The Cyclic Fatigue Resistance of Different Lengths of CM Gold Wire and CM Blue Wire NiTi Alloy Endodontic Rotary Files: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Scanning Electron Microscopy Analysis
2.3. Energy-Dispersive X-ray Spectroscopy Analysis
2.4. Experimental Cyclic Fatigue Model
2.5. Statistical Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azim, A.A.; Tarrosh, M.; Azim, K.A.; Piasecki, L. Comparison between Single-file Rotary Systems: Part 2-The Effect of Length of the Instrument Subjected to Cyclic Loading on Cyclic Fatigue Resistance. J. Endod. 2018, 44, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Mamani, M.; Rios, D.; Duarte, M.A.H.; Santiago Junior, J.F.; Honório, H.M. Manual vs. rotary instrumentation in endodontic treatment of permanent teeth: A systematic review and meta-analysis. Am. J. Dent. 2019, 32, 311–324. [Google Scholar] [PubMed]
- Uslu, G.; Gundogar, M.; Özyurek, T.; Plotino, G. Cyclic fatigue resistance of reduced-taper nickel-titanium (NiTi) instruments in doubled-curved (S-shaped) canals at body temperature. J. Dent. Res. Dent. Clin. Dent. Prospect. 2020, 14, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, L.; Van Cleynenbreugel, J.; Wevers, M.; Lambrechts, P. Mechanical root canal preparation with NiTi rotary instruments: Rationale, performance and safety. Status report for the American Journal of Dentistry. Am. J. Dent. 2001, 14, 324–333. [Google Scholar]
- Cheung, G. Instrument fracture: Mechanisms, removal of fragments, and clinical outcomes. Endod. Top. 2009, 16, 1–26. [Google Scholar] [CrossRef]
- Faus-Llácer, V.; Hamoud-Kharrat, N.; Marhuenda Ramos, M.T.; Faus-Matoses, I.; Zubizarreta-Macho, Á.; Ruiz Sánchez, C.; Faus-Matoses, V. Influence of the Geometrical Cross-Section Design on the Dynamic Cyclic Fatigue Resistance of NiTi Endodontic Rotary Files-An In Vitro Study. J. Clin. Med. 2021, 10, 4713. [Google Scholar] [CrossRef]
- Faus-Llácer, V.; Kharrat, N.H.; Ruiz-Sánchez, C.; Faus-Matoses, I.; Zubizarreta-Macho, Á.; Faus-Matoses, V. The Effect of Taper and Apical Diameter on the Cyclic Fatigue Resistance of Rotary Endodontic Files Using an Experimental Electronic Device. Appl. Sci. 2021, 11, 863. [Google Scholar] [CrossRef]
- Kwak, S.W.; Ha, J.H.; Lee, C.J.; El Abed, R.; Abu-Tahun, I.H.; Kim, H.C. Effects of Pitch Length and Heat Treatment on the Mechanical Properties of the Glide Path Preparation Instruments. J. Endod. 2016, 42, 788–792. [Google Scholar] [CrossRef]
- Gutmann, J.L.; Gao, Y. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: A focused review. Int. Endod. J. 2012, 45, 113–128. [Google Scholar] [CrossRef]
- Cheung, G.S.; Shen, Y.; Darvell, B.W. Effect of environment on low-cycle fatigue of a nickel-titanium instrument. J. Endod. 2007, 33, 1433–1437. [Google Scholar] [CrossRef]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in rotary nickel-titanium files after clinical use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Peters, O.A.; Barbakow, F. Dynamic torque and apical forces of ProFile.04 rotary instruments during preparation of curved canals. Int. Endod. J. 2002, 35, 379–389. [Google Scholar] [CrossRef]
