K.L.; Cavender, B.D.; Perry, L.E.; Schiffbauer, J.D.; Appold, M.S.; Burstein, I.; Fike, D.A. Stable isotope and fluid inclusion studies of early Zn-Cu-(Ni-Co)-rich ores, lower ore zone of Brushy Creek mine, Viburnum Trend MVT district, Missouri, USA: Products of multiple sulfur sources and metal-specific fluids. Ore Geol. Rev. 2020, 118, 103358. [Google Scholar] [CrossRef]
- Mitchel, C.; Bide, T.; Ellison, R.; Lott, G.; Lacinska, A.; Parry, S.; Entwisle, D. Assessment of the Dimension Stone Resources of the UAE; The Geology and Geophysics of the United Arab Emirates; British Geological Survey: Nottingham, UK, 2012; Volume 11, 212p. [Google Scholar]
- Muñoz-Cervera, M.C.; Rodriguez-Garcia, M.Á.; Cañaveras, J.C. Aesthetic Quality Properties of Carbonate Breccias Associated with Textural and Compositional Factors: Marrón Emperador Ornamental Stone (Upper Cretaceous, Southeast Spain). Appl. Sci. 2022, 12, 2566. [Google Scholar] [CrossRef]
- Blount, D.N.; Moore, C.H. Depositional and non-depositional carbonate breccias, Chianthia quadrangle, Guatemala. Bull. Geol. Soc. Am. 1969, 80, 429–442. [Google Scholar] [CrossRef]
- Jébrak, M. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geol. Rev. 1997, 12, 111–134. [Google Scholar] [CrossRef]
- Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Lond. Spec. Publ. 2004, 235, 7–63. [Google Scholar] [CrossRef]
- Phillips, W.J. Hydraulic fracturing and mineralization. J. Geol. Soc. 1972, 128, 337–359. [Google Scholar] [CrossRef]
- Wilson, M.I.J.; Evans, M.J.; Oxtoby, N.H.; Nas, D.S.; Donnelly, T.; Thirwall, M. Reservoir quality, textural evolution, and origin of fault-associated dolomites. AAPG Bull. 2007, 91, 1247–1272. [Google Scholar] [CrossRef]
- Martin-Martin, J.D.; Trave, A.; Gomez-Rivas, E.; Salas, R.; Sizun, J.P.; Verges, J.; Corbella, M.; Stafford, S.L.; Alfonso, P. Fault-controlled and stratabound dolostones in the Late Aptian–earliest Albian Benassal Formation (Maestrat Basin, E Spain): Petrology and geochemistry constrains. Mar. Pet. Geol. 2015, 65, 83–102. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, A. A brief review on breccia: It’s contrasting origin and diagnostic signatures. Solid Earth Sci. 2018, 3, 50–59. [Google Scholar] [CrossRef]
- Koeshidayatullah, A.; Corlett, H.; Stacey, J.; Swart, P.K.; Boyce, A.; Robertson, H.; Whitaker, F.; Hollis, C. Evaluating new fault-controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology 2020, 67, 2945–2973. [Google Scholar] [CrossRef]
- Gasparrini, M.; Bakker, R.J.; Bechstädt, T. Characterization of dolomitizing fluids in the Carboniferous of the Cantabrian Zone (NW Spain): A fluid-inclusion study with cryo-Raman spectroscopy. J. Sed. Res. 2006, 76, 1304–1322. [Google Scholar] [CrossRef]
- Dewit, J.; Huysmans, M.; Muchez, P.; Hunt, D.W.; Thurmond, J.B.; Verges, J.; Saura, E.; Fernandez, N.; Romaire, I.; Esestime, P.; et al. Reservoir characteristics of fault-controlled hydrothermal dolomite bodies: Ramales Platform case study. In Advances in Carbonate Exploration and Reservoir Analysis; Special Publications; Garland, J., Neilson, J.E., Laubach, S.E., Whidden, K.J., Eds.; Geological Society, London: London, UK, 2012; Volume 370, pp. 83–109. [Google Scholar]
