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Abstract: Background: The objective of the present study was to measure and compare how the
length of CM Gold Wire and CM Blue Wire NiTi alloy endodontic rotary files impacts their resistance
to cyclic fatigue. Methods: A total of 40 sterile endodontic rotary files were chosen and allocated
to the following study groups: (A) 25.06 CM Gold wire NiTi alloy endodontic rotary files, 31 mm
in length (n = 10); (B) 25.06 CM Gold wire NiTi alloy endodontic rotary files, 25 mm in length
(n = 10); (C) 25.06 CM Gold wire NiTi alloy endodontic rotary files, 21 mm in length (n = 10); and
(D) 25.06 CM Blue wire NiTi alloy endodontic rotary files, 17 mm in length (n = 10). A specialized
device was designed using artificial root canal systems made from stainless steel for the dynamic
cyclic fatigue tests, with an apical diameter of 250 µm, curvature angle of 60◦, radius of curvature
of 5 mm, lengths of 31, 25, 21, and 17 mm, and a 6% taper. An individual operator determined
failure of the endodontic rotary instrument through direct observation and the tests were filmed
so as to precisely measure the exact time to failure. The results were analyzed using ANOVA and
Weibull statistical analysis. Results: The results found statistically significant differences across
all study groups (p < 0.05). Conclusions: Rotary file length is inversely proportional to the cyclic
fatigue resistance of the 25.06 CM Gold wire NiTi alloy at 31 mm, 25 mm, and 21 mm in length and
of the 25.06 CM Blue wire NiTi alloy 17 mm length endodontic rotary files, with a greater length
contributing to lower resistance to cyclic fatigue.

Keywords: CM Blue wire; CM Gold wire; cyclic fatigue; endodontics; length; NiTi alloy

1. Introduction

The nickel–titanium (NiTi) alloys used for manufacturing endodontic rotary files are
roughly 56% nickel and 44% titanium by weight [1]. This alloy has unique characteristics
including shape memory and super-elasticity when compared with traditional stainless-
steel endodontic instruments [2]; this can have positive impacts on root canal treatments by
improving the accuracy, speed, and safety of treatment [3]. Additionally, manufacturers
continuously enhance the geometric design of NiTi alloy endodontic rotary files, which has
been proven to impact their mechanical behavior. That being said, failure during root canal
shaping remains a concern [4] as it makes it more difficult to disinfect the entire root canal
system and negatively impacts root canal treatment prognosis as a result [5].
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Several factors influence the chance of failure of NiTi alloy endodontic rotary files,
including whether or not the instruments have a cross-section design [6]. Other factors
include the apical diameter and taper [7], pitch, flute length, and helix angle [8]. Addi-
tional factors that can affect the risk of fracture include dynamic characteristics of these
instruments such as canal geometry [5] and torque [9], in addition to which process is used
for their manufacture, i.e., electropolishing, heat treatment, or ion implantation [9]. Fur-
thermore, NiTi alloy endodontic rotary files are often used alongside sodium hypochlorite,
which may be corrosive to the NiTi alloy, reducing its resistance to failure [10]. Physical
mechanisms of failure include cyclic fatigue, torsional fatigue, or a combination thereof [11].
Torsional failure is caused by the tip of an NiTi alloy endodontic rotary file becoming
trapped in one of the root canal walls while the instrument keeps rotating, causing the file
to fracture once it exceeds the elastic limit of the metal [12–14]. Flexural bending fatigue is
a result of the rotary file being repeatedly exposed to traction and compression cycles at the
point of maximum curvature of the root canal; the plastic eventually deforms as a result of
these stresses, sometimes to the point that the file unexpectedly fractures [11,15,16]. When
a file is in the process of breaking, the high density of surface defects exacerbates the crack
nucleation stage, and cracks continue to propagate during each loading cycle until the same
load as before becomes too great for the remaining intact material, resulting in failure [17].