- Varghese, N.O.; Pillai, R.; Sujathen, U.N.; Sainudeen, S.; Antony, A.; Paul, S. Resistance to torsional failure and cyclic fatigue resistance of ProTaper Next, WaveOne, and Mtwo files in continuous and reciprocating motion: An in vitro study. J. Conserv. Dent. 2016, 19, 225–230. [Google Scholar] [CrossRef]
- Larsen, C.M.; Watanabe, I.; Glickman, G.N.; He, J. Cyclic fatigue analysis of a new generation of nickel titanium rotary instruments. J. Endod. 2009, 35, 401–403. [Google Scholar] [CrossRef]
- Kuhn, G.; Tavernier, B.; Jordan, L. Influence of structure on nickel-titanium endodontic instruments failure. J. Endod. 2001, 27, 516–520. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J. Endod. 2009, 35, 1469–1476. [Google Scholar] [CrossRef]
- Tripi, T.R.; Bonaccorso, A.; Condorelli, G.G. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 102, e106–e114. [Google Scholar] [CrossRef]
- Pruett, J.P.; Clement, D.J.; Carnes, D.L., Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J. Endod. 1997, 23, 77–85. [Google Scholar] [CrossRef]
- Gambarini, G.; Gerosa, R.; De Luca, M.; Garala, M.; Testarelli, L. Mechanical properties of a new and improved nickel-titanium alloy for endodontic use: An evaluation of file flexibility. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, 798–800. [Google Scholar] [CrossRef]
- Isik, V.; Kwak, S.W.; Abu-Tahun, I.H.; Ha, J.H.; Kayahan, M.B.; Kim, H.C. Effect of Shaft Length on the Torsional Resistance of Rotary Nickel-titanium Instruments. J. Endod. 2020, 46, 295–300. [Google Scholar] [CrossRef]
- Faus-Matoses, V.; Faus-Llácer, V.; Ruiz-Sánchez, C.; Jaramillo-Vásconez, S.; Faus-Matoses, I.; Martín-Biedma, B.; Zubizarreta-Macho, Á. Effect of Rotational Speed on the Resistance of NiTi Alloy Endodontic Rotary Files to Cyclic Fatigue-An In Vitro Study. J. Clin. Med. 2022, 11, 3143. [Google Scholar] [CrossRef]
- Faus-Matoses, V.; Pérez García, R.; Faus-Llácer, V.; Faus-Matoses, I.; Alonso Ezpeleta, Ó.; Albaladejo Martínez, A.; Zubizarreta-Macho, Á. Comparative Study of the SEM Evaluation, EDX Assessment, Morphometric Analysis, and Cyclic Fatigue Resistance of Three Novel Brands of NiTi Alloy Endodontic Files. Int. J. Environ. Res. Public Health 2022, 19, 4414. [Google Scholar] [CrossRef] [PubMed]
- Zubizarreta-Macho, Á.; Mena Álvarez, J.; Albaladejo Martínez, A.; Segura-Egea, J.J.; Caviedes Brucheli, J.; Agustín-Panadero, R.; López Píriz, R.; Alonso-Ezpeleta, Ó. Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. J. Clin. Med. 2019, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, J.N.R.; Silva, E.J.N.L.; Marques, D.; Belladonna, F.; Simões-Carvalho, M.; Vieira, V.T.L.; Antunes, H.S.; Braz Fernandes, F.M.B.; Versiani, M.A. Design, metallurgical features, mechanical performance and canal preparation of six reciprocating instruments. Int. Endod. J. 2021, 54, 1623–1637. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, C.J.; Peters, O.A. Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J. Endod. 2005, 31, 183–186. [Google Scholar] [CrossRef]
- Haïkel, Y.; Serfaty, R.; Bateman, G.; Senger, B.; Allemann, C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J. Endod. 1999, 25, 434–440. [Google Scholar] [CrossRef]
- ISO 3630–3631; Dentistry—Root Canal Instruments—Part 1: General Requirements and Test Methods. ISO: Geneva, Switzerland, 2008.
