Cytotoxic and Antioxidant Activity of a Chemically Characterized Extract of Smilax aspera Leaves and Stems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Preparation
2.3. LC/Q-TOF-HRMS Analysis
Quantification of Flavonoids by LC/Q-TOF-HRMS
2.4. Determination of Total Phenolic Content
2.5. Estimation of Antioxidant Activity
2.5.1. DPPH• (2,2-Diphenyl-1-picrylhydrazyl) Radical Scavenging Assay
2.5.2. ABTS•+ (2,2′-Azinobis[3-ethylbenzthiazoline-6-acid]) Radical Scavenging Assay
2.6. Evaluation of Cytotoxic Activity
2.6.1. Cell Treatment and Exposure to the Extract
2.6.2. Cell Viability Assessment Protocol (Alamar Blue Assay)
2.6.3. Giemsa Staining
2.6.4. Data Analysis
3. Results and Discussion
3.1. Identification of Metabolites by LC/Q-TOF/HRMS Analysis
3.2. Quantification of Flavonoids, Total Phenolic Content and Antioxidant Activity
3.3. Evaluation of Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cameron, K.M.; Fu, C. A nuclear rDNA phylogeny of Smilax (Smilacaceae). Aliso A J. Syst. Florist. Bot. 2006, 22, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Qi, Z.C.; Xu, X.H.; Comes, H.P.; Koch, M.A.; Jin, X.J.; Fu, C.X.; Qiu, Y.X. Understanding the formation of Mediterranean–African–Asian disjunctions: Evidence for Miocene climate-driven vicariance and recent long-distance dispersal in the tertiary relict Smilax aspera (Smilacaceae). New Phytol. 2014, 204, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Ageel, A.M.; Mossa, J.S.; Al-Yahya, M.A.; Al-Said, M.S.; Tariq, M. Experimental studies on antirheumatic crude drugs used in Saudi traditional medicine. Drugs. Exp. Clin. Res. 1989, 15, 369–372. [Google Scholar] [PubMed]
- Fukunaga, T.; Miura, T.; Furuta, K.; Kato, A. Hypoglycemic effect of the rhizome of Smilax glabra in normal and diabetic mice. Biol. Pharm. Bull. 1997, 20, 44–46. [Google Scholar] [CrossRef] [Green Version]
- She, T.; Zhao, C.; Feng, J.; Wang, L.; Qu, L.; Fang, K.; Cai, S.; Shou, C. Sarsaparilla (Smilax glabra Rhizome) extract inhibits migration and invasion of cancer cells by suppressing TGF-β1 pathway. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeşilada, E.; Sezik, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey IX: Folk medicine in north-west Anatolia. J. Ethnopharmacol. 1999, 64, 195–210. [Google Scholar] [CrossRef]
- Seelinger, M.; Popescu, R.; Giessrigl, B.; Jarukamjorn, K.; Unger, C.; Wallnöfer, B.; Fritzer-Szekeres, M.; Szekeres, T.; Diaz, R.; Jäger, W.; et al. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity. Int. J. Oncol. 2012, 41, 1164–1172. [Google Scholar] [CrossRef] [Green Version]
- Shern, J.F.; Yohe, M.E.; Khan, J. Pediatric Rhabdomyosarcoma. Crit. Rev. Oncog. 2015, 20, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Jian, B.; Su, Y.; Xu, N.; Yu, T.; He, L.; Zhang, X.; Liu, Y.; Jin, M.; Ma, X. Clinical features and prognosis of paediatric rhabdomyosarcoma with bone marrow metastasis: A single Centre experiences in China. BMC Pediatr. 2021, 21, 463. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Bisogno, G.; Garaventa, A.; Cecchetto, G.; Ferrari, A.; Sotti, G.; Donfrancesco, A.; Madon, E.; Casula, L.; Carli, M. Outcomes and prognostic factors after recurrence in children and adolescents with nonmetastatic rhabdomyosarcoma. Cancer 2005, 104, 183–190. [Google Scholar] [CrossRef]
