Automatic Selective Encryption of DICOM Images
Abstract
:1. Introduction and Related Work
Related Work
2. The DICOM Image Encryption: Motivations and Limitations
2.1. Limitations
2.2. Proposed Extension to the DICOM Standard and Other Frameworks
3. The Proposed Approach
3.1. Approach I: Multi-Region Selective Encryption Approach for Mammography DICOM Images
3.1.1. Encryption Cost Estimation
3.1.2. Multi-Region Encryption Process
3.1.3. ROI Data Distribution and Thresholds’ Estimation
- Calculate region probability:
- 2.
- Sort ROI pixels in descending order (based on pixel intensities).
- 3.
- Allocate pixels’ intensities that have probability equal to the region probability (), starting at the minimum value of pixels’ intensities, until the region probability is reached. Then, assign the region threshold to the maximum reached pixel intensity (). Next, after removing pixels corresponding to , can be determined based on probability in the same manner as . Henceforth, thresholds were determined based on the following order .
- 4.
- Segment ROI into multi-region, using estimated pixels’ thresholds, where regions are defined as shown below:
3.1.4. Medical Images’ Statistical Properties
3.1.5. Managing Segmentation Map
3.2. Approach II: Automatic Selective Encryption of Multi-Frame DICOM Images
3.2.1. The Multi-Frame DICOM Object
3.2.2. The Multi-Frame Encryption Process
Holistic-Based SE Approach
Frame-Based SE Approach
4. Performance Analysis and Discussion
4.1. Approach I
4.1.1. Segmentation Accuracy
4.1.2. Security Evaluation
4.1.3. Time Performance and Discussion
Approach | Hardware | Software | File Size |
Encryption Time (s) |
Decryption Time (s) |
Encryption Speed (pixel/s) |
Encryption Speed (bit/s) |
---|---|---|---|---|---|---|---|
Statistical Selective Approach [44] | Intel Core 2 Duo, 3 GHZ CPU, 2 GB RAM Intel | MATLAB R2013b and Microsoft Windows 7 | 512 × 512: 0.26 MB (8-bit depth) | 0.0468 | – | 5.6 × 106 | 44.87 × 106 |
Secure Quaternion Fesistel Cipher (S-QFC) [43] | Intel(R) Core(TM) i5-3570 CPU @ 3.40 GHz, 16 GB RAM | MATLAB R2013b and Microsoft Windows 7 | 512 × 512: 0.53 MB (16-bit depth) | 1.93 × 102 | – | 0.0014 × 106 | 0.0022 × 106 |
Fast Quaternion Fesistel Cipher (F-QFC) [42] | Intel(R) Core(TM) i5-3570 CPU @ 3.40 GHz, 16 GB RAM | MATLAB R2013b and Microsoft Windows 7 | 512 × 512: 0.26 MB (8-bit depth) | 1.81 × 102 | – | 0.0015 × 106 | 0.0024 × 106 |
Adaptive multi-region encryption [13,45] | Intel i7-820, CPU @ 3.40 GHz, 16 GB RAM | MATLAB 7.10 and Microsoft Windows 7 | 512 × 512: 0.52 MB (16-bit depth) | 10.63 | – | 0.0246 × 106 | 0.4 × 106 |
Proposed approach (LSE) | Intel(R) Core(TM) i5-3570 CPU @ 3.40 GHz, 16 GB RAM | Cython, Python 2.7 and Ubuntu 16.04 | 2430 × 2140: 41.60 MB (16-bit depth) | 0.11 | 0.096 | 5.09 × 107 | 8.2 × 108 |
4.2. Approach II
4.2.1. Security Evaluation
4.2.2. Time Performance and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- DICOM. Part 15, NEMA. 2017. Available online: http://dicom.nema.org/medical/dicom/current/output/pdf/part15.pdf (accessed on 25 May 2018).
- NEMA. Digital Imaging and Communication in Medicine (DICOM). NEMA. Available online: http://dicom.nema.org/ (accessed on 25 May 2018).