As a result, manufacturers have sought to reduce failure rates on NiTi alloys and
improve the geometrical design of NiTi alloy endodontic rotary files. A study by Pruett
et al. found that increased apical diameter reduced the cyclic fatigue resistance of NiTi
alloy endodontic rotary files, analyzing teeth with curvature angles of 30◦, 45◦, and 60◦

and a curvature radius of 2 and 5 mm [18]. Furthermore, Gambarini et al., reported that
increased taper measurements also resulted in the files having lower resistance to cyclic
fatigue, using a testing machine at a 45◦ bend [19]. Kwak et al., found that the helix angle
and pitch also reduced the cyclic fatigue resistance of NiTi alloy endodontic rotary files,
observed in a stainless-steel artificial canal with a curvature radius of 3 mm and curvature
angle of 90◦ [8]. That being said, the impact of length of NiTi alloy endodontic rotary files
on their cyclic fatigue resistance has yet to be studied, despite there being a wide range
of lengths available to clinicians, suited to carrying out interventions in all types of root
canal systems [20]. The alteration of the axis, a non-active component of the instrument, is
what results in the difference in lengths. This variation in total length of the instruments
can impact the distribution of stress during the instrumentation process [20]. Researchers
have observed that the overall difference in length can lead to different changes to the
mechanical properties of NiTi files [20].

This study was carried out to measure and compare how the length of CM Gold wire
and CM Blue wire NiTi alloy endodontic rotary files impacts their cyclic fatigue resistance,
with a null hypothesis (H0) stating that the length does not impact the resistance to dynamic
cyclic fatigue of CM Gold wire and CM Blue wire NiTi alloy endodontic rotary files.

2. Materials and Methods
2.1. Study Design

A total of 40 sterile, unused CM Gold wire and CM Blue wire NiTi alloy endodontic rotary
files were selected for use in this in vitro study. A controlled experimental trial was carried out
at the Department of Stomatology of the Faculty of Medicine and Dentistry at the University
of Valencia (Valencia, Spain), between September and October 2022. The selected CM Gold
wire and CM Blue wire NiTi alloy endodontic rotary files were randomly distributed into the
following study groups: (A) 25.06 controlled-memory (CM) Gold wire NiTi alloy endodontic
rotary files, 31 mm in length (Ref.: IRE 3102506, D, Endogal, Galician Endodontics Company,
Lugo, Spain) (n = 10); (B) 25.06 CM Gold wire NiTi alloy endodontic rotary files, 25 mm in
length (Ref.: IRE 2502506) (n = 10); (C) 25.06 CM Gold wire NiTi alloy endodontic rotary files,
21 mm in length (Ref.: IRE 2102506) (n = 10); and (D) 25.06 CM Blue wire NiTi alloy endodontic
rotary files, 17 mm in length (Ref.: SIRKE, EK2, Endogal Kids) (n = 10).



Appl. Sci. 2023, 13, 4612 3 of 9

2.2. Scanning Electron Microscopy Analysis

All NiTi endodontic rotary files were first assessed via scanning electron microscopy
(SEM) (HITACHI S-4800, Fukuoka, Japan) at 30×, 300×, and 600× magnification. This
prior assessment was conducted by the Central Support Service for Experimental Research
of the University of Valencia (Burjassot, Spain) using the following exposure parameters:
20.0 kV acceleration voltage, a resolution between −1.0 nm at 15 kV and 2.0 nm at 1 kV,
and magnification from 100× to 6500×. These parameters were used to carry out surface
characterization so as to rule out any further manufacturing surface defects and evaluate
and compare the geometric design of the NiTi endodontic rotary files (Figure 1). This
methodological procedure has been used in previous studies [6,21,22].
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Figure 1. NiTi alloy endodontic rotary file SEM analysis at (A) 30×, (B) 300×, and (C,D) 600×magnification.