- Kakouri, E.; Hatziagapiou, K.; Bethanis, K.; Nikola, O.A.; Lambrou, G.I.; Tarantilis, P.A. Tumor-Suppressing Properties of Crocus sativus L.: Nature as an Anti-Cancer Agent. Crit. Rev. Oncog. 2017, 22, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Ozleyen, A.; Boyunegmez Tumer, T.; Oluwaseun Adetunji, C.; El Omari, N.; Balahbib, A.; Taheri, Y.; Bouyahya, A.; Martorell, M.; Martins, N.; et al. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Kakouri, E.; Kanakis, C.; Trigas, P.; Tarantilis, P.A. Characterization of the chemical composition of Drimia numidica plant parts using high-resolution mass spectrometry: Study of their total phenolic content and antioxidant activity. Anal. Bioanal. Chem. 2019, 411, 3135–3150. [Google Scholar] [CrossRef] [PubMed]
- Kakouri, E.; Nikola, O.; Kanakis, C.; Hatziagapiou, K.; Lambrou, G.I.; Trigas, P.; Kanaka-Gantenbein, C.; Tarantilis, P.A. Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines. Molecules 2022, 27, 6348. [Google Scholar] [CrossRef]
- DeFilipps, R.A. Smilax L. In Flora Europaea; Tutin, T.G., Burges, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1980; Volume 5, p. 74. [Google Scholar]
- Raúl, S.C.; Beatriz, H.C.; Joseoziel, L.G.; Santos-Sánchez Norma Francenia, S.S. Phenolic Compounds in Genus Smilax (Sarsaparilla). In Phenolic Compounds-Natural Sources, Importance and Applications, 1st ed.; Soto-Hernández, M., Palma-Tenango, M., Garcia-Mateos, M.R., Eds.; Intech: Wellington, New Zealand, 2017; pp. 233–260. [Google Scholar]
- Tian, L.W.; Zhang, Z.; Long, H.L.; Zhang, Y.J. Steroidal Saponins from the Genus Smilax and Their Biological Activities. Nat. Prod. Bioprospecting 2017, 7, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Kanakis, C.D.; Petrakis, E.A.; Kimbaris, A.C.; Pappas, C.; Tarantilis, P.A.; Polissiou, M.G. Classification of Greek Mentha pulegium L. (Pennyroyal) samples, according to geographical location by Fourier transform infrared spectroscopy. Phytochem. Anal. 2012, 23, 34–43. [Google Scholar] [CrossRef]
- Tawaha, K.; Alali, F.Q.; Gharaibeh, M.; Mohammad, M.; El-Elimat, T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 2007, 104, 1372–1378. [Google Scholar] [CrossRef]
- Longo, L.; Vasapollo, G. Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chem. 2006, 94, 226–231. [Google Scholar] [CrossRef]
- Ivanova, A.; Mikhova, B.; Batsalova, T.; Dzhambazov, B.; Kostova, I. New furostanol saponins from Smilax aspera L. and their in vitro cytotoxicity. Fitoterapia 2011, 82, 282–287. [Google Scholar] [CrossRef]
- Challinor, V.L.; Parsons, P.G.; Chap, S.; White, E.F.; Blanchfield, J.T.; Lehmann, R.P.; De Voss, J.J. Steroidal saponins from the roots of Smilax sp.: Structure and bioactivity. Steroids 2012, 77, 504–511. [Google Scholar] [CrossRef]
- Belhouchet, Z.; Sautour, M.; Miyamoto, T.; Lacaille-Dubois, M.A. Steroidal saponins from the roots of Smilax aspera subsp. mauritanica. Chem. Pharm. Bull. 2008, 56, 1324–1327. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Pelayo, R.; Hornero-Mendez, D. Identification and quantitative analysis of carotenoids and their esters from sarsaparilla (Smilax aspera L.) berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [Green Version]
- Akbarirad, H.; Ardabili, A.G.; Kazemeini, S.M.; Khaneghah, A.M. An overview on some of important sources of natural antioxidants. Int. Food Res. J. 2016, 23, 928–933. [Google Scholar]
- Nemzer, B.V.; Yashin, A.Y.; Vedenin, A.N.; Yashin, Y.I.; Yashunsky, D.V.; Nifantiev, N.E.; Kalita, D. Selected powerful natural antioxidants: Structure, food sources, antioxidant activities, and important health benefits. J. Food Res. 2019, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Chevolleau, S.; Mallet, J.F.; Ucciani, E.; Gamisans, J.; Gruber, M. Antioxidant Activity in Leaves of Some Mediterranean Plants. J. Am. Oil Chem. Soc. 1992, 69, 1269–1271. [Google Scholar] [CrossRef]