- Hollis, C.; Bastesen, E.; Boyce, A.; Corlett, H.; Gawthorpe, R.; Hirani, J.; Rotevatn, A.; Whitaker, F. Fault-controlled dolomitization in a rift basin. Geology 2017, 45, 219–222. [Google Scholar] [CrossRef]
- Stacey, J.; Corlett, H.; Holland, G.; Koeshidayatullah, A.; Cao, C.; Swart, P.K.; Crowley, S.; Hollis, C. Regional fault-controlled shallow dolomitization of the Middle Cambrian Cathedral Formation by hydrothermal fluids fluxed through a basal clastic aquifer. Gsa Bull. 2021, 133, 2355–2377. [Google Scholar] [CrossRef]
- Sibson, R.H. Brecciation processes in fault zones, Interferences from earthquake rupturing. Pure Apl. Geophys. 1986, 124, 149–175. [Google Scholar]
- Belza, J.; Alvarez, W.; Tavarnelli, E.; Vanhaecke, F.; Baele, J.-M.; Claeys, P. Expansion breccias in Lower Cretaceous Apennine pelagic limestones: II. Geochemical constraints on their origin. In 250 Million Years of Earth History in Central Italy: Celebrating 25 Years of the Geological Observatory of Coldigioco; GSA Spec. Paper 542; Koeberl, C., Bice, D.M., Eds.; Geological Society of America: Boulder, CO, USA, 2019; pp. 251–269. [Google Scholar]
- Lopez-Horgue, M.A.; Iriarte, E.; Schroder, S.; Fernandez-Mediola, P.A.; Caline, B.; Corneyllie, H.; Fremont, J.; Sudrie, M.; Zerti, S. Structurally controlled hydrothermal dolomites in Albian carbonates of the Ason valley, Basque Cantabrian Basin, Northern Spain. Mar. Pet. Geol. 2010, 27, 1069–1092. [Google Scholar] [CrossRef]
- Shah, M.M.; Nader, F.H.; Dewit, J.; Swennen, R.; Garcia, D. Fault-related hydrothermal dolomites in Cretaceous carbonates (Cantabria, northern Spain): Results of petrographic, geochemical and petrophysical studies. Bull. Soc. Geol. Fr. 2010, 181, 391–407. [Google Scholar] [CrossRef]
- Sharp, I.; Gillespie, P.; Morsalnezhad, D.; Taberner, C.; Karpuz, R.; Verges, J.; Horbury, A.; Pickard, N.; Garland, J.; Hunt, D. Stratigraphic architecture and fracture-controlled dolomitization of the Cretaceous Khami and Bangestan groups: An outcrop case study, Zagros Mountains, Iran. In Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models; van Buchem, F.S.P., Gerdes, K.D., Esteban, M., Eds.; Geological Society: London, UK, 2010; Volume 329, pp. 343–396. [Google Scholar]
- Di Cuia, R.; Riva, A.; Scifoni, A.; Moretti, A.; Spotl, C.; Caline, B. Dolomite characteristics and diagenetic model of the Calcari Grigi Group (Asiago Plateau, Southern Alps—Italy): An example of multiphase dolomitization. Sedimentology 2011, 58, 1347–1369. [Google Scholar] [CrossRef]
- Lapponi, F.; Casini, G.; Sharp, I.; Blendinger, W.; Fernandez, N.; Romaire, I.; Hunt, D. From outcrop to 3D modelling: A case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. Pet. Geosci. 2011, 17, 283–307. [Google Scholar] [CrossRef]
- Koeshidayatullah, A.; Corlett, H.; Stacey, J.; Swart, P.K.; Boyce, A.; Hollis, C. Origin and evolution of fault-controlled hydrothermal dolomitization fronts: A new insight. Earth Planet. Sci. Lett. 2020, 541, 116291. [Google Scholar] [CrossRef]
- Koeshidayatullah, A.; Corlett, H.; Hollis, C. An overview of structurally-controlled dolostone-limestone transitions in the stratigraphic record. Earth-Sci. Rev. 2021, 220, 103751. [Google Scholar] [CrossRef]
- García del Cura, M.A.; Rodríguez, M.A.; Pina, J.A.; Cañaveras, J.C.; Baltuille, J.M.; Ordóñez, S. Los mármoles comerciales “Marrón Imperial” y “Marrón Emperador” (S.E. España). Caracterización petrológica y criterios de exploración. Bol. Geol. Min. 1999, 110, 67–76. [Google Scholar]
