Characterization of Thermal Properties of Ruby Chocolate Using DSC, PDSC and TGA Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fat Extraction from Ruby Chocolate
2.3. Fatty Acid Composition/GC Analysis
2.4. DSC Oxidative Stability Measurements for the Fat Extracted from Ruby Chocolate
2.5. DSC Measurements of Melting of Ruby Chocolate and Fat Extracted from Ruby Chocolate
2.6. PDSC Induction Time Measurements for Fat Extracted from Ruby Chocolate
2.7. Thermogravimetry Analysis for Ruby Chocolate and Fat Extracted from Ruby Chocolate
2.8. Statistical Analysis
3. Results
3.1. Fatty Acid Composition and Their Positional Distribution
3.2. Melting Characteristics Measured by DSC
3.3. Oxidative Stability Measuring by PDSC
3.4. Thermogravimetric Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Del Prete, M.; Samoggia, A. Chocolate Consumption and Purchasing Behaviour Review: Research Issues and Insights for Future Research. Sustainability 2020, 12, 5586. [Google Scholar] [CrossRef]
- Dumarche, A.; Troplin, P.; Bernaert, H.; Lechvalier, P.; Beerens, H.; Landuyt, A. Swiss Process for Making Red or Purple Cocoa Material. Patent WO 2009/093030 Al, 22 January 2009. [Google Scholar]
- Beckett, S.T. The Science of Chocolate, 1st ed.; The Royal Society of Chemistry: Cambridge, UK, 2000; pp. 61–79. [Google Scholar]
- Šeremet, D.; Mandura, A.; Vojvodić Cebin, A.; Oskomić, M.; Champion, E.; Martinić, A.; Komes, D. Ruby chocolate—Bioactive potential and sensory quality characteristics compared with dark, milk and white chocolate. Food Health Dis. 2019, 8, 89–96. [Google Scholar]
- Bolenz, S.; Holm, M.; Langkrär, C. Improving particle size distribution and flow properties of milk chocolate produced by ball mill and blending. Eur. Food Res. Technol. 2014, 238, 139–147. [Google Scholar] [CrossRef]
- Bernardes, C.E.S.; Joseph, A.; da Piedade, M.E.M. Some Practical Aspects of Heat Capacity Determination by Differential Scanning Calorimetry. Thermochim. Acta 2020, 687, 178574. [Google Scholar] [CrossRef]
- Dolatowska-Żebrowska, K.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Characterization of thermal properties of goat milk fat and goat milk chocolate by using DSC, PDSC and TGA methods. J. Therm. Anal. Calorim. 2019, 138, 2769–2779. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Hakmani, H.; Al-Alawi, A.; Al-Marhubi, I. Thermal characteristic of freeze-dried camel milk and its major components. Thermochim. Acta 2012, 549, 116–123. [Google Scholar] [CrossRef]
- Materazzi, S.; De Angelis Curtis, S.; Vecchio Ciprioti, S.; Risoluti, R.; Finamore, J. Thermogravimetric characterization of dark chocolate. J. Therm. Anal. Calorim. 2014, 116, 93–98. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Marzec, A.; Górska, A.; Wirkowska-Wojdyła, M.; Bryś, J.; Reich, A.; Czarkowska, K. A comparative study of thermal and textural properties of milk, white and dark chocolates. Termochim. Acta 2019, 671, 60–69. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Caboni, M.F.; Lercker, G. Pressurized liquid extraction of lipids for the determination of oxysterols in egg containing food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef] [PubMed]
- ISO. Animal and Vegetable Fats and Oils—Preparation of Methyl esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2001; Volume 5509. [Google Scholar]