- Ozsoy, N.; Can, A.; Yanardag, R.; Akev, N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 2008, 110, 571–583. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.I.; Pinto, M.E.; Araujo, S.G.; Castro, A.H.; Duarte-Almeida, J.M.; Rosa, L.H.; Rosa, C.A.; Johann, S.; Lima, L.A. Antioxidant and antifungal activities of Smilax campestris Griseb. (Smilacaceae). Nat. Prod. Res. 2014, 28, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Demo, A.; Petrakis, C.; Kefalas, P.; Boskou, D. Nutrient antioxidants in some herbs and Mediterranean plant leaves. Food Res. Int. 1998, 31, 351–354. [Google Scholar] [CrossRef]
- Yildiz, Ö.Ş.; Ayanoglu, F.; Bahadirli, N.P. Some morphological and chemical characteristics of Sarsaparilla (Smilax aspera L., Smilax excelsa L.). JAFES 2018, 23, 254–261. [Google Scholar]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Hatziagapiou, K.; Braoudaki, M.; Karpusas, M.; Tzortzatou-Stathopoulou, F. Evaluation of antitumor activity of gefitinib in pediatric glioblastoma and neuroblastoma cells. Clin. Lab. 2011, 57, 781–784. [Google Scholar]
- Brouwer, T.P.; van der Zanden, S.Y.; van der Ploeg, M.; van Eendenburg, J.D.H.; Bonsing, B.A.; de Miranda, N.F.C.C.; Neefjes, J.J.; Vahrmeijer, A.L. The identification of the anthracycline aclarubicin as an effective cytotoxic agent for pancreatic cancer. Anticancer Drugs. 2022, 33, 614–621. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, S.; Li, N.; Ho, A.; Kiang, K.; Zhang, X.; Cheng, Y.S.; Poon, M.W.; Lee, D.; Pu, J.; et al. Rutin increases the cytotoxicity of temozolomide in glioblastoma via autophagy inhibition. J. Neurooncol. 2017, 132, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Uddin, S.J.; Grice, I.D.; Tiralongo, E. Cytotoxic activity screening of Bangladeshi medicinal plant extracts. J. Nat. Med. 2014, 68, 246–252. [Google Scholar] [CrossRef]
- Lombardi, V.R.; Carrera, I.; Cacabelos, R. In Vitro Screening for Cytotoxic Activity of Herbal Extracts. Evid. Based Complement. Altern. Med. 2017, 2017, 2675631. [Google Scholar] [CrossRef]
- Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity—Exploring the armoury of obscurity. Saudi Pharm. J. 2018, 26, 177–190. [Google Scholar] [CrossRef]
- Farha, A.K.; Gan, R.Y.; Li, H.B.; Wu, D.T.; Atanasov, A.G.; Gul, K.; Zhang, J.R.; Yang, Q.Q.; Corke, H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit. Rev. Food Sci. Nutr. 2020, 62, 832–859. [Google Scholar] [CrossRef]
- Satari, A.; Ghasemi, S.; Habtemariam, S.; Asgharian, S.; Lorigooini, Z. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evid. Based Complement. Altern. 2021, 2021, 9913179. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.P.; Hao, Y.L.; Chen, S.L.; Jia, G.J.; Guo, Y.H.; Zhang, G.L.; Wang, C.H.; Cheng, R.; Hu, T.; Zhang, X.; et al. Rutin induces apoptosis via P53 up-regulation in human glioma CHME cells. Transl. Cancer Res. 2019, 8, 2005–2013. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.L.; Silva, A.R.; Pitanga, B.P.; Sousa, C.S.; Grangeiro, M.S.; Fragomeni, B.O.; Coelho, P.L.; Oliveira, M.N.; Menezes-Filho, N.J.; Costa, M.F.; et al. Antiproliferative, proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells. Food Chem. 2011, 127, 404–411. [Google Scholar] [CrossRef]
- You, Y.; Wang, R.; Shao, N.; Zhi, F.; Yang, Y. Luteolin suppresses tumor proliferation through inducing apoptosis and autophagy via MAPK activation in glioma. Onco. Targets Ther. 2019, 12, 2383–2396. [Google Scholar] [CrossRef] [Green Version]