- Rodríguez García, M.A.; García del Cura, M.A.; Muñoz Cervera, M.C.; Cañaveras, J.C. Recursos de rocas ornamentales en los términos de Jumilla y Yecla (Murcia). Macla 2005, 3, 173–175. [Google Scholar]
- Muñoz-Cervera, M.C.; Rodríguez-García, M.A.; García del Cura, M.A.; Cañaveras, J.C. Dolomías brechoides ornamentales (Marrón Emperador) del Cretácico superior de la Sierra del Cuchillo (Albacete). Geotemas 2007, 10, 1171–1174. [Google Scholar]
- Cueto, N.; Benavente, D.; García del Cura, M.A. Estimation of water permeability of building brecciated dolostones. In Proceedings of the 7th International Symposium on the Conservation of Monuments in the Mediterranean Basin “Water and Cultural Heritage”, Orleans, France, 6–9 June 2007; pp. 119–129. [Google Scholar]
- Benavente, D.; Martínez-Martínez, J.; Cueto, N.; García del Cura, M.A. Salt weathering in dual-porosity building dolostones. Eng. Geol. 2007, 94, 215–226. [Google Scholar] [CrossRef]
- Cueto, N.; Benavente, D.; García del Cura, M.A. Influence of anisotropy on rock hydrical properties. Analysis of brecciated dolostones from Betic Cordillera (Spain). Geogaceta 2006, 40, 315–318. [Google Scholar]
- Cueto, N.; Benavente, D.; Martínez-Martínez, J.; García del Cura, M.A. Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones. Eng. Geol. 2009, 107, 1–15. [Google Scholar] [CrossRef]
- Muñoz-Cervera, M.C.; García del Cura, M.A.; Cañaveras, J.C. Caracterización isotópica (δ13C y δ18O) de las dolomías brechoides del Cretácico Superior del Prebético Externo en el sector Jumilla-Yecla. Macla 2007, 7, 51. [Google Scholar]
- Del Pozo, J.R.; Martín-Chivelet, J. Bioestratigrafía y cronoestratigrafía del Coniaciense-Maastrichtiense en el sector Prebético de Jumilla-Yecla (Murcia). Cuad. Geol. Ibérica 1994, 18, 83–116. [Google Scholar]
- Luperto Sinni, E.; Martin Chivelet, J.; Giménez, R. Praemurgella valenciana nov. gen. et sp. (Foraminifera) in the Sierra de Utiel Formation (Coniacian-Santonian) of the Prebetic Domain (SE Spain). Geobios 2000, 33, 145–151. [Google Scholar] [CrossRef]
- Vilas, L.; Arias, C.; García, A. El paso del Dominio Ibérico al Dominio Bético en la zona suroriental de Albacete. In El Cretácico de la Parte Oriental de la Provincia de Albacete; Complutense: Madrid, Spain, 1982; pp. 47–72. [Google Scholar]
- Martin-Chivelet, J. Las Plataformas Carbonatadas del Cretácico Superior de la Margen Bética (Altiplano de Jumilla—Yecla, Murcia). Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1992; 899p. [Google Scholar]
- Martín-Chivelet, J.; Berástegui, X.; Caus, E.; Puig, C. Cretaceous. In Geology of Spain; Gibbons, W., Moreno, T., Eds.; Geological Society of London: London, UK, 2002; pp. 255–292. [Google Scholar]
- Martín-Chivelet, J. Late Cretaceous Stratigraphic Patterns and subsidence history of the Betic Continental Margin (Jumilla-Yecla region, SE Spain). Tectonophysics 1996, 265, 191–211. [Google Scholar] [CrossRef]
- Martín-Chivelet, J.; Chacón, B. Event-stratigraphy of the upper Cretaceous to lower Eocene hemipelagic sequences of the Prebetic Zone (SE Spain): Record of the onset of tectonic convergence in a passive continental margin. Sedim. Geol. 2007, 197, 141–163. [Google Scholar] [CrossRef]