- Cao, F.; Huang, H.; Zhou, X. Medical image security in a HIPAA mandated PACS environment. Comput. Med. Imaging Graph. 2003, 27, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Hodge, J.G., Jr.; Gostin, L.O.; Jacobson, P.D. Legal issues concerning electronic health information: Privacy, quality, and liability. JAMA 1999, 282, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Lian, S. Multimedia Content Encryption: Techniques and Applications; Auerbach Publications: Boca Raton, FL, USA, 17 September 2008. [Google Scholar]
- Abd Elminaam, D.S.; Abdual-Kader, H.M.; Hadhoud, M.M. Evaluating the Performance of Symmetric Encryption Algorithms. Int. J. Netw. Secur. 2010, 10, 216–222. [Google Scholar]
- Lee, H.; Lee, K.; Shin, Y. Aes implementation and performance evaluation on 8-bit microcontrollers. arXiv 2009, arXiv:0911.0482. [Google Scholar]
- Spanos, G.A.; Maples, T.B. Performance study of a selective encryption scheme for the security of networked, real-time video. In Proceedings of the Computer Communications and Networks, Las Vegas, NV, USA, 20–23 September 1995. [Google Scholar]
- Laouamer, L.; Al Shaikh, M.; Nana, L.T.; Pascu, A.C. Informed symmetric encryption algorithm for DICOM medical image based on N-grams. In Proceedings of the 2013 Science and Information Conference, London, UK, 7–9 October 2013; pp. 353–357. [Google Scholar]
- Marwan, M.; Kartit, A.; Ouahmane, H. A Novel Approach for Security in Cloud-Based Medical Image Storage Using Segmentation. In Proceedings of the International Symposium on Ubiquitous Networking, Casablanca, Morocco, 9–12 May 2017; Springer: Cham, Switzerland, 2017; pp. 247–258. [Google Scholar]
- Lalitha, Y.S.; Latte, M.V. Lossless and lossy compression of DICOM images with scalable ROI. Int. J. Comput. Sci. Netw. Secur. 2010, 10, 276–281. [Google Scholar]
- Mahmood, A.B.; Dony, R.D. Adaptive encryption using pseudo-noise sequences for medical images. In Proceedings of the 2013 Third International Conference on Communications and Information Technology (ICCIT), Beirut, Lebanon, 19–21 June 2013; pp. 39–43. [Google Scholar]
- Mahmood, A.; Dony, R.; Areibi, S. An adaptive encryption based genetic algorithms for medical images. In Proceedings of the 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Southampton, UK, 22 September 2013; IEEE: Piscatvie, NJ, USA; pp. 1–6. [Google Scholar]
- Kanso, A.; Ghebleh, M. An efficient and robust image encryption scheme for medical applications. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 98–116. [Google Scholar] [CrossRef]
- Mahmood, A.; Hamed, T.; Obimbo, C.; Dony, R. Improving the security of the medical images. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.; Muhammad, K.; Baik, S.W.; Rho, S.; Jan, Z.; Yeo, S.S.; Mehmood, I. Mobile-cloud assisted framework for selective encryption of medical images with steganography for resource-constrained devices. Multimed. Tools Appl. 2017, 76, 3519–3536. [Google Scholar] [CrossRef]
- Mahmood, A.B.; Dony, R.D. Segmentation based encryption method for medical images. In Proceedings of the 2011 International Conference for Internet Technology and Secured Transactions, Abu Dhabi, United Arab Emirates, 11–14 December 2011; pp. 596–601. [Google Scholar]
- Brahimi, Z.; Bessalah, H.; Tarabet, A.; Kholladi, M.K. A new selective encryption technique of JPEG2000 codestream for medical images transmission. In Proceedings of the 2008 5th International Multi-Conference on Systems, Signals and Devices, Amman, Jordan, 20–22 July 2008; pp. 1–4. [Google Scholar]
- Norcen, R.; Podesser, M.; Pommer, A.; Schmidt, H.P.; Uhl, A. Confidential storage and transmission of medical image data. Comput. Biol. Med. 2003, 33, 277–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Panetta, K.; Agaian, S. A lossless encryption method for medical images using edge maps. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3707–3710. [Google Scholar]
- Puech, W.; Rodrigues, J.M. Crypto-compression of medical images by selective encryption of DCT. In Proceedings of the 2005 13th European signal processing conference, Antalya, Turkey, 4–8 September 2005; pp. 1–4. [Google Scholar]
- Ou, Y.; Sur, C.; Rhee, K.H. Region-based selective encryption for medical imaging. In Proceedings of the International Workshop on Frontiers in Algorithmics, Lanzhou, China, 1–3 August 2007; Springer: Berlin/Heidelberg, Germany; pp. 62–73. [Google Scholar]
- Elhoseny, M.; Shankar, K.; Lakshmanaprabu, S.K.; Maseleno, A.; Arunkumar, N. Hybrid optimization with cryptography encryption for medical image security in Internet of Things. Neural Comput. Appl. 2020, 32, 10979–10993. [Google Scholar] [CrossRef]
- Kobayashi, L.O.; Furuie, S.S.; Barreto, P.S. Providing integrity and authenticity in DICOM images: A novel approach. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Natsheh, Q.; Sălăgea, A.; Edirisinghe, E. Securing DICOM images based on adaptive pixel thresholding approach. In Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 18–21 June 2018; pp. 280–285. [Google Scholar]
- NEMA. DICOM. Supplement 142-Page 44. 2017. Available online: ftp://medical.nema.org/medical/dicom/final/sup142_ft.pdf; https://www.dicomstandard.org/News-dir/ftsup/docs/sups/sup142.pdf (accessed on 2 December 2022).