- Wirkowska-Wojdyła, M.; Bryś, J.; Ostrowska-Ligęza, E.; Górska, A.; Chmiel, M.; Słowiński, M.; Piekarska, J. Quality and oxidative stability of model meat batters as affected by interesterified fat. Int. J. Food Prop. 2019, 22, 607–617. [Google Scholar] [CrossRef]
- Bryś, J.; Vaz Flores, I.F.; Wirkowska-Wojdyła, M.; Górska, A.; Ostrowska-Ligęza, E.; Bryś, A. Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures. J. Therm. Anal. Calorim. 2017, 130, 319–327. [Google Scholar] [CrossRef]
- Ostrowska-Ligeza, E.; Wirkowska, M.; Kowalski, B. Thermokinetic analysis of corn grain fat by differential scanning calorimetry. Zywn-Nauk Technol. Ja. 2009, 1, 128–139. (In Polish) [Google Scholar]
- Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A.; Ostrowska-Ligęza, E. Effect of enzymatic interesterification on physiochemical and thermal properties of fat used in cookies. LWT-Food Sci. Technol. 2016, 74, 99–105. [Google Scholar] [CrossRef]
- Wirkowska, M.; Ostrowska-Ligęza, E.; Górska, A.; Koczoń, P. Thermal properties of fats extracted from powdered baby formulas. J. Therm. Anal. Calorim. 2012, 110, 137–143. [Google Scholar] [CrossRef]
- Tapia-Ledesma, C.; Araujo-Diaz, S.B.; Dibildox-Alvarado, E.; Ornelas-Paz, J.J.; Perez-Martinez, J.D. Phase diagrams of mixtures of n-hentriacontane and saturated monoacid triacylglycerols. Thermochim. Acta 2020, 683, 178455. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Krygier, K. Comparison of the oxidative stability of linseed (Linum usitatissimum L.) oil by pressure differential scanning calorimetry and Rancimat measurements. J. Food Sci. Technol. 2016, 53, 3986–3995. [Google Scholar] [CrossRef] [PubMed]
- Susin, R.C.; Mior, R.; da Costa Dias, V.M. Fatty acid and sodium contents of commercial milk chocolate—Analytical aspects and nutritional information. Braz. J. Food Technol. 2015, 18, 121–127. [Google Scholar] [CrossRef]
- de Oliveira, L.N.; de Jesus Coelho Castro, R.; de Oliveira, M.A.L.; de Oliveira, L.F.C. Lipid Characterization of White, Dark, and Milk Chocolates by FT-Raman Spectroscopy and Capillary Zone Electrophoresis. J. AOAC Int. 2015, 98, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Afoakwa, E.; Paterson, A.; Fowler, M.; Vieira, J. Characterization of melting properties in dark chocolates from varying particle size distribution and composition using differential scanning calorimetry. Food Res. Int. 2008, 41, 751–757. [Google Scholar] [CrossRef]
- Lipp, M.; Simoneau, C.; Ulberth, F.; Anklam, E.; Crews, C.; Brereton, P.; De Greyt, W.; Schwack, W.C.; Wiedmaier, C. Composition of genuine cocoa butter and cocoa butter equivalents. J. Food Compos. Anal. 2001, 14, 399–408. [Google Scholar] [CrossRef]
- Chapman, G.M.; Akehurst, E.E.; Wright, W.B. Cocoa butter and confectionery fats. Studies using programmed temperature X-ray diffraction and differential scanning calorimetry. J. Am. Oil Chem. Soc. 1971, 48, 824–830. [Google Scholar] [CrossRef]
- Metin, S.; Hartel, R.W. Crystallization behavior of blends of cocoa butter and milk fat or milk fat fractions. J. Therm. Anal. 1996, 47, 1527–1544. [Google Scholar] [CrossRef]
- Glicerina, V.; Balestra, F.; Dall Rosa, M.; Romani, S. Rheological, textural and calorimetric modifications of dark chocolate during process. J. Food Eng. 2013, 119, 173–179. [Google Scholar] [CrossRef]
- Haylock, S.J.; Dodds, T.M. Ingredients from milk. In Industrial Chocolate Manufacture and Use; Beckett, S.T., Ed.; Blackwell Science: Oxford, UK, 1999; pp. 137–152. [Google Scholar]