- Vilas, L.; Martín-Chivelet, J.; Arias, C.; Chacón, B. Geología del Altiplano de Jumilla-Yecla. Geología. Enciclopedia divulgativa de la historia natural de Jumilla-Yecla. Soc. Mediterránea De Hist. Nat. 2005, 6, 17–177. [Google Scholar]
- Morrow, D.W. Descriptive field classification of sedimentary and diagenetic breccia fabrics in carbonate rocks. Bull. Can. Pet. Geol. 1982, 30, 227–229. [Google Scholar]
- Mort, K.; Woodcock, N.H. Quantifying fault breccia geometry, Dent Fault, NW England. J. Struct. Geol. 2008, 30, 701–709. [Google Scholar] [CrossRef]
- Lindholm, R.C.; Finkelman, R.B. Calcite staining, semiquantitative determination of ferrous iron. J. Sed. Pet. 1972, 42, 239–245. [Google Scholar] [CrossRef]
- Gregg, J.M.; Sibley, D.F. Epigenetic dolomitization and the origin of xenotopic texture. J. Sed. Pet. 1984, 54, 908–931. [Google Scholar]
- Friedman, G.M. Terminology of crystallization textures and fabrics in sedimentary rocks. J. Sed. Pet. 1965, 35, 643–655. [Google Scholar]
- Allan, J.R.; Wiggins, W.D. (Eds.) Dolomite Reservoirs, Geochemical Techniques for Evaluating Origin and Distribution. Continuing Education Course Notes; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 36, 129p. [Google Scholar]
- Nadal, J. Estudi de la Dolomititzacio del Jurassic Superior-Cretaci Inferior de la Cadena Iberica Oriental y la Cadena Costanera Catalana, Relacio amb la Segona Etapa de Rift Mesozoica. Ph.D. Thesis, Universidad de Barcelona, Barcelona, Spain, 2001. [Google Scholar]
- Gómez-Rivas, E.; Corbella, M.; Martín-Martín, J.D.; Stafford, S.L.; Teixell, A.; Bons, P.D.; Cardellach, E. Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicassim outcrop analogue (Maestrat Basin, E Spain). Mar. Pet. Geol. 2014, 55, 26–42. [Google Scholar] [CrossRef]
- Benito, M.I.; Mas, R. Origin of Late Cretaceous dolomites at the southern margin of de Central System, Madrid Province, Spain. J. Iber. Geol. 2007, 33, 41–54. [Google Scholar]
- Newport, R.J. Controls on Dolomitisation of Uper Cretaceous Strata of North Africa and Western Mediterranean. Ph.D. Thesis, University of Manchester, Manchester, UK, 2014; 293p. [Google Scholar]
- Guzzy-Arredondo, G.S.; Murillo-Muñetón, G.; Morán-Zenteno, D.J.; Grajales-Nishimura, J.M.; Martínez-Ibarra, R.; Schaaf, P. High-temperature dolomite in the Lower Cretaceous Cupido Formation, Bustamante Canyon, northeast Mexico. Rev. Mex. Cien. Geol. 2007, 24, 131–149. [Google Scholar]
- Vandeginste, V.; John, C.M.; Manning, C. Interplay between depositional facies, diagenesis and early fractures in the Early Cretaceous Habshan Formation, Jebel Madar, Oman. Mar. Pet. Geol. 2013, 43, 489–503. [Google Scholar] [CrossRef]
- Mansurbeg, H.; Morad, D.; Othman, R.; Morad, S.; Ceriani, A.; Al-Aasm, I.; Kolo, K.; Proust, J.-N.; Preat, A.; Koyi, H. Fault-Controlled Dolomitization of Uper Cretaceous Reservoirs, Zagros Basin, Kurdistan Region of Iraq, Implications for Hydrocarbon Migration and Degradation. In Proceedings of the AAPG Datapages/Search and Discovery Article #90247 Middle East Region, Geoscience Technology Workshop, Carbonate Reservoirs of the Middle East, Abu Dhabi, United Arab Emirates, 23–24 November 2016; pp. 23–24. [Google Scholar]
- Kirmaci, M.Z.; Akdag, K. Origin of dolomite in the Late Cretaceous–Paleocene limestone turbidites, Eastern Pontides, Turkey. Sed. Geol. 2005, 181, 39–57. [Google Scholar] [CrossRef]