- Shen, Y.; Zhou, H.M.; Zheng, Y.F.; Peng, B.; Haapasalo, M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J. Endod. 2013, 39, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Versluis, A.; Kim, H.C.; Lee, W.; Kim, B.M.; Lee, C.J. Flexural stiffness and stresses in nickel-titanium rotary files for various pitch and cross-sectional geometries. J. Endod. 2012, 38, 1399–1403. [Google Scholar] [CrossRef]
- Al Raeesi, D.; Kwak, S.W.; Ha, J.H.; Sulaiman, S.; El Abed, R.; Kim, H.C. Mechanical properties of glide path preparation instruments with different pitch lengths. J. Endod. 2018, 44, 864–868. [Google Scholar] [CrossRef]
- He, R.; Ni, J. Design improvement and failure reduction of endodontic files through finite element analysis: Application to V-Taper file designs. J. Endod. 2010, 36, 1552–1557. [Google Scholar] [CrossRef]
- Keskin, C.; Inan, U.; Demiral, M.; Keleş, A. Cyclic Fatigue Resistance of Reciproc Blue, Reciproc, and WaveOne Gold Reciprocating Instruments. J. Endod. 2017, 43, 1360–1363. [Google Scholar] [CrossRef]
- Arias, A.; Perez-Higueras, J.J.; de la Macorra, J.C. Differences in cyclic fatigue resistance at apical and coronal levels of Reciproc and WaveOne new files. J. Endod. 2012, 38, 1244–1248. [Google Scholar] [CrossRef] [Green Version]
Study Group | n | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
31 mm | 10 | 358.33 a | 38.21 | 302.50 | 412.60 |
25 mm | 10 | 420.78 b | 5.83 | 413.00 | 431.10 |
21 mm | 10 | 485.12 c | 43.43 | 399.10 | 538.10 |
17 mm | 10 | 577.39 d | 40.26 | 502.70 | 632.60 |
Study Group | Weibull Shape (β) | Weibull Scale (η) | ||||||
---|---|---|---|---|---|---|---|---|
Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
31 mm | 11.2531 | 2.8108 | 6.8970 | 18.3606 | 374.8087 | 11.1397 | 353.5990 | 397.2905 |
25 mm | 76.9101 | 18.0821 | 48.5131 | 121.9290 | 423.5920 | 1.8497 | 419.9820 | 427.2329 |
21 mm | 15.8995 | 4.1752 | 9.5030 | 26.6016 | 502.6726 | 10.4693 | 482.5664 | 523.6165 |
17 mm | 18.7645 | 4.7630 | 11.4097 | 30.8603 | 594.4943 | 10.5473 | 574.1773 | 615.5303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faus-Matoses, V.; Faus-Llácer, V.; Ruiz-Sánchez, C.; Prats Gallego, S.; Zubizarreta-Macho, Á.; Solano-Mendoza, B.; Biedma, B.M.; Faus-Matoses, I. The Cyclic Fatigue Resistance of Different Lengths of CM Gold Wire and CM Blue Wire NiTi Alloy Endodontic Rotary Files: An In Vitro Study. Appl. Sci. 2023, 13, 4612. https://doi.org/10.3390/app13074612
Faus-Matoses V, Faus-Llácer V, Ruiz-Sánchez C, Prats Gallego S, Zubizarreta-Macho Á, Solano-Mendoza B, Biedma BM, Faus-Matoses I. The Cyclic Fatigue Resistance of Different Lengths of CM Gold Wire and CM Blue Wire NiTi Alloy Endodontic Rotary Files: An In Vitro Study. Applied Sciences. 2023; 13(7):4612. https://doi.org/10.3390/app13074612
Chicago/Turabian StyleFaus-Matoses, Vicente, Vicente Faus-Llácer, Celia Ruiz-Sánchez, Sofía Prats Gallego, Álvaro Zubizarreta-Macho, Beatriz Solano-Mendoza, Benjamín Martín Biedma, and Ignacio Faus-Matoses. 2023. "The Cyclic Fatigue Resistance of Different Lengths of CM Gold Wire and CM Blue Wire NiTi Alloy Endodontic Rotary Files: An In Vitro Study" Applied Sciences 13, no. 7: 4612. https://doi.org/10.3390/app13074612
APA StyleFaus-Matoses, V., Faus-Llácer, V., Ruiz-Sánchez, C., Prats Gallego, S., Zubizarreta-Macho, Á., Solano-Mendoza, B., Biedma, B. M., & Faus-Matoses, I. (2023). The Cyclic Fatigue Resistance of Different Lengths of CM Gold Wire and CM Blue Wire NiTi Alloy Endodontic Rotary Files: An In Vitro Study. Applied Sciences, 13(7), 4612. https://doi.org/10.3390/app13074612