Prompt-Based Word-Level Information Injection BERT for Chinese Named Entity Recognition
Abstract
:1. Introduction
- Through the lexicon feature in the Chinese dictionary, the proposed Word-level Information Injection Adapter effectively utilizes additional word-level features that are well-suited to encourage the representation ability for Chinese NER;
- PWII-BERT applies the soft prompt for guiding the word-level information injection which can take advantage of using the category feature against the prompt automatically extracted;
- On four datasets, our experiments on widely-used benchmark datasets demonstrate the superior performance of PWII-BERT compared to state-of-the-art Chinese NER methods.
2. Related Work
2.1. Adapter-Tuning
2.2. NER
2.3. Prompt Learning
3. Methods
3.1. Task Formulation
3.2. Prompt-Based Category Information Introduction
3.3. Word-Level Information Injection Adapter
3.4. PWII-BERT
3.5. Training and Decoding
4. Results
4.1. Datasets
4.1.1. Hyperparameters and Evaluation Metrics
4.1.2. Baselines
- Zhang and Yang [13]. The Chinese NER method using the Lattice LSTM structure;
- Ma et al. [18]. A word-enhanced method through soft lexicon features;
- Liu et al. [15]. An encoding strategy for encoding the word embedding;
- Zhu and Wang [46]. The injection structure through a convolutional attention network;
- Li et al. [19]. A flattened Transformer structure for a unified character-word sequence;
- BERT. Pre-trained Chinese BERT is used for sequence labeling;
- Word-BERT. We deploy a word-level baseline method, the word features, and character features are concatenated, and the LSTM layer and CRF are used for fusion;
- ERNIE [27]. ERNIE mask entities for pre-training;
- ZEN [30]. Add the N-gram feature into the pre-trained language model.
4.1.3. Overall Performance
4.1.4. Ablation Study
4.1.5. Effectiveness Study
4.1.6. Demarcation at Different Layers
4.1.7. Case Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NER | Named Entity Recognition |
PWII-BERT | Prompt-based Word-level Information Injection BERT |
WIIA | Word-level Information Injection Adapter |
PLMs | Pre-trained Language Models |
CRF | Conditional Random Field |
References
- Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural Architectures for Named Entity Recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 260–270. [Google Scholar] [CrossRef]
- Ma, X.; Hovy, E. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Chiu, J.P.C.; Nichols, E. Named Entity Recognition with Bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 2016, 4, 357–370. [Google Scholar] [CrossRef]
- Gui, T.; Zhang, Q.; Huang, H.; Peng, M.; Huang, X. Part-of-Speech Tagging for Twitter with Adversarial Neural Networks. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 2411–2420. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, Y.; Ma, Z.; Gao, L.; Xu, Y. An ERNIE-based joint model for Chinese named entity recognition. Appl. Sci. 2020, 10, 5711. [Google Scholar] [CrossRef]
- Yang, L.; Fu, Y.; Dai, Y. BIBC: A Chinese Named Entity Recognition Model for Diabetes Research. Appl. Sci. 2021, 11, 9653. [Google Scholar] [CrossRef]
- Syed, M.H.; Chung, S.T. MenuNER: Domain-adapted BERT based NER approach for a domain with limited dataset and its application to food menu domain. Appl. Sci. 2021, 11, 6007. [Google Scholar] [CrossRef]
- Chen, S.; Pei, Y.; Ke, Z.; Silamu, W. Low-resource named entity recognition via the pre-training model. Symmetry 2021, 13, 786. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Wang, P.; Gu, L. Medical named entity extraction from chinese resident admit notes using character and word attention-enhanced neural network. Int. J. Environ. Res. Public Health 2020, 17, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, Y. Assessing BERT’s Syntactic Abilities. arXiv 2019, arXiv:1901.05287. [Google Scholar]
- Hewitt, J.; Manning, C.D. A Structural Probe for Finding Syntax in Word Representations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 4129–4138. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J. Chinese NER Using Lattice LSTM. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; pp. 1554–1564. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Y.; Liang, S. Subword Encoding in Lattice LSTM for Chinese Word Segmentation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 2720–2725. [Google Scholar] [CrossRef]
- Liu, W.; Xu, T.; Xu, Q.; Song, J.; Zu, Y. An Encoding Strategy Based Word-Character LSTM for Chinese NER. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 2379–2389. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Xie, P.; Zhang, X.; Lu, W.; Li, L.; Si, L. A Neural Multi-digraph Model for Chinese NER with Gazetteers. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 1462–1467. [Google Scholar] [CrossRef]