- Muñoz-Cervera, M.C. Génesis de Mármoles Comerciales “Marrón Emperador” y “Marrón Imperial” (Cretácico Superior, Prebético Externo, Sector Jumilla-Yecla-Fuente de La Higuera). Ph.D. Thesis, Universidad de Alicante, Alicante, Spain, 2016; 224p. [Google Scholar]
- Knipe, R.J. The influence of fault zone processes on fluid flow and diagenesis. In Diagenesis and Basin Development; AAPG Studies in Geology; Horbury, A.D., Robinson, A.G., Eds.; AAPG: Tulsa, OK, USA, 1993; Volume 36, pp. 135–154. [Google Scholar]
- Muir-Wood, R.M. Earthquakes, strain-cycling and the mobilization of fluids. In Geofluids, Origin, Migration and Evolution of Fluids in Sedimentary Basins; Special Publication; Parnell, J., Ed.; Geological Society, London: London, UK, 1994; Volume 78, pp. 85–98. [Google Scholar]
- Eichhubl, P.; Boles, J.R. Rates of fluid flow in fault systems—Evidence for episodic rapid fluid flow in the Miocene Monterery Formation, coastal California. Am. J. Sci. 2000, 300, 571–600. [Google Scholar] [CrossRef]
- Iriarte, E.; Lopez-Horgue, M.A.; Schroeder, S.; Caline, B. Interplay between fracturing and hydrothermal fluid flow in the As_on Valley hydrothermal dolomites (Basque-Cantabrian Basin, Spain). In Advances in Carbonate Exploration and Reservoir Analysis; Special Publication; Garland, J., Nielson, J.E., Laubach, S.E., Whidden, K.J., Eds.; Geological Society, London: London, UK, 2012; Volume 370, pp. 207–227. [Google Scholar]
- Hendry, J.P.; Gregg, J.M.; Shelton, K.L.; Somerville, I.D.; Crowley, S.F. Origin, characteristics and distribution of fault-related and fracture-related dolomitization, Insights from Mississipian carbonates, Isle of Man. Sedimentology 2015, 62, 717–752. [Google Scholar] [CrossRef]
- Ryb, U.; Eiler, J.M. Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem. Proc. Natl. Acad. Sci. USA 2018, 115, 6602–6607. [Google Scholar] [CrossRef]
- Nelson, C.S.; Smith, A.M. Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: A synthesis and review. N. Z. J. Geol. Geophys. 1996, 39, 93–107. [Google Scholar] [CrossRef]
- Sabbagh Bajestani, M.; Mahboubi, A.; Al-Aasm, I.; Moussavi-Harami, R. Multistage dolomitization in the Qal’eh Dokhtar Formation (Middle-Upper Jurassic), Central Iran: Petrographic and geochemical evidence. Geol. J. 2018, 53, 22–44. [Google Scholar] [CrossRef]
- Jamshidipour, A.; Khanehbad, M.; Moussavi-Harami, R.; Mahboubi, A. Dolomitization models in the Sibzar Formation (Middle Devonian), Binalood Mountains (NE Iran): Based on the petrographic and geochemical evidence. J. Afr. Earth Sci. 2021, 176, 104124. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- Gasparrini, M.; Beschstädt, T.; Boni, M. Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Mar. Pet. Geol. 2006, 23, 543–568. [Google Scholar] [CrossRef]
- Land, L.S. The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. In Stable Isotopes in Sedimentary Geology; Society of Sedimentary Geology Short Course; Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1983; Volume 104, pp. 4.1–4.22. [Google Scholar]
- Friedman, I.; O’Neil, J.R. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest; US Geological Survey Professional Paper 440 KK; US Geological Survey: Washington, DC, USA, 1977; 12p.