- NEMA. DICOM Patient Identification Module–Page 8. 2017. Available online: http://dicom.nema.org/Dicom/News/june2014/docs/cp1343_ft.pd; https://dicom.nema.org/medical/Dicom/2016c/output/chtml/part03/sect_C.2.2.html (accessed on 2 December 2022).
- NEMA; DICOM. Supplement 31-Page 5. 2019. Available online: Ftp://medical.nema.org/medical/dicom/Final/sup31_ft.pdf (accessed on 18 March 2023).
- Natsheh, Q.N.; Li, B.; Gale, A.G. Security of multi-frame DICOM images using XOR encryption approach. Procedia Comput. Sci. 2016, 90, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Lei, T. Statistics of Medical Imaging; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media: Second Edition; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar]
- The Cancer Imaging Archive (TCIA). The Cancer Imaging Archive (TCIA)-A Growing Archive of Medical Images of Cancer. Available online: http://www.cancerimagingarchive.net/ (accessed on 15 November 2017).
- Nithya, R.; Santhi, B. Computer-aided diagnosis system Mammogram Density Classification. Int. J. Biomed. Eng. Technol. 2016, 22, 162–177. [Google Scholar] [CrossRef]
- Fan, S.K.; Lin, Y.; Wu, C.C. Image thresholding using a novel estimation method in generalized Gaussian distribution mixture modeling. Neurocomputing 2008, 72, 500–512. [Google Scholar] [CrossRef]
- Housley, R. “www.ietf.org” Internet Engineering Steering Group/RSA Laboratories, August 2002. Available online: https://www.ietf.org/rfc/rfc3369.txt (accessed on 15 December 2018).
- Clunie, D.; Parisot, C.C.; Verduin, K.V.K.; Hassold, B.B. New Enhanced Multi-frame DICOM CT and MR Objects to Enhance Performance and Image Processing on PACS and Workstations. 22 May 2004. Available online: https://www.dclunie.com/papers/SCAR_20040522_CTMRMF.pdf (accessed on 15 December 2018).
- Rubin, D.D. The Cancer Imaging Archive, CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for Screening Mammography). Department of Biomedical Data Science, Radiology, and Medicine, Stanford University School of Medicine, 21 November 2018. Available online: https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM; https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22516629 (accessed on 18 March 2023).
- Gray, R.M. Entropy and Information Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Abd El-Samie, F.E.; Ahmed, H.E.; Elashry, I.F.; Shahieen, M.H.; Faragallah, O.S.; El-Rabaie, E.S.; Alshebeili, S.A. Image Encryption: A Communication Perspective; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Etemadi Borujeni, S.; Eshghi, M. Chaotic image encryption design using tompkins-paige algorithm. Math. Probl. Eng. 2009, 2009, 762652. [Google Scholar] [CrossRef] [Green Version]
- Lyons, J. Practical Cryptography, Practical Cryptography. 2009. Available online: http://www.practicalcryptography.com/cryptanalysis/text-characterisation/chi-squared-statistic/ (accessed on 30 May 2019).