- Higashiyama, S.; Utiyama, M.; Sumita, E.; Ideuchi, M.; Oida, Y.; Sakamoto, Y.; Okada, I. Incorporating Word Attention into Character-Based Word Segmentation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 2699–2709. [Google Scholar] [CrossRef]
- Ma, R.; Peng, M.; Zhang, Q.; Wei, Z.; Huang, X. Simplify the Usage of Lexicon in Chinese NER. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 5951–5960. [Google Scholar] [CrossRef]
- Li, X.; Yan, H.; Qiu, X.; Huang, X. FLAT: Chinese NER Using Flat-Lattice Transformer. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 6836–6842. [Google Scholar] [CrossRef]
- Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; de Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-Efficient Transfer Learning for NLP. In Proceedings of the 36th International Conference on Machine Learning, ICML, Long Beach, CA, USA, 10–15 June 2019; Proceedings of Machine Learning Research. Chaudhuri, K., Salakhutdinov, R., Eds.; Volume 97, pp. 2790–2799. [Google Scholar]
- Bapna, A.; Firat, O. Simple, Scalable Adaptation for Neural Machine Translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 1538–1548. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Tang, D.; Duan, N.; Wei, Z.; Huang, X.; Ji, J.; Cao, G.; Jiang, D.; Zhou, M. K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters. In Proceedings of the Findings of the Association for Computational Linguistics, Online Event, 1–6 August 2021; Volume ACL/IJCNLP 2021; pp. 1405–1418. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Vulic, I.; Gurevych, I.; Ruder, S. MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Online, 16–20 November 2020; pp. 7654–7673. [Google Scholar] [CrossRef]
- Gui, T.; Ma, R.; Zhang, Q.; Zhao, L.; Jiang, Y.; Huang, X. CNN-Based Chinese NER with Lexicon Rethinking. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019; pp. 4982–4988. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Wu, W.; Wang, F.; Li, X.; Nie, P.; Yin, F.; Li, M.; Han, Q.; Sun, X.; Li, J. Glyce: Glyph-vectors for Chinese Character Representations. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 2742–2753. [Google Scholar]
- Hu, Y.; Verberne, S. Named Entity Recognition for Chinese biomedical patents. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp. 627–637. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Chen, X.; Zhang, H.; Tian, X.; Zhu, D.; Tian, H.; Wu, H. ERNIE: Enhanced Representation through Knowledge Integration. arXiv 2019, arXiv:1904.09223. [Google Scholar]
- Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Tian, H.; Wu, H.; Wang, H. ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, 7–12 February 2020; pp. 8968–8975. [Google Scholar]
- Jia, C.; Shi, Y.; Yang, Q.; Zhang, Y. Entity Enhanced BERT Pre-training for Chinese NER. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; pp. 6384–6396. [Google Scholar] [CrossRef]
- Diao, S.; Bai, J.; Song, Y.; Zhang, T.; Wang, Y. ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16–20 November 2020; pp. 4729–4740. [Google Scholar] [CrossRef]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020. [Google Scholar]
- Schick, T.; Schütze, H. Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, 19–23 April 2021; Merlo, P., Tiedemann, J., Tsarfaty, R., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 255–269. [Google Scholar]
- Schick, T.; Schmid, H.; Schütze, H. Automatically Identifying Words That Can Serve as Labels for Few-Shot Text Classification. In Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), 8–13 December 2020; pp. 5569–5578. [Google Scholar] [CrossRef]
- Shin, T.; Razeghi, Y.; IV, R.L.L.; Wallace, E.; Singh, S. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020; Webber, B., Cohn, T., He, Y., Liu, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 4222–4235. [Google Scholar] [CrossRef]
- Han, X.; Zhao, W.; Ding, N.; Liu, Z.; Sun, M. PTR: Prompt Tuning with Rules for Text Classification. arXiv 2021, arXiv:2105.11259. [Google Scholar] [CrossRef]
- Poth, C.; Pfeiffer, J.; Rücklé, A.; Gurevych, I. What to Pre-Train on? Efficient Intermediate Task Selection. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7–11 November 2021; Moens, M., Huang, X., Specia, L., Yih, S.W., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 10585–10605. [Google Scholar]
- Ben-David, E.; Oved, N.; Reichart, R. PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains. Trans. Assoc. Comput. Linguist. 2022, 10, 414–433. [Google Scholar] [CrossRef]
- Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019; Available online: https://openreview.net/ (accessed on 26 February 2023).
