Design of Low-Power ECG Sampling and Compression Circuit
Abstract
:1. Introduction
2. Sampling and Compression Circuit Based on Compressed Sensing
2.1. Compressed Sensing
2.2. Sampling and Compression Circuit
3. Proposed Scheme
3.1. ADC
3.2. CS Module
3.2.1. Addition
3.2.2. Storage
3.3. Sampling and Compression Circuit
4. Results and Discussion
4.1. Algorithm Simulation
4.2. Circuit Simulation
4.3. Circuit Implementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, P.C.; He, F.C. The Compressed Sensing of Wireless Sensor Networks Based on Internet of Things. IEEE Sens. J. 2021, 21, 25267–25273. [Google Scholar] [CrossRef]
- Wang, N.C.; Chen, Y.L.; Huang, Y.F.; Chen, C.M.; Lin, W.C.; Lee, C.Y. An Energy Aware Grid-Based Clustering Power Efficient Data Aggregation Protocol for Wireless Sensor Networks. Appl. Sci. 2022, 12, 9877. [Google Scholar] [CrossRef]
- Melek, M.; Khattab, A. ECG Compression Using Wavelet-Based Compressed Sensing with Prior Support Information. Biomed. Signal Process. Control. 2021, 68, 11. [Google Scholar] [CrossRef]
- Sun, T.J.; Ge, Q.D.; Wen, Y.B.; Guo, Y.F.; Li, M.D. An under-Sampling Array Signal Processing Method Based on Improved Hadamard Matrix. Appl. Sci. 2022, 12, 10769. [Google Scholar] [CrossRef]
- Unni, V.S.; Gavaskar, R.G.; Chaudhury, K.N. Compressive Sensing of ECG Signals Using Plug-and-Play Regularization. Signal Process. 2023, 202, 10. [Google Scholar] [CrossRef]
- Okabe, Y.; Kanemoto, D.; Maida, O.; Hirose, T. Compressed Sensing EEG Measurement Technique with Normally Distributed Sampling Series. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2022, E105A, 1429–1433. [Google Scholar] [CrossRef]
- Saliga, J.; Kovac, O.; Andras, I. Analog-to-Information Conversion with Random Interval Integration. Sensors 2021, 21, 3543. [Google Scholar] [CrossRef] [PubMed]
- Sadasivuni, S.; Bhanushali, S.P.; Banerjee, I.; Sanyal, A. In-Sensor Neural Network for High Energy Efficiency Analog-to-Information Conversion. Sci. Rep. 2022, 12, 18253. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Song, X.; Li, D.; Wang, Z. Generalized Analog-to-Information Converter with Analysis Sparse Prior. IEEE Trans. Circuits Syst. I. Regul. Pap. A Publ. IEEE Circuits Syst. Soc. 2021, 68, 3574–3586. [Google Scholar] [CrossRef]
- Chen, F.; Chandrakasan, A.P.; Stojanovic, V.M. Design and Analysis of a Hardware-Efficient Compressed Sensing Architecture for Data Compression in Wireless Sensors. IEEE J. Solid-State Circuits 2012, 47, 744–756. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.K.; Chatterjee, B.; Sen, S. CS-Audio: A 16 pJ/b 0.1-15 Mbps Compressive Sensing IC with DWT Sparsifier for Audio-AR. IEEE J. Solid-State Circuits 2022, 57, 2220–2235. [Google Scholar] [CrossRef]
- Pareschi, F.; Albertini, P.; Frattini, G.; Mangia, M.; Rovatti, R.; Setti, G. Hardware-Algorithms Co-Design and Implementation of an Analog-to-Information Converter for Biosignals Based on Compressed Sensing. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Richardson, A.G.; Van der Spiegel, J. An Energy-Efficient Compressed Sensing-Based Encryption Scheme for Wireless Neural Recording. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 405–414. [Google Scholar] [CrossRef]
- Djelouat, H.; Zhai, X.J.; Al Disi, M.; Amira, A.; Bensaali, F. System-on-Chip Solution for Patients Biometric: A Compressive Sensing-Based Approach. IEEE Sens. J. 2018, 18, 9629–9639. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, H.B. A Survey of Compressive Data Gathering in WSNs for IoTs. Wirel. Commun. Mob. Comput. 2022, 2022, 4490790. [Google Scholar] [CrossRef]