2.3. Energy-Dispersive X-ray Spectroscopy Analysis

In addition, all NiTi endodontic rotary files under study at the Central Support Service
for Experimental Research of the University of Valencia (Burjassot, Spain) underwent an
energy-dispersive X-ray spectroscopy (EDX) using the following exposure parameters:
magnification from 100× to 6500×, acceleration voltage of 20 kV, and a resolution between
−1.0 nm at 15 kV and 2.0 nm at 1 kV in order to evaluate the makeup of the chemical com-
ponents of the files used in the static fatigue tests. This was determined using atomic weight
percent measurement, taken at three randomized locations (Figure 2). This methodological
procedure has also been used in previous studies [6,21,22].
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Figure 2. (A) EDX micro-analysis of the 25.06 CM Gold wire NiTi alloy endodontic rotary files, 31 mm
in length; (B) 25.06 CM Gold wire NiTi alloy endodontic rotary files, 25 mm in length; (C) 25.06 CM
Gold wire NiTi alloy endodontic rotary files, 21 mm in length; and (D) 25.06 CM Blue wire NiTi alloy
endodontic rotary files, 17 mm in length.

2.4. Experimental Cyclic Fatigue Model

Dynamic cyclic fatigue tests were conducted using the aforementioned customized
device (Utility Model Patent No. ES1219520) [23] at room temperature (20 ◦C) to ana-
lyze the mechanical behavior of the instruments as per Martins et al. [24]. The structure
of the fatigue-testing device was designed via computer-aided design and engineering
(CAD/CAE) and 2D/3D software (Midas FX+®, Brunleys, Milton Keynes, UK), and it was
printed with a 3D printer (ProJet® 6000 3D Systems©, Rock Hill, SC, USA) (Figure 3).
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The custom artificial root canals were performed using CAD/CAE 2D/3D software v1
for inverse engineering technology as per Schneider’s measuring technique [21], with a 60◦

curvature and 5 mm radius of curvature. In addition, four lengths were configured to match
the different lengths of the NiTi alloy endodontic rotary file from each study group: 31 mm,
25 mm, 21 mm, and 17 mm. Electrical discharge machining (EDM) molybdenum wire-cut
technology (Cocchiola S.A., Buenos Aires, Argentina) was used to create the artificial root
canal from stainless steel. This process ensures that the root canal walls and the NiTi
endodontic reciprocating files are in close contact. The artificial root canal was positioned
on its support, and a light-dependent resistor (LDR) sensor (Ref.: C000025, Arduino LLC®,
Ivrea, Italy), located at the apex of the artificial canal, was used to when the endodontic
rotary instrument failed. The LDR sensor quantified the continuous light source emitted
by a high-brightness white LED (20,000 mcd) (Ref.: 12.675/5/b/c/20k, Batuled, Coslada,
Spain), which was placed opposite the artificial root canal. An LDR (Ref.: C000025, Arduino
LLC®) sensor with a frequency of 50 ms was used to detect the light signals that were
emitted by this LED sensor so as to determine the exact time of failure.

The speed and direction of the movement generated by the brushed DC gear motor
(Ref.: 1589, Pololu® Corporation, Las Vegas, NV, USA) and controlled by the driver (Ref.:
DRV8835, Pololu® Corporation, Las Vegas, NV, USA) were transferred via a roller bearing
system (Ref.: MR104ZZ, FAG, Schaeffler Herzogenaurach, Germany). A lineal guide (Ref.:
HGH35C 10249-1 001 MA, HIWIN Technologies Corp. Taichung, Taiwan) was used to
aid in moving the artificial root canal support in an entirely axial motion. All the NiTi
endodontic rotary files were used in conjunction with a torque-controlled motor and 6:1
reduction handpiece (X-Smart Plus, Dentsply Maillefer, Baillagues, Switzerland). All of the
files were utilized at 300 rpm and 2.3 N/cm torque, as per the manufacturer’s instructions.

All of the NiTi endodontic files were subjected to a total of 60 pecking movements per
minute within the dynamic cyclic fatigue device, in concordance with the parameters of a
previous study [23]. In order to reduce friction between the rotating files and the artificial
canal walls, researchers applied a specialized high-flow synthetic oil (Singer All-Purpose
Oil; Singer Corp., Barcelona, Spain), designed to lubricate mechanical parts.

All NiTi endodontic rotary files were used until the point of fracture. The time to
failure was observed and recorded.