- Sanh, V.; Wolf, T.; Rush, A.M. Movement Pruning: Adaptive Sparsity by Fine-Tuning. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020. [Google Scholar]
- Li, X.L.; Liang, P. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, 1–6 August 2021; Zong, C., Xia, F., Li, W., Navigli, R., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 4582–4597. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Peng, N.; Dredze, M. Named Entity Recognition for Chinese Social Media with Jointly Trained Embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 548–554. [Google Scholar] [CrossRef] [Green Version]
- Peng, N.; Dredze, M. Improving Named Entity Recognition for Chinese Social Media with Word Segmentation Representation Learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 149–155. [Google Scholar] [CrossRef] [Green Version]
- Weischedel, R.; Pradhan, S.; Ramshaw, L.; Palmer, M.; Xue, N.; Marcus, M.; Taylor, A.; Greenberg, C.; Hovy, E.; Belvin, R.; et al. Ontonotes Release 4.0. LDC2011T03; Linguistic Data Consortium: Philadelphia, PA, USA, 2011. [Google Scholar]
- Levow, G. The Third International Chinese Language Processing Bakeoff: Word Segmentation and Named Entity Recognition. In Proceedings of the Fifth Workshop on Chinese Language Processing, SIGHAN@COLING/ACL 2006, Sydney, Australia, 22–23 July 2006; pp. 108–117. [Google Scholar]
- Zhu, Y.; Wang, G. CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 3384–3393. [Google Scholar] [CrossRef]
- Liu, W.; Fu, X.; Zhang, Y.; Xiao, W. Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, 1–6 August 2021; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 5847–5858. [Google Scholar] [CrossRef]
Dataset | Form | Train | Dev | Test |
---|---|---|---|---|
MSRA | Sent | 46.4 k | - | 4.4 k |
Char | 2169.9 k | - | 172.6 k | |
Sent | 1.4 k | 0.27 k | 0.27 k | |
Char | 73.8 k | 14.5 k | 14.8 k | |
Ontonotes | Sent | 15.7 k | 4.3 k | 4.3 k |
Char | 491.9 k | 200.5 k | 208.1 k | |
Resume | Sent | 3.8 k | 0.46 k | 0.48 k |
Char | 124.1 k | 13.9 k | 15.1 k |
Model | P | R | F1 |
---|---|---|---|
Zhang and Yang [13] | 94.81 | 94.11 | 94.46 |
Ma et al. [18] | 95.30 | 95.77 | 95.53 |
Liu et al. [15] | 95.27 | 95.15 | 95.21 |
Zhu and Wang [46] | 95.05 | 94.82 | 94.94 |
PWII-BERT | 95.52 | 96.87 | 96.19 |
Model | Ontonotes | MSRA | Resume | |
---|---|---|---|---|
Zhang and Yang [13] | 63.34 | 75.49 | 92.84 | 94.46 |
Ma et al. [18] | 69.11 | 81.34 | 95.35 | 95.53 |
Liu et al. [15] | 65.30 | 75.79 | 93.50 | 95.21 |
Zhu and Wang [46] | 59.31 | 73.64 | 92.97 | 94.94 |
Ding et al. [16] | 59.50 | 75.20 | 94.40 | - |
Li et al. [19] | 68.07 | 80.56 | 95.46 | 95.78 |
Liu et al. [47] † | 70.92 | 81.53 | 95.38 | 96.03 |
BERT | 67.27 | 79.93 | 94.71 | 95.33 |
BERT+Word | 68.32 | 81.03 | 95.32 | 95.46 |
ZEN | 66.71 | 79.03 | 95.20 | 95.40 |
ERINE | 67.96 | 77.65 | 95.08 | 94.82 |
PWII-BERT | 72.06 | 81.64 | 95.70 | 96.19 |
Model | Ontonotes | MSRA | Resume | |
---|---|---|---|---|
PWII-BERT | 72.06 | 81.64 | 95.70 | 96.19 |
w/o CRF | 71.79 | 81.23 | 95.45 | 96.13 |
w/o prompt | 70.71 | 80.99 | 95.33 | 95.12 |
w/o WIIA | 71.10 | 80.66 | 95.35 | 95.70 |
PWII-BERT | WII-BERT | |||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
ORG | 93.36 | 96.56 | 94.93 | 93.25 | 94.94 | 94.09 |
TITLE | 96.23 | 96.23 | 96.23 | 93.99 | 95.45 | 94.72 |
EDU | 97.35 | 98.21 | 97.78 | 98.20 | 97.32 | 97.76 |