- O’Neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Lind, I.L. Stylolites in chalk from leg 130, ontong java plateau. In Proceedings of the Ocean Drilling Program, Scientific Results; Berger, W.H., Kroenke, J.W., Mayer, L.A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1993; Volume 130, pp. 445–451. [Google Scholar]
- Fabricius, I.L. Interpretation of burial history and rebound from loading experiments and occurrence of microstylolites in mixed sediments of Caribbean Sites 999 and 1001. In Proceedings of the Ocean Drilling Program, Scientific Results; Leckie, R.M., Sigurdson, H., Acion, G.D., Draper, G., Eds.; Ocean Drilling Program: College Station, TX, USA, 2000; Volume 165, pp. 177–190. [Google Scholar]
- Gomez-Rivas, E.; Martín-Martin, J.D.; Bons, P.D.; Koehn, D.; Griera, A.; Travé, A.; Llorens, M.G.; Humphrey, E.; Meilson, J. Stylolites and stylolite networks as primary controls on the geometry and disgtribution of carbonate diagenetic alterations. Mar. Petr. Geol. 2022, 136, 105444. [Google Scholar] [CrossRef]
- Choquette, P.W.; Hiatt, E.E. Shallow-burial dolomite cement: A major component of many ancient sucrosic dolomites. Sedimentology 2008, 55, 423–460. [Google Scholar] [CrossRef]
- Gaswirth, S.B.; Budd, D.A.; Farmer, G.L. The role and impact of freshwater–seawater mixing zones in the maturation of regional dolomite bodies within the proto Floridan Aquifer, USA. Sedimentology 2007, 24, 1065–1091. [Google Scholar] [CrossRef]
- Carter, T.R. Dolomitization patterns in the Salina A-1 and A-2 Carbonate units, Sombra Township. In Proceedings of the 30th Annual Conference Proceedings; Ontario Petroleum Institute: London, ON, Canada, 1991; 35p. [Google Scholar]
- Coniglio, M.; Sherlock, R.; Williams-Jones, A.E.; Middleton, K.; Frape, S.K. Burial and hydrothermal diagenesis of Ordovician carbonates from the Michigan Basin, Ontario, Canada. Int. Assoc. Sedimentol. 1994, 21, 231–254. [Google Scholar]
- Brand, U.; Veizer, J. Chemical diagenesis of a multi-component carbonate system. I. Trace elements. J. Sed. Pet. 1980, 50, 1219–1236. [Google Scholar]
- Mattes, B.W.; Mountjoy, E.W. Burial dolomitization of the Uper Devonian Miette buildup, Jasper National Park, Alberta. In Concepts and Models of Dolomitization; SEPM Special Publication; Zenger, D.H., Dunham, J.B., Ethington, R.L., Eds.; SEPM: Tulsa, OK, USA, 1980; Volume 28, pp. 259–297. [Google Scholar]
- Morrow, D.W. Dolomite—Part 1—The chemistry of dolomitization and dolomite precipitation. In Diagenesis; Geoscience Canada Reprint Series, 4; McIlreath, I.A., Morrow, D.W., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1990; pp. 113–123. [Google Scholar]
- Barnaby, R.J.; Read, J.F. Dolomitization of a carbonate platform during late Burial, lower to Middle Cambrian shady dolomite, Virgina Apalachians. J. Sed. Res. 1992, 62, 1023–1043. [Google Scholar]
- Spötl, C.; Pitman, J.K. Saddle (baroque) dolomite in carbonates and sandstones, a reapraisal of a burial-diagenetic concept. In Carbonate Cementation in Sandstones, Distribution Patterns and Geochemical Evolution; Morad, S., Ed.; Blackwell Science: Hoboken, NJ, USA, 1998; pp. 437–460. [Google Scholar]
- Nielsen, P.; Swennen, R.; Muchez, P.; Kepens, E. Origin of Dinantian zebra dolomites south of the Brabant–Wales Massif, Belgium. Sedimentology 1998, 45, 727–743. [Google Scholar] [CrossRef]
- Mahboubi, A.; Nowrouzi, Z.; Al-Aasm, I.; Moussavi-Harami, R.; Mahmudy-Gharaei, M. Dolomitization of the Silurian Niur Formation, Tabas block, east central Iran: Fluid flow and dolomite evolution. Mar. Pet. Geol. 2016, 77, 791–805. [Google Scholar] [CrossRef]