- Anson, D.M.; Wilcox, R.M.; Huseman, E.D.; Stump, T.A.; Paris, R.L.; Darkwah, B.O.; Lin, S.; Adegoke, A.O.; Gryka, R.J.; Jean-Louis, D.S.; et al. Luteolin Decreases Epidermal Growth Factor Receptor-Mediated Cell Proliferation and Induces Apoptosis in Glioblastoma Cell Lines. Basic Clin. Pharmacol. Toxicol. 2018, 123, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Park, B.S.; Kang, H.M.; Kim, J.H.; Shin, S.H.; Kim, I.R. Role of Luteolin-Induced Apoptosis and Autophagy in Human Glioblastoma Cell Lines. Medicina 2021, 57, 879. [Google Scholar] [CrossRef] [PubMed]
- Sobolewska, D.; Galanty, A.; Grabowska, K.; Makowska-Was, J.; Wrobel-Biedrawa, D.; Podolak, I. Saponins as cytotoxic agents: An update (2010-2018). Part I-steroidal saponins. Phytochem Rev. 2020, 19, 139–189. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Zheng, L.; Dong, D.; Xu, L.; Yin, L.; Xu, Y.; Qi, Y.; Han, X.; Peng, J. Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: A potential new drug for treatment of glioblastoma multiforme. Food Chem. Toxicol. 2013, 59, 657–669. [Google Scholar] [CrossRef]
- Cai, S.; Risinger, A.L.; Petersen, C.L.; Grkovic, T.; O’Keefe, B.R.; Mooberry, S.L.; Cichewicz, R.H. Anacolosins A-F and Corymbulosins X and Y, Clerodane Diterpenes from Anacolosa clarkii Exhibiting Cytotoxicity toward Pediatric Cancer Cell Lines. J. Nat. Prod. 2019, 82, 928–936. [Google Scholar] [CrossRef]
- Menke, K.; Schwermer, M.; Schramm, A.; Zuzak, T.J. Preclinical Evaluation of Antitumoral and Cytotoxic Properties of Viscum album Fraxini Extract on Pediatric Tumor Cells. Planta Med. 2019, 85, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Kolimar, D.; Spittler, A.; Wisgrill, L.; Herbold, C.W.; Abranko, L.; Berry, D. Conversion of Rutin, a Prevalent Dietary Flavonol, by the Human Gut Microbiota. Front. Microbiol. 2020, 11, 585428. [Google Scholar] [CrossRef]
- Weiz, G.; Breccia, J.D.; Mazzaferro, L.S. Screening and quantification of the enzymatic deglycosylation of the plant flavonoid rutin by UV-visible spectrometry. Food Chem. 2017, 229, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Berndt, K.; Campanile, C.; Muff, R.; Strehler, E.; Born, W.; Fuchs, B. Evaluation of quercetin as a potential drug in osteosarcoma treatment. Anticancer Res. 2013, 33, 1297–1306. [Google Scholar] [PubMed]
- Lan, H.; Hong, W.; Fan, P.; Qian, D.; Zhu, J.; Bai, B. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma. Cells. Cell. Physiol. Biochem. 2017, 43, 553–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Yin, J.; Jia, Q.; Wang, J.; Zou, C.; Brewer, K.J.; Colombo, C.; Wang, Y.; Huang, G.; Shen, J. Quercetin induces apoptosis in the methotrexate-resistant osteosarcoma cell line U2-OS/MTX300 via mitochondrial dysfunction and dephosphorylation of Akt. Oncol. Rep. 2011, 26, 687–693. [Google Scholar]
Peak Number | Uv Max | Identification | Molecular Formula | ESI (+) | ESI (−) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observed Mass | Mass Error (Δm) | [M + H}+ (m/z) | tR | Observed Mass | Mass Error (Δm) | [M + H)− (m/z) | tR | ||||
1 * | 280 | Catechin | C15H14O6 | 291.0860 | −1.03 | 165.0538; 139.0387; 123.0439 | 2.07 | 289.0710 | −2.77 | 168.0385; 151.0393; 125.0236; 109.0292 | 1.81 |
2 | 325 | Chlorogenic acid | C16H18O9 | 355.1025 | 0.28 | 163.0389; 145.0282; 117.0331 | 2.33 | 353.0872 | −1.70 | 191.0557; 173.0448; 135.0453 | 2.46 |
3 | 320 | Caffeoylshikimic acid | C16H16O8 | 337.0919 | 0.30 | 163.0389; 145.0282; 117.0332 | 3.72 | 335.0769 | −0.84 | 291.0880; 179.0345; 135.0449 | 3.80 |