Overall | 95.52 | 96.87 | 96.19 | 94.54 | 95.70 | 95.12 |
PWII-BERT | WII-BERT | |||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
GPE.NAM | 78.18 | 91.49 | 84.31 | 68.25 | 91.49 | 78.18 |
LOC.NAM | 64.29 | 47.37 | 54.55 | 52.33 | 42.11 | 47.06 |
LOC.NOM | 33.33 | 22.22 | 26.67 | 25.00 | 11.11 | 15.38 |
PER.NAM | 79.28 | 79.28 | 79.28 | 74.58 | 79.28 | 76.86 |
PER.NOM | 72.00 | 74.12 | 73.04 | 71.11 | 75.29 | 73.14 |
ORG.NAM | 58.33 | 53.85 | 56.00 | 64.52 | 51.28 | 57.14 |
ORG.NOM | 56.25 | 52.94 | 54.55 | 60.00 | 52.94 | 56.25 |
Overall | 72.15 | 71.98 | 72.07 | 69.72 | 71.74 | 70.71 |
PWII-BERT | WII-BERT | |||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
GPE | 83.62 | 83.23 | 83.43 | 81.50 | 85.56 | 83.48 |
LOC | 53.04 | 44.67 | 48.50 | 45.05 | 40.98 | 42.92 |
ORG | 72.90 | 74.46 | 73.68 | 70.88 | 74.52 | 72.65 |
PER | 92.37 | 96.27 | 94.28 | 90.57 | 97.67 | 93.99 |
Overall | 81.51 | 81.78 | 81.65 | 79.13 | 82.94 | 80.99 |
PWII-BERT | WII-BERT | |||||
---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | |
NR | 97.11 | 97.40 | 97.88 | 97.64 | 97.38 | 97.56 |
NS | 96.59 | 95.76 | 96.35 | 96.63 | 95.27 | 95.95 |
NT | 91.47 | 93,00 | 92.23 | 91.62 | 91.55 | 91.59 |
Overall | 95.75 | 95.65 | 95.70 | 95.72 | 94.93 | 95.33 |
Sentence | 广西壮族自治区政府 (Guangxi Bourau Autonomous Region Government) | ||||||||||||
Matched Words | 广西, 壮族, 自治区, 壮族自治区, 自治区政府, 政府, 区政府, 广西壮族自治区政府, 广西壮族自治区 Guangxi Province, Bourau, Autonomous region, Bourau Autonomous Region, Autonomous Region Government, Government, District Government, Guangxi Bourau Autonomous Region Government, Guangxi Bourau Autonomous Region | ||||||||||||
Characters | 广 | 西 | 壮 | 族 | 自 | 治 | 区 | 政 | 府 | ||||
Gold Labels | B-GPE | M-GPE | M-GPE | M-GPE | M-GPE | M-GPE | E-GPE | B-ORG | E-ORG | ||||
WII-BERT | B-GPE | M-GPE | M-GPE | M-GPE | M-GPE | M-GPE | M-GPE | M-GPE | E-GPE | ||||
PWII-BERT | B-GPE | M-GPE | M-GPE | M-GPE | M-GPE | M-GPE | E-GPE | B-ORG | E-ORG | ||||
Sentence | 佳能大连办公室设备有限公司 (Canon Dalian Office Equipment Co., Ltd.) | ||||||||||||
Matched Words | 佳能, 办公室, 大连, 设备有限公司, 有限公司, 公司 Canon, Office, Dalian City, Dalian Equipment Co., Ltd., Company Limited., Company | ||||||||||||
Characters | 佳 | 能 | 大 | 连 | 办 | 公 | 室 | 设 | 备 | 有 | 限 | 公 | 司 |
Gold Labels | B-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | E-ORG |
WII-BERT | B-GPE | E-GPE | O | O | O | O | B-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | E-ORG |
PWII-BERT | B-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | M-ORG | E-ORG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Chen, G.; Song, W.; Zhang, P. Prompt-Based Word-Level Information Injection BERT for Chinese Named Entity Recognition. Appl. Sci. 2023, 13, 3331. https://doi.org/10.3390/app13053331
He Q, Chen G, Song W, Zhang P. Prompt-Based Word-Level Information Injection BERT for Chinese Named Entity Recognition. Applied Sciences. 2023; 13(5):3331. https://doi.org/10.3390/app13053331
Chicago/Turabian StyleHe, Qiang, Guowei Chen, Wenchao Song, and Pengzhou Zhang. 2023. "Prompt-Based Word-Level Information Injection BERT for Chinese Named Entity Recognition" Applied Sciences 13, no. 5: 3331. https://doi.org/10.3390/app13053331
APA StyleHe, Q., Chen, G., Song, W., & Zhang, P. (2023). Prompt-Based Word-Level Information Injection BERT for Chinese Named Entity Recognition. Applied Sciences, 13(5), 3331. https://doi.org/10.3390/app13053331