- Afoakwa, E.; Paterson, A.; Fowler, M. Factors influencing rheological and textural qualities in chocolate a review. Trends Food Sci. Technol. 2007, 18, 290–298. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Shan, L.; Jin, Q.; Wang, X.; Li, L. Blooming in Cocoa Butter Substitutes Based Compound Chocolate: Investigations on Composition, Morphology and Melting Behavior. J. Am. Oil Chem. Soc. 2010, 87, 1137–1143. [Google Scholar] [CrossRef]
- Antila, V. Milk Industry. 1979; 81, 17. [Google Scholar]
- Kim, E.; Chen, X.; Pearce, D. Surface composition of industrial spray-dried milk powders. 3.Changes in the surface composition during long-term storage. J. Food. Eng. 2009, 94, 182–191. [Google Scholar] [CrossRef]
- German, J.B.; Dillard, C.J. Fractionated milk fat. Food Technol. 1998, 52, 33–37. [Google Scholar]
- Wang, F.; Liu, Y.; Jin, Q.; Meng, Z.; Wang, X. Characterization of cocoa butter substitutes, milk fat and cocoa butter mixtures. Eur. J. Lipid Sci. Technol. 2011, 113, 1145–1151. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Pokorn, J. Lipid oxidation products and methods used for their analysis. In Analysis of Lipid Oxidation; Kamal-Eldin, A., Pokorny, J., Eds.; AOCS Publishing: Urbana, IL, USA, 2005; ISBN 978-1-4398-2239-5. [Google Scholar]
- Morales, F.J.; Jimenez-Perez, S. Peroxyl radical scavenging activity of melanoidins in aqueous systems. Eur. Food Res. Technol. 2004, 218, 515–520. [Google Scholar] [CrossRef]
- Saldaña, M.D.; Martínez-Monteagudo, S.I. Oxidative Stability of Fats and Oils Measured by Differential Scanning Calorimetry for Food and Industrial Applications. In Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry; Elkordy, A.A., Ed.; licensee InTech: London, UK, 2013. [Google Scholar] [CrossRef]
- Martínez-Monteagudo, S.I.; Saldaña, M.D.; Kennelly, J.J. Kinetics of non-isothermal oxidation of anhydrous milk fat rich conjugated linoleic acid using differential scanning calorimetry. J. Therm. Anal. Calorim. 2012, 107, 973–981. [Google Scholar] [CrossRef]
- Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A.; Ostrowska-Ligęza, E. Oxidation kinetics and melting profiles of the structured lipids used in infant cookies. Eur. J. Lipid Sci. Technol. 2014, 116, 1546–1552. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Wirkowska, M.; Górska, A. Thermal analysis of milk fat with a use of differential scanning calorimetry. Zesz. Probl. Postępów Nauk. Rolniczych 2011, 558, 171–185. (In Polish) [Google Scholar]
- Cifti, O.N.; Kowalski, B.; Gogus, F.; Fadiloglu, S. Effect of the addition of a cocoa butter-like fat enzymatically produced from olive pomace oil on the oxidative stability of cocoa butter. J. Food Sci. 2009, 74, 184–190. [Google Scholar] [CrossRef]
- Bryś, J.; Wirkowska, M.; Górska, A.; Ostrowska-Ligęza, E.; Żubrżycka, K. Characteristic of structure lipids derived by interestrification of milk fat and fish oil concentrate. Bromat. Chem. Toksykol. 2012, 3, 477–481. (In Polish) [Google Scholar]
- Szabo, M.; Chambre, D.; Iditoiu, C. TG/DTG/DTA for the oxidation behaviour characterization of vegetable and animal fats. J. Therm. Anal. Calorim. 2012, 110, 281–285. [Google Scholar] [CrossRef]