2.5. Statistical Tests

The selected CM Gold wire and CM Blue wire NiTi alloy endodontic rotary files were
divided into study groups, in keeping with the proportions determined by the researcher,
and with a power of 80%. Additionally, when testing the null hypothesis H0, an effect
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size of 0.606 could be observed. The mean values of the four groups were equal by means
of a one-factor ANOVA test for independent samples, factoring in a significance level of
5%. Statistical analysis was carried out using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).
Standard deviation (SD) and mean values were used for quantitative data for the descriptive
analysis. Comparative statistics were calculated by comparing the time to failure in seconds
using the ANOVA test. Researchers also conducted a Weibull statistical analysis. The
results were considered significant at p < 0.05.

3. Results

Table 1 shows the mean and SD values for the time to failure for each of the study
groups, expressed in seconds.

Table 1. Descriptive analysis of time to failure (seconds).

Study Group n Mean SD Minimum Maximum

31 mm 10 358.33 a 38.21 302.50 412.60
25 mm 10 420.78 b 5.83 413.00 431.10
21 mm 10 485.12 c 43.43 399.10 538.10
17 mm 10 577.39 d 40.26 502.70 632.60

a, b, c, d Statistically significant differences between groups (p < 0.05).

The ANOVA detected statistically significant differences in time to failure for all
of the study groups (p < 0.0001); between the 31 mm and 25 mm length study group
(p = 0.0019), between the 31 mm and 21 mm length study groups (p < 0.0001), between the
31 mm and 17 mm length study groups (p < 0.0001), between the 25 mm and 21 mm length
study groups (p = 0.0014), between the 25 mm and 17 mm length study groups (p < 0.0001),
and between the 21 mm and 17 mm length study groups (p < 0.0001).

The scale distribution parameter (η) of Weibull statistics revealed statistically signifi-
cant differences in time to failure between all of the study groups (p < 0.001)
(Table 2). In addition, the shape distribution parameter (β) also detected statistically
significant differences in time to failure between the 31 mm and 25 mm length study groups
(p < 0.0001), between the 25 mm and 21 mm length study groups (p < 0.0001), and between
the 25 mm and 17 mm length study groups (p < 0.0001). However, no statistically significant
differences in time to failure were revealed between the 31 mm and 21 mm length study
groups (p = 0.3403), between the 31 mm and 17 mm length study groups (p = 0.1510), or
between the 21 mm and 17 mm length study groups (p = 0.6500) (Table 2).

Table 2. Weibull statistics of the time to failure for each study group.

Study
Group

Weibull Shape (β) Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

31 mm 11.2531 2.8108 6.8970 18.3606 374.8087 11.1397 353.5990 397.2905
25 mm 76.9101 18.0821 48.5131 121.9290 423.5920 1.8497 419.9820 427.2329
21 mm 15.8995 4.1752 9.5030 26.6016 502.6726 10.4693 482.5664 523.6165
17 mm 18.7645 4.7630 11.4097 30.8603 594.4943 10.5473 574.1773 615.5303

4. Discussion

The results of this study reject the null hypothesis (H0) that the length of CM Gold
wire and CM Blue wire NiTi alloy endodontic rotary files has no effect on their dynamic
cyclic fatigue resistance.

The results derived from the present study indicated that the rotary file length nega-
tively impacts the resistance to fracture of NiTi alloy endodontic rotary files. It is, therefore,
recommended that clinicians properly select the instrument length in relation to the root
canal system length, paying closer attention to those cases that require long NiTi alloy
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endodontic rotary files as there is more surface in contact and stress and, therefore, the
concentration of cumulative stress is greater. The fracture mechanisms of NiTi alloy en-
dodontic rotary files are of clinical interest because instrument failure can jeopardize good
clinical outcomes of root canal treatment [25].