- Marfil, R.; Caja, M.A.; Tsige, M.; Al-Aasm, I.S.; Martín-Crespo, T.; Salas, R. Carbonate-cemented stylolites and fractures in the Uper Jurassic limestones of the eastern Iberian Range, Spain, A record of palaeofluids composition and thermal history. Sediment. Geol. 2005, 178, 237–257. [Google Scholar] [CrossRef]
- Katz, D.A.; Eberli, G.P.; Swqrt, P.K.; Smith, L.B., Jr. Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruccion in Mississipian carbonate reservoirs, Montana and Wyoming. Aapg Bull. 2006, 90, 1803–1841. [Google Scholar] [CrossRef]
- Roehl, P.O. Dilation brecciation, proposed mechanism of fracturing, petroleum expulsion, and dolomitization in Monterey formation, California. In The Monterrey Formation and Related Siliceous Rocks of California, Los Angeles; SEPM Special Publication; Garrison, R.E., Douglas, R.G., Eds.; SEPM: Tulsa, OK, USA, 2008; pp. 285–315. [Google Scholar]
- Bons, P.D. The formation of veins and their microstructures. In Stress, Strain and Structure, A Volume in Honour of W.D. Means; Jesell, M.W., Urai, J.L., Eds.; The Virtual Explorer Pty. Ltd.: Clear Range, NSW, Australia, 2000; Volume 2, 44p. [Google Scholar]
- Tarasewicz, J.P.T.; Woodcock, N.H.; Dickson, J.A.D. Carbonate dilation breccias, Examples from the damage zone to the Dent Fault, northwest England. GSA Bull. 2005, 117, 736–745. [Google Scholar] [CrossRef]
- Al-Aasm, I.S. Dolomitization and pore fluid evolution of Mississippian carbonates of Western Canada Sedimentary Basin. Alta. Basement Lithoprobe Transects Rep. 1996, 51, 237–240. [Google Scholar]
- Al-Aasm, I. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. J. Geochem. Explor. 2003, 78, 9–15. [Google Scholar] [CrossRef]
- Laubach, S.E. Practical approaches to identifying sealed and open fractures. AAPG Bull. 2003, 87, 561–579. [Google Scholar] [CrossRef]
- Gale, J.F.W.; Laubach, S.E.; Marrett, R.A.; Olson, J.E.; Holder, J.; Reed, R.M. Predicting and characterizing fractures in dolostone reservoirs: Using the link between diagenesis and fracturing. Geol. Soc. Lond. Spec. Publ. 2004, 235, 177–192. [Google Scholar] [CrossRef]
- Gale, J.F.W.; Lander, R.H.; Reed, R.M.; Laubach, S.E. Modeling fracture porosity evolution in dolostone. J. Struct. Geol. 2010, 2, 1201–1211. [Google Scholar] [CrossRef]
- Ukar, E.; Laubach, S.E. Syn- and postkinematic cement textures in fractured carbonate rocks: Inseghts from advanced cathodoluminiscence imaging. Tectonophysics 2016, 690, 190–205. [Google Scholar] [CrossRef]
- Blendinger, W. Triassic carbonate buildup flanks in the Dolomites, northern Italy: Breccias, boulder fabric and the importance of early diagenesis. Sedimentology 2001, 48, 919–933. [Google Scholar] [CrossRef]
- Sachau, T.; Bons, P.D.; Gomez-Rivas, E. Transport efficiency and dynamics of hydraulic fracture networks. Front. Phys. 2015, 3, 63. [Google Scholar] [CrossRef]
- Laubach, S.E.; Reed, R.M.; Olson, J.E.; Lander, R.H.; Bonnell, R.M. Coevolution of crack-seal texture and fracture porosity in sedimentary rocks: Cathodoluminescence observations of regional fractures. J. Struct. Geol. 2004, 26, 967–982. [Google Scholar] [CrossRef]
Property | Values |
---|---|
Density | 2.65–2.79 g/cm3 |
Absorption coefficient | 0.25–0.40% |
Porosity | 1.20–1.60% |
Compressive strength | 82.4–159.0 Mpa |
Compressive strength after frosting | 79.1–152.6 Mpa |
Flexural strength | 4.60–21.10 Mpa |
Resistance to impact | 25–35 cm |
Resistance to wear | 0.50–0.55 mm |
Microhardness Knoop | 157 Kg/mm2 |
Slip resistance (USRV 1) wet | 7–9.8 |
Slip resistance (USRV 1) dry | 45.5–47.5 |
Abrasion resistance | 21.5 mm |
BRECCIA TYPES | ||||||
---|---|---|---|---|---|---|
Clast-Supported | Matrix-Supported | |||||