- Yu, Z.G.; Zhao, Z.Q.; Tian, Q.; Guo, J.; Huang, X.; Gu, X.F. An Improved Measurement Matrix Generator for Compressed Sensing of ECG Signals. Electronics 2022, 11, 3784. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, F.; Fei, L.; Tang, Y. Design of an Adaptive ECG Signal Processing System Based on Compressed Sensing. In Proceedings of the 2020 5th International Conference on Universal Village (UV), Boston, MA, USA, 24–27 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, C.C.; Chang, S.J.; Huang, G.Y.; Lin, Y.Z. A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure. IEEE J. Solid-State Circuits 2010, 45, 731–740. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Tong, Y.F. Techniques for Offset Calibration in Comparators. In Proceedings of the International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; pp. 838–847. [Google Scholar] [CrossRef]
- Picariello, F.; Iadarola, G.; Balestrieri, E.; Tudosa, I.; De Vito, L. A Novel Compressive Sampling Method for ECG Wearable Measurement Systems. Measurement 2021, 167, 108259. [Google Scholar] [CrossRef]
Capacitor (fF) | SNR (dB) | SFDR (dB) | ENOB (bit) | ENOB’s Std Dev (bit) |
---|---|---|---|---|
7.02 | 72.83 | 81.14 | 11.80 | 0.19 |
12.09 | 73.35 | 81.85 | 11.89 | 0.16 |
15.59 | 73.50 | 82.06 | 11.92 | 0.15 |
18.14 | 73.58 | 82.16 | 11.93 | 0.14 |
21.53 | 73.65 | 82.25 | 11.94 | 0.13 |
b3 | b2 | b1 | b0 | c | b3*b2*b1*b0* | Error | Probability |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 0000 | +1 | 1/16 |
1 | 1 | 1 | 0 | +2 | 1/16 | ||
1 | 1 | 0 | 1 | +3 | 1/16 | ||
1 | 1 | 0 | 0 | +4 | 1/16 | ||
1 | 0 | 1 | 1 | 0 | 1000 | −3 | 1/16 |
1 | 0 | 1 | 0 | −2 | 1/16 | ||
1 | 0 | 0 | 1 | −1 | 1/16 | ||
1 | 0 | 0 | 0 | 0 | 1/16 | ||
0 | 1 | 1 | 1 | 0100 | +3 | 1/16 | |
0 | 1 | 1 | 0 | +2 | 1/16 | ||
0 | 1 | 0 | 1 | +1 | 1/16 | ||
0 | 1 | 0 | 0 | 0 | 1/16 | ||
0 | 0 | 1 | 1 | 0000 | −3 | 1/16 | |
0 | 0 | 1 | 0 | −2 | 1/16 | ||
0 | 0 | 0 | 1 | −1 | 1/16 | ||
0 | 0 | 0 | 0 | 0 | 1/16 |
Module | ADC | CS Module | IO | Total | |||
---|---|---|---|---|---|---|---|
matrix generator | compression and storage | data transmission | control | ||||
Power (μW) | 0.214 | 0.041 | 1.027 | 0.023 | 0.034 | 1.612 | 2.951 |
Source | Tech (nm) | Supply (V) | ADC (bit) | ENOB (bit) | Frequency (kHz) | Area (mm2) | Power (μW) | FOM (fJ*mm2/conv) |
---|---|---|---|---|---|---|---|---|
Chen [10] | 90 | core 0.6 | 8 | / | 20 | 2 (CS module) | 1.9 (CS module) | / |
Kumar [11] | 65 | core 0.65 | 8 | / | 100 | 0.128 (CS module) | 2.4 (CS module) | / |
Pareschi [12] | 180 | core 1.8 IO 1.8 | 11 | 8.99 | 100 | 8.51 | 10.08 | 157.511 |
Liu [13] | 180 | core 1.8 IO 3.3 | 10 | 9.3 | 4000 | 3 | 155 | 17.218 |
Our work | 55 | core 1.2 IO 2.5 | 12 | 11.1 | 100 | 0.325 | 2.951 | 4.369 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Nai, Y.; Yu, Z.; Xu, X.; Cao, X.; Gu, X. Design of Low-Power ECG Sampling and Compression Circuit. Appl. Sci. 2023, 13, 3350. https://doi.org/10.3390/app13053350
Zhao Z, Nai Y, Yu Z, Xu X, Cao X, Gu X. Design of Low-Power ECG Sampling and Compression Circuit. Applied Sciences. 2023; 13(5):3350. https://doi.org/10.3390/app13053350
Chicago/Turabian StyleZhao, Zuoqin, Yufei Nai, Zhiguo Yu, Xin Xu, Xiaoyang Cao, and Xiaofeng Gu. 2023. "Design of Low-Power ECG Sampling and Compression Circuit" Applied Sciences 13, no. 5: 3350. https://doi.org/10.3390/app13053350
APA StyleZhao, Z., Nai, Y., Yu, Z., Xu, X., Cao, X., & Gu, X. (2023). Design of Low-Power ECG Sampling and Compression Circuit. Applied Sciences, 13(5), 3350. https://doi.org/10.3390/app13053350