- Dzwonkowski, M.; Papaj, M.; Rykaczewski, R. A new quaternion-based encryption method for DICOM images. IEEE Trans. Image Process. 2015, 24, 4614–4622. [Google Scholar] [CrossRef] [PubMed]
- Dzwonkowski, M.; Rykaczewski, R. Secure quaternion feistel cipher for DICOM images. IEEE Trans. Image Process. 2018, 28, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Noura, M.; Noura, H.; Chehab, A.; Mansour, M.M.; Sleem, L.; Couturier, R. A dynamic approach for a lightweight and secure cipher for medical images. Multimed. Tools Appl. 2018, 77, 31397–31426. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A. Adaptive Approaches for Medical Imaging Security. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2015. [Google Scholar]
- Newitt, D.; Hylton, N. The Cancer Imaging Archive, Single Site Breast DCE-MRI Data and Segmentations from Patients Undergoing Neoadjuvant Chemotherapy. 2016. Available online: https://wiki.cancerimagingarchive.net/display/Public/Breast-MRI-NACT-Pilot; https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22513764 (accessed on 2 December 2022).
- Al-Haj, A. Providing integrity, authenticity, and confidentiality for header and pixel data of DICOM images. J. Digit. Imaging 2015, 28, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Segmentation Approach | Security Level | CORR | Entropy (bits/pixel) | MAE | NPCR | Chi-Square | PSNR (dB) | UACI |
---|---|---|---|---|---|---|---|---|
LSE | 0 | −37.87 × 10−3 | 14.54 | 3.07 × 108 | 100 | 2.99 × 106 | 3.82 | 4.68 × 105 |
1 | −50.57 × 10−3 | 15.15 | 2.64 × 108 | 100 | 3.78 × 106 | 3.77 | 4.03 × 105 | |
2 | 31.11 × 10−3 | 15.13 | 2.15 × 108 | 100 | 3.49 × 106 | 3.74 | 3.28 × 105 | |
Average | −39.84 × 10−3 | 14.94 | 2.62 × 108 | 100 | 3.42 × 106 | 3.78 | 4.00 × 105 |
Number of Frames | Pixel Intensity | Frame Size | ||
---|---|---|---|---|
Median | ||||
69 | 847.975 | 960.537 | 0 | 2760 × 1200 |
Approach | Pixel Intensity | ||
---|---|---|---|
Median | |||
Frame-Based SE | 1358.45 | 745.62 | 1038.53 |
Holistic-Based SE | 1739.14 | 940.98 | 2001.08 |
Encryption Approach | CORR | Entropy (bits/pixel) | MAE | NPCR | PSNR (dB) | UACI (%) |
---|---|---|---|---|---|---|
Frame-Based SE | 0.00098 | 15.28 | 531,628.3 | 100 | 16.03 | 92.27 |
Holistic-Based SE | 0.000088 | 15.08 | 421,078.6 | 100 | 16.13 | 93.3 |
Encryption Approach | Encryption Speed(Frame/s) |
---|---|
Frame-Based SE | 10,572 |
Holistic-Based SE | 30.25 |
Naïve Encryption Approach | 24.64 |
Encryption Approach | Original Data Size (MB) | Encrypted Data Size (MB) |
---|---|---|
Frame-Based SE | 457.06 | 3.12 |
Holistic-Based SE | 457.06 | 406.23 |
Naïve Encryption Approach | 457.06 | 204.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natsheh, Q.; Sălăgean, A.; Zhou, D.; Edirisinghe, E. Automatic Selective Encryption of DICOM Images. Appl. Sci. 2023, 13, 4779. https://doi.org/10.3390/app13084779
Natsheh Q, Sălăgean A, Zhou D, Edirisinghe E. Automatic Selective Encryption of DICOM Images. Applied Sciences. 2023; 13(8):4779. https://doi.org/10.3390/app13084779
Chicago/Turabian StyleNatsheh, Qamar, Ana Sălăgean, Diwei Zhou, and Eran Edirisinghe. 2023. "Automatic Selective Encryption of DICOM Images" Applied Sciences 13, no. 8: 4779. https://doi.org/10.3390/app13084779
APA StyleNatsheh, Q., Sălăgean, A., Zhou, D., & Edirisinghe, E. (2023). Automatic Selective Encryption of DICOM Images. Applied Sciences, 13(8), 4779. https://doi.org/10.3390/app13084779