CRACKLE | MOSAIC | RUBBLE | ||||
CB | M | Mv | Mm | RB | ||
Clast concentration (%) | 70–95 | 55–70 | 50–70 | 60–75 | 40–55 | |
Clast rotation (°) | 0–10 | 10–25 | 15–25 | 10–20 | >25 | |
Clast size (mm) | 5–400 | 2–200 | 2–150 | 2–250 | 2–250 | |
% matrix and/or cement | <5 | 15–35 | 15–40 | 10–25 | 40–75 | |
Matrix/cement ratio | 0–5/95–100 | 25–40/60–75 | 20–30/70–80 | 15–25/75–85 | 45–75/25–55 | |
CLASTS | % dolomite | 85–98 | 65–90 | 65–80 | 60–90 | 55–95 |
%molCaCO3 (dolomite) | 50–56 | 50–55.5 | 52–55 | 54–56 | 50–54 | |
% calcite | 2–15 | 10–35 | 20–35 | 10–40 | 5–45 | |
%molMgCO3 (calcite) | 1–3.5 | 1–4.5 | 1.5–2.5 | 1–4 | <2 | |
MATRIX | Dolomite | ● | ● | ● | ● | |
Calcite | ● | ● | ||||
Clays | ● | ● | ● | |||
CEMENTS | Dolomite | ● | ● | ● | ● | ● |
White calcite | ● | ● | ● | ● | ● | |
Reddish calcite | ● | ● |
Hypidiotopic Dolosparites | Idiotopic (Rhombic) Dolosparites | Dolo-Microsparites | Dolomicrites | |||
---|---|---|---|---|---|---|
Crystal form | Idiotopic | ● | ||||
Hypidiotopic | ● | ● | ● | |||
Crystal size (μm) | 200–400 | 175–400 | 60–200 | 10–60 | ||
Ghosts | Allochems | ● | ● | |||
Veinlets | ● | ● | ● | |||
Impurities | Rich | + | ● | |||
↑ | ● | ● | ● | |||
Poor | ● | ● | ● | ● | ||
− | ● | ● | ||||
Emphasized nuclei | ● | ● | ● | |||
Dedolomitization | Mimetic | ● | ● | |||
Nonmimetic | ● | ● | ● |
Dolomite Texture | CL Pattern | |||
DOLOSPARITE Medium- to coarsely-crystalline dolosparites composed of hypidiotopic (planar-S) and/or idiotopic (planar-e) mosaics with crystals rich in impurities. The dolomite crystals sometimes show rhombic and subrhombic zones (delimited by alignments of inclusions or impurities) or emphasised nuclei (more or less rhombic morphology), being common in the existence of limpid cortex. | ||||
DOL-1. Anhedral to sub-rhombic cores displaying homogeneous or mottled (red to dull red) luminescence. DOL-2. Successive generations of dolomite in the form of dull, red bands or thin, orange rims. | ||||
Dolomite Texture | CL Pattern | |||
DOLOMICRO-SPARITE | Subrhombic crystals with emphasized cores (DOL-1) and red to dull red rim (DOL-2). | |||
DOLOMICRITE | Micrite crystals with dull red luminescence. Rhombic crystals with concentric zonation; dull red or mottled dull red to bright orange. |
Cement Type | CL Pattern | ||
---|---|---|---|
DOLOMITE | Euhedral to subeuhedral crystals filling intercrystalline (DOL-1 and DOL-2) pores, fractures and moulds (veinlets, bioclasts). Banded luminescence alternating bright orange and dull red. | ||
Saddle type cement. Multiple zones of bright blue to dull luminescence. | |||
CALCITE | Nonluminiscent. Cristales NL con grietas de luminiscencia D roja. | ||
Banded zonation. Nonluminescence, dull blue or red, with thin bright orange or red rims. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Cervera, M.C.; Cañaveras, J.C. Diagenetic Study of Marrón Emperador Ornamental Stone (Upper Cretaceous, SE Spain). Appl. Sci. 2023, 13, 5470. https://doi.org/10.3390/app13095470
Muñoz-Cervera MC, Cañaveras JC. Diagenetic Study of Marrón Emperador Ornamental Stone (Upper Cretaceous, SE Spain). Applied Sciences. 2023; 13(9):5470. https://doi.org/10.3390/app13095470
Chicago/Turabian StyleMuñoz-Cervera, María Concepción, and Juan Carlos Cañaveras. 2023. "Diagenetic Study of Marrón Emperador Ornamental Stone (Upper Cretaceous, SE Spain)" Applied Sciences 13, no. 9: 5470. https://doi.org/10.3390/app13095470
APA StyleMuñoz-Cervera, M. C., & Cañaveras, J. C. (2023). Diagenetic Study of Marrón Emperador Ornamental Stone (Upper Cretaceous, SE Spain). Applied Sciences, 13(9), 5470. https://doi.org/10.3390/app13095470