- Lipp, M.; Anklam, E. Review of cocoa butter and alternative fats for use in chocolate—Part A. Composition of data. Food Chem. 1998, 62, 73–97. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Górska, A.; Wirkowska-Wojdyła, M.; Bryś, J.; Dolatowska-Żebrowska, K.; Shamilowa, M.; Ratusz, K. Thermogravimetric characterization of dark and milk chocolates at different processing stages. J. Therm. Anal. Calorim. 2018, 134, 623–631. [Google Scholar] [CrossRef]
Type of Fatty Acid | Acid Common Nomenclature | Ruby Chocolate |
---|---|---|
C6:0 | Caproic | 0.19 ± 0.05 |
C8:0 | Caprylic | 0.12 ± 0.01 |
C10:0 | Capric | 0.30 ± 0.03 |
C12:0 | Lauric | 0.42 ± 0.04 |
C14:0 | Myristic | 1.35 ± 0.07 |
C14:1 | Tetradecanic | 0.15 ± 0.01 |
C15:0 | Pentadecanoic | 0.18 ± 0.01 |
C16:0 | Palmitic | 25.38 ± 0.32 |
C16:1 | Palmitoleic | 0.42 ± 0.01 |
C17:0 | Margaric | 0.32 ± 0.01 |
C17:1 | Margaroleic | 0.06 ± 0.00 |
C18:0 | Stearic | 34.08 ± 0.33 |
C18:1n-9cis | Oleic | 31.60 ± 0.26 |
C18:2n-6trans | Linolelaidic | 0.03 ± 0.00 |
C18:2n-6cis | Linoleic | 3.49 ± 0.02 |
C18:3n-3cis | α-linolenic | 0.30 ± 0.01 |
C20:0 | Arachidic | 1.35 ± 0.01 |
C20:1cis | Gondoic | 0.06 ± 0.00 |
C20:3 | Mead | 0.24 ±0.00 |
ΣSFA | - | 63.65 ± 0.23 |
ΣMUFA | - | 32.29 ± 0.23 |
ΣPUFA | - | 4.02 ± 0.03 |
Temperature (°C) | Induction Onset Time τon (min) | Induction Maximum Time τmax (min) |
---|---|---|
110 | 19.84 ± 0.69 | 113.08 ± 3.73 |
115 | 14.88 ± 0.14 | 87.19 ± 4. 88 |
120 | 10.28 ± 0.48 | 61.65 ± 1.12 |
125 | 6.10 ± 0.40 | 40.48 ± 0.95 |
130 | 4.32 ± 0.68 | 32.69 ± 1.39 |
Parameter | Oxidation Onset Temperatures Ton | Oxidation Maximum Temperatures Tmax |
---|---|---|
a | −4534 ± 85 | −4419 ± 33 |
b | 10.75 ± 0.18 | 8.83 ± 0.07 |
R2 | 0.995 | 0.965 |
Ea (kJ/mol) | 82.54 ± 1.54 a | 80.45 ± 0.61 a |
log Z | 9.07 | 7.16 |
Z (1/min) | 1.17 × 109 a | 1.44 × 107 b |
Parameter | Induction Time (τon) | Induction Time (τmax) |
---|---|---|
a | 5284 ± 626 | 4359 ± 244 |
b | −12.46 ± 1.61 | −9.31 ± 0.61 |
R2 | 0.990 | 0.990 |
Ea (kJ/mol) | 96.21 ± 11.39 a | 79.37 ± 4.44 b |
log Z | 12.46 | 9.31 |
Z (1/min) | 2.88 × 1012 a | 2.05 × 109 b |
Temperature Range (°C) | Mass Loss (%) | Fat Component Being Decomposed |
---|---|---|
191–408 | 80.74 ± 1.65 | PUFA, MUFA and short chain SFA |
408–454 | 6.31 ± 1.20 | MUFA, SFA |
454–575 | 11.61 ± 0.64 | Long chain SFA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska-Ligęza, E.; Dolatowska-Żebrowska, K.; Brzezińska, R.; Wirkowska-Wojdyła, M.; Bryś, J.; Piasecka, I.; Górska, A. Characterization of Thermal Properties of Ruby Chocolate Using DSC, PDSC and TGA Methods. Appl. Sci. 2023, 13, 5221. https://doi.org/10.3390/app13095221
Ostrowska-Ligęza E, Dolatowska-Żebrowska K, Brzezińska R, Wirkowska-Wojdyła M, Bryś J, Piasecka I, Górska A. Characterization of Thermal Properties of Ruby Chocolate Using DSC, PDSC and TGA Methods. Applied Sciences. 2023; 13(9):5221. https://doi.org/10.3390/app13095221
Chicago/Turabian StyleOstrowska-Ligęza, Ewa, Karolina Dolatowska-Żebrowska, Rita Brzezińska, Magdalena Wirkowska-Wojdyła, Joanna Bryś, Iga Piasecka, and Agata Górska. 2023. "Characterization of Thermal Properties of Ruby Chocolate Using DSC, PDSC and TGA Methods" Applied Sciences 13, no. 9: 5221. https://doi.org/10.3390/app13095221
APA StyleOstrowska-Ligęza, E., Dolatowska-Żebrowska, K., Brzezińska, R., Wirkowska-Wojdyła, M., Bryś, J., Piasecka, I., & Górska, A. (2023). Characterization of Thermal Properties of Ruby Chocolate Using DSC, PDSC and TGA Methods. Applied Sciences, 13(9), 5221. https://doi.org/10.3390/app13095221