4 | 210 | Cinchonain 11a | C39H32O15 | 741.1813 | −0.13 | 289.0706; 179.0336 | 5.43 | 739.1672 | 0.54 | 449.0852; 339.0510; 177.0177 | 4.78 |
5 | 320 | Isoschaftoside | C26H28O14 | 565.1543 | −1.59 | 499.1213; 475.1043; 445.0951; 433.0881; 427.0985; 409.0919; 391.0800; | 5.75 | n.d. | |||
6 * | 357 | Rutin | C27H30O16 | 611.1604 | −0.33 | 303.0499 | 5.87 | 609.1453 | −1.51 | 300.0268; 271.0241; 255.0292; 151.0032 | 5.97 |
7 | 260 | Quercetin hexoside | C21H20O12 | 465.1025 | −0.43 | 303.0489; 257.0399; 165.0536 | 6.30 | 463.0871 | −1.51 | 300.0267; 271.0240; 151.0029 | 6.45 |
8 | 267 | Kaempferol hexoside-pentoside | C27H30O15 | 595.1658 | 0.17 | 287.0552; 269.0918; 241.0437 | 6.99 | 593.1509 | −0.50 | 327.0473; 285.0388; 255.0288; 227.0343; 151.0054 | 7.06 |
9 * | 220 | Luteolin hexoside | C21H20O11 | 449.1077 | −0.22 | 287.0550; 137.0229 | 7.07 | 447.0922 | −2.46 | 243.0292; 217.0162; 151.0031 | 7.12 |
10 | 220 | Quercitrin | C21H20O11 | 449.1077 | −0.22 | 303.0491; 165.0576 | 7.07 | 447.0922 | −2.46 | 301.0303; 137.0278 | 7.12 |
11 | 280 | Isorhamnetin hexoside-pentoside | C28H32O16 | 625.1761 | −0.32 | 317.0650; 308.1104 | 7.20 | 623.1611 | −1.12 | 315.0492; 285.0395; 271.0245; 243.0292; 151.0041 | 7.23 |
12 | 260 | Isorhamnetin hexoside | C22H22O12 | n.d. | 447.1017 | −4.69 | 315.0520; 151.0045 | 7.27 | |||
13 | 213 | Cinchonain Ia/Ib ** | C24H20O9 | 453.1175 | −1.10 | 343.0794; 191.0334 | 7.54 | 451.1028 | −1.55 | 341.0656; 189.0190 | 7.51 |
14 | 220 | Resveratrol | C14H12O3 | 229.0859 | 0.00 | 135.0428; 107.0497; 79.0550 | 7.70 | n.d. | |||
15 * | 218 | Luteolin | C15H10O6 | n.d. | 285.0392 | −4.56 | 267.0258; 213.0525; 151.9210 133.0281 | 9.14 | |||
16 | - | Parillin | C51H84O22 | 1049.5525 | −0.19 | 273.2220; 255.2120 | 9.55 | n.d. | |||
17 | 277 | Naringenin | C15H12O5 | n.d. | 271.0622 | 3.69 | 151.0031; 107.01293 | 10.21 | |||
18 | - | Gracillin | C45H72O17 | 885.4855 | 0.68 | 723.4281; 271.2064; 253.1948 | 10.66 | n.d. | |||
19 | - | Pseudoprotodioscin | C51H82O21 | 1031.5428 | 0.68 | 397.3085; 253.1943 | 10.87 | n.d. | |||
20 | - | Smilaxchinoside A or (25R) Smilaxchinoside A ** | C51H82O22 | 1047.5366 | −0.38 | 271.2062; 253.1956 | 10.98 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakouri, E.; Hatziagapiou, K.; Kanakis, C.; Nikola, O.; Lambrou, G.I.; Trigas, P.; Kanaka-Gantenbein, C.; Tarantilis, P.A. Cytotoxic and Antioxidant Activity of a Chemically Characterized Extract of Smilax aspera Leaves and Stems. Appl. Sci. 2023, 13, 4784. https://doi.org/10.3390/app13084784
Kakouri E, Hatziagapiou K, Kanakis C, Nikola O, Lambrou GI, Trigas P, Kanaka-Gantenbein C, Tarantilis PA. Cytotoxic and Antioxidant Activity of a Chemically Characterized Extract of Smilax aspera Leaves and Stems. Applied Sciences. 2023; 13(8):4784. https://doi.org/10.3390/app13084784
Chicago/Turabian StyleKakouri, Eleni, Kyriaki Hatziagapiou, Charalabos Kanakis, Olti Nikola, George I. Lambrou, Panayiotis Trigas, Christina Kanaka-Gantenbein, and Petros A. Tarantilis. 2023. "Cytotoxic and Antioxidant Activity of a Chemically Characterized Extract of Smilax aspera Leaves and Stems" Applied Sciences 13, no. 8: 4784. https://doi.org/10.3390/app13084784
APA StyleKakouri, E., Hatziagapiou, K., Kanakis, C., Nikola, O., Lambrou, G. I., Trigas, P., Kanaka-Gantenbein, C., & Tarantilis, P. A. (2023). Cytotoxic and Antioxidant Activity of a Chemically Characterized Extract of Smilax aspera Leaves and Stems. Applied Sciences, 13(8), 4784. https://doi.org/10.3390/app13084784