The rates of failure of the NiTi alloy endodontic rotary files can be influenced by a
combination of different variables that converge during the root canal shaping procedure.
Therefore, while challenging, isolating each variable individually is essential to assess
their respective influence on cyclical fatigue. Experimental studies provide a controlled
environment in which a clinical setting is reproduced, enabling unique or a reduced number
of variables to be analyzed. In addition, further clinical studies are needed to replicate
clinical conditions and extrapolate the cyclic fatigue results to a clinical setting. However, it
is difficult to homogenize the radius, curvature angle, apical diameter, hardness, and cross-
section of the root canals, which can bias the study by introducing additional variables [26].
As a result, custom-made dynamic cyclic fatigue devices can be used to individually
analyze the influence of the specific variable under study. Regrettably, there are normative
regulations for the characteristics of the custom-made cyclic fatigue devices, nor is there
an international standard for testing the behavior of NiTi endodontic rotary instruments
with a taper greater than 2% in response to cyclic fatigue [27]. We selected CM Gold wire
and CM Blue wire NiTi alloy endodontic rotary files with 6% taper, according to previous
studies [21–23]; moreover, all CM Gold wire and CM Blue wire NiTi alloy endodontic
rotary files presented the same taper to avoid including another variable. In addition, a 60◦

curvature angle was selected for the custom artificial root canals, according to previous
studies [21–23].

Previous studies highlighted the effect mechanical and performance qualities of NiTi
alloy endodontic rotary files have on their cyclic fatigue resistance [28]. Additionally, the
geometric design of files directly affects the total mass of the instrument, which has proven
to be statistically significant in determining the stiffness and, therefore, the resistance to
the cyclic fatigue of the files. The length of the files increases the mass of the instruments
and may also explain the impact of this particular variable on cyclic fatigue resistance.
Versluis et al. experimentally found that the number of threads directly correlates with
increased flexural stiffness [29]; meanwhile, Al Raeesi et al. reported that a shorter pitch
design is correlated with increased cyclic fatigue resistance of glide path instruments [30].
Additionally, Rui et al., experimentally showed that a greater helix angle value has a
positive effect on the mechanical behavior of the instrument under conditions of bending
and torsion [31]. Pruett et al., studied the cyclic fatigue of NiTi alloy endodontic rotary files
and discovered that instruments with shafts of larger diameter failed in fewer cycles than
files with lower diameters under identical testing conditions [18].

Additionally, comparisons of the 31 mm length, 25 mm length, and 21 mm length
25.06 CM Gold wire NiTi alloy endodontic rotary files and the 17 mm length CM Blue wire
rotary files also showed that CM Blue wire NiTi alloy endodontic rotary files had higher
static cyclic fatigue resistance than CM Gold wire NiTi alloy endodontic rotary files. That
being said, it is challenging to isolate the most determinant or relevant variable or variable
combination when it comes to the resistance to cyclic fatigue of NiTi endodontic rotary
files. These results are corroborated when comparing the cyclic fatigue resistance of the
NiTi CM Blue wire alloy from the Reciproc Blue endodontic reciprocating system with the
NiTi CM Gold wire alloy from the Wave One Gold endodontic reciprocating system. The
Reciproc Blue endodontic reciprocating system had a higher cyclic fatigue resistance than
the Wave One Gold endodontic reciprocating system, perhaps owing to its cross-sectional
design [32,33].

The Weibull analysis enables estimation of the probability of a material presenting
fracture over time. A more vertical curve denotes greater predictability of the mechanical
behavior of a material, since it would indicate that all samples fracture at the same moment.
However, a more horizontal curve denotes greater unpredictability of the behavior of
a material as it could fracture at any time. These are expressed with shape and scale
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parameters. A larger scale, a broader distribution, and a shape parameter greater than 1
indicate that the failure rate increases with time. Regrettably, the limitations of the present
study prevented an analysis of additional lengths to standardize the NiTi alloy, pitch, helix
angle, apical diameter, speed, taper, and manufacturing process. Furthermore, difficulties
in standardizing samples meant that the study was not carried out in a clinical environment.

5. Conclusions

Rotary file length is inversely proportional to the cyclic fatigue resistance of the 25.06
CM Gold wire NiTi alloy, 31 mm, 25 mm, and 21 mm in length, as well as of the 25.06
CM Blue wire NiTi alloy 17 mm in length, whereby a greater length contributes to a lower
resistance to cyclic fatigue.
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