Changes in Meteorological Elements and Its Impacts on Yunnan Plateau Lakes
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Source
2.3. Innovation Trend Analysis (ITA)
2.4. The Mann-Kendall Test
2.5. Technical Route
3. Results
3.1. Annual Analysis
3.2. Seasonal Analysis
3.3. Analysis of Sudden Changes in Air Temperature
4. Discussion
4.1. Geographical Heterogeneity of Climate Factor Variation in Highland Lakes in Yunnan
4.2. Possible Impacts of Climate Change on Highland Lakes in Yunnan
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radmanesh, F.; Esmaeili-Gisavandani, H.; Lotfirad, M. Climate change impacts on the shrinkage of Lake Urmia. J. Water Clim. Chang. 2022, 13, 2255–2277. [Google Scholar] [CrossRef]
- Edinger, J.E.; Duttweiler, D.W.; Geyer, J.C. The Response of Water Temperatures to Meteorological Conditions. Water Resour. Res. 1968, 4, 1137–1143. [Google Scholar] [CrossRef]
- Shinohara, R.; Tanaka, Y.; Kanno, A.; Matsushige, K. Relative impacts of increases of solar radiation and air temperature on the temperature of surface water in a shallow, eutrophic lake. Hydrol. Res. 2021, 52, 916–926. [Google Scholar] [CrossRef]
- Scott, R.W.; Huff, F.A. Impacts of the Great Lakes on Regional Climate Conditions. J. Great Lakes Res. 1996, 22, 845–863. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Y.; Wang, W.; Liu, S.; Piao, M.; Xiao, W.; Lee, X. Trends in evaporation of a large subtropical lake. Theor. Appl. Climatol. 2017, 129, 159–170. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Zhu, L.; Ju, J.; Daut, G. The Warming of Large Lakes on the Tibetan Plateau: Evidence From a Lake Model Simulation of Nam Co, China, during 1979–2012. J. Geophys. Res. Atmos. 2017, 122, 13095–13107. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Hunziker, S.; Wüest, A. Lake surface temperatures in a changing climate: A global sensitivity analysis. Clim. Chang. 2014, 124, 301–315. [Google Scholar] [CrossRef]
- Rooney, G.G.; van Lipzig, N.; Thiery, W. Estimating the effect of rainfall on the surface temperature of a tropical lake. Hydrol. Earth Syst. Sci. 2018, 22, 6357–6369. [Google Scholar] [CrossRef] [Green Version]
- Michelutti, N.; Labaj, A.L.; Grooms, C.; Smol, J.P. Equatorial mountain lakes show extended periods of thermal stratification with recent climate change. J. Limnol. 2016, 75, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, Y.; Zhang, Z.; Wang, W.; Ren, X.; Gao, Y.; Liu, S.; Lee, X. Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake. J. Meteorol. Res. 2018, 32, 219–232. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H.; Robertson, D.M.; Lathrop, R.C.; Hamilton, D.P. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrol. Earth Syst. Sci. 2016, 20, 1681–1702. [Google Scholar] [CrossRef] [Green Version]
- Adu-Prah, S.; Appiah-Opoku, S.; Aboagye, D. Spatiotemporal evidence of recent climate variability in Ghana. Afr. Geogr. Rev. 2019, 38, 172–190. [Google Scholar] [CrossRef]
- Lone, B.A.; Qayoom, S.; Nazir, A.; Ahanger, S.A.; Basu, U.; Bhat, T.A.; Dar, Z.A.; Mushtaq, M.; El Sabagh, A.; Soufan, W.; et al. Climatic Trends of Variable Temperate Environment: A Complete Time Series Analysis during 1980–2020. Atmosphere 2022, 13, 749. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Woolway, R.I.; Merchant, C.J. Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim. Chang. 2020, 160, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Liu, Y.; Chappell, A.; Dong, L.; Xu, R.; Ekström, M.; Fu, T.-M.; Zeng, Z. Evaluation of Global Reanalysis Land Surface Wind Speed Trends to Support Wind Energy Development Using In Situ Observations. J. Appl. Meteorol. Climatol. 2021, 60, 33–50. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37, 22. [Google Scholar] [CrossRef] [Green Version]
- Diaz, H.F.; Grosjean, M.; Graumlich, L. Climate Variability and Change in High Elevation Regions: Past, Present and Future. Clim. Chang. 2003, 59, 1–4. [Google Scholar] [CrossRef]
- Dabrowski, M.; Marszelewski, W.; Skowron, R. The trends and dependencies between air and water temperatures in lakes in northern Poland in 1961–2000. Hydrol. Earth Syst. Sci. 2004, 8, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Pilla, R.M.; Williamson, C.E.; Adamovich, B.V.; Adrian, R.; Anneville, O.; Chandra, S.; Colom-Montero, W.; Devlin, S.P.; Dix, M.A.; Dokulil, M.T.; et al. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci. Rep. 2020, 10, 20514. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Y.; Wang, Z.; Xie, Z.; Sun, G.; Wang, B.; Ma, W.; Su, R.; Hu, W.; Fan, Y. Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018. Atmos. Res. 2021, 253, 105481. [Google Scholar] [CrossRef]
- Cheng, Q.P.; Wang, P.; Xu, Q. Temporal and Spatial Variation Vharacteristics of Surface Temperature in Yunnan during 1960–2013. Res. Soil Water Conserv. 2017, 24, 111–121+397. [Google Scholar] [CrossRef]
- Ding, Y.H.; Zhang, L. Intercomparison of the Time for Climate Abrupt Change between the Tibetan Plateau and Other Regions in China. Chin. J. Atmos. Sci. 2008, 32, 794–805. [Google Scholar]
- Liu, Y.; Zhao, E.X.; Huang, W.; Zhou, J.Q.; Ju, J.H. Character Analysis of Precipitation and Temperature Trend in Yunnan Province in Recent 46 Years. J. Catastrophology 2010, 25, 39–44+63. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2013–The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ebi, K.L.; Ziska, L.H.; Yohe, G.W. The shape of impacts to come: Lessons and opportunities for adaptation from uneven increases in global and regional temperatures. Clim. Chang. 2016, 139, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Ji, F.; Wu, Z.; Huang, J.; Chassignet, E.P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 2014, 4, 462–466. [Google Scholar] [CrossRef]
- Qin, N.; Chen, X.; Fu, G.; Zhai, J.; Xue, X. Precipitation and temperature trends for the Southwest China: 1960–2007. Hydrol. Process. 2010, 24, 3733–3744. [Google Scholar] [CrossRef]
- Kraemer, B.M.; Pilla, R.M.; Woolway, R.I.; Anneville, O.; Ban, S.; Colom-Montero, W.; Devlin, S.P.; Dokulil, M.T.; Gaiser, E.E.; Hambright, K.D.; et al. Climate change drives widespread shifts in lake thermal habitat. Nat. Clim. Chang. 2021, 11, 521–529. [Google Scholar] [CrossRef]
- Yang, L.F. The preliminapy study on the original classification and distribution law of lakes on The Yunnan Plateau. Trans. Oceanol. Limnol. 1984, 1, 34–39. [Google Scholar] [CrossRef]
- Li, H.; Zhong, D.; Fan, S.; Zhang, S.; Wang, J. Remote sensing monitoring of the nine plateau lakes’surface area in Yunnan in recent thirty years. Resour. Environ. Yangtze Basin 2016, 25, 32–37. [Google Scholar]
- Winder, M.; Schindler, D.E. Climatic effects on the phenology of lake processes. Glob. Chang. Biol. 2004, 10, 1844–1856. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Tong, Y.; Xu, X.; Qi, M.; Sun, J.; Zhang, Y.; Zhang, W.; Wang, M.; Wang, X.; Zhang, Y. Lake warming intensifies the seasonal pattern of internal nutrient cycling in the eutrophic lake and potential impacts on algal blooms. Water Res. 2021, 188, 116570. [Google Scholar] [CrossRef]
- Li, Q.G.; Tian, Y.; Liu, L.; Zhang, G.M.; Wang, H.J. Research progress on release mechanisms of nitrogen and phosphorus of sediments in water bodies and their influencing factors. Wetl. Sci. 2022, 20, 94–103. [Google Scholar] [CrossRef]
- Fu, C.P.; Zhong, C.H.; Deng, C.G. Analysis on Cause of the Eutrophication of Water Body. J. Chongqing Jianzhu Univ. 2005, 27, 128–131. [Google Scholar]
- Lembi, C.A. Limnology, Lake and River Ecosystems. J. Phycol. 2001, 37, 1146–1147. [Google Scholar] [CrossRef]
- Edlund, M.B.; Almendinger, J.E.; Fang, X.; Hobbs, J.M.R.; VanderMeulen, D.D.; Key, R.L.; Engstrom, D.R. Effects of Climate Change on Lake Thermal Structure and Biotic Response in Northern Wilderness Lakes. Water 2017, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.M., Jr.; McCutchan, J.H., Jr.; Roberson, J. Effects of Climatic Change on Temperature and Thermal Structure of a Mountain Reservoir. Water Resour. Res. 2019, 55, 1988–1999. [Google Scholar] [CrossRef]
- Woolway, R.I.; Sharma, S.; Weyhenmeyer, G.A.; Debolskiy, A.; Golub, M.; Mercado-Bettín, D.; Perroud, M.; Stepanenko, V.; Tan, Z.; Grant, L.; et al. Phenological shifts in lake stratification under climate change. Nat. Commun. 2021, 12, 2318. [Google Scholar] [CrossRef] [PubMed]
- Butcher, J.B.; Nover, D.; Johnson, T.E.; Clark, C.M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Chang. 2015, 129, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Magee, M.R.; Wu, C.H. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrol. Earth Syst. Sci. 2017, 21, 6253–6274. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, G.B.; Forrest, A.L.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities. Limnol. Oceanogr. 2016, 61, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, A.; Klier, J.; Pinto, F.; Selmeczy, G.B.; Szabó, B.; Padisák, J.; Jürgens, K.; Casper, P. Effects of artificial thermocline deepening on sedimentation rates and microbial processes in the sediment. Hydrobiologia 2017, 799, 65–81. [Google Scholar] [CrossRef]
- Beisner, B.E.; Longhi, M.L. Spatial overlap in lake phytoplankton: Relations with environmental factors and consequences for diversity. Limnol. Oceanogr. 2013, 58, 1419–1430. [Google Scholar] [CrossRef]
- Jane, S.F.; Hansen, G.; Kraemer, B.M.; Leavitt, P.R.; Mincer, J.L.; North, R.L.; Pilla, R.M.; Stetler, J.T.; Williamson, C.E.; Woolway, R.I.; et al. Widespread deoxygenation of temperate lakes. Nature 2021, 594, 66–70. [Google Scholar] [CrossRef]
- Zhao, L.; Cheng, S.; Sun, Y.; Zou, R.; Ma, W.; Zhou, Q.; Liu, Y. Thermal mixing of Lake Erhai (Southwest China) induced by bottom heat transfer: Evidence based on observations and CE-QUAL-W2 model simulations. J. Hydrol. 2021, 603, 126973. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, H.; Chang, F.; Li, H.; Duan, L.; Wu, H.; Bi, R.; Lu, Z.; Zhang, Y.; Ouyang, C. Seasonal Stratification Characteristics of Vertical Profiles of Water Body in Lake Lugu. Adv. Earth Sci. 2016, 31, 858–869. [Google Scholar]
- Zhou, Q.; Yang, X.; Wang, W.; Dong, J.; Huang, L.; Qin, J. Seasonal vertical stratification and the potential impacts of its fading on algal blooms inwinter: Cases of Lake Chenghai and Lake Yangzonghai, Yunnan Plateau. J. Lake Sci. 2020, 32, 701–712. [Google Scholar]
- Fu, C.H. Research on the thermocline in Fuxian Lake. Trans. Oceanol. Limnol. 2015, 1, 9–12. [Google Scholar] [CrossRef]
Lake | Watershed Area/km2 | Surface Area/km2 | Water Surface Elevation/m | Average Depth/m | Maximum Depth/m | Water Change Cycle/Day |
---|---|---|---|---|---|---|
Chenghai | 318 | 77.20 | 1501.00 | 24.98 | 35.87 | 5861 |
Dianchi | 2920 | 297.90 | 1887.40 | 5.01 | 11.35 | 1540 |
Erhai | 2565 | 249.00 | 1974.31 | 8.80 | 19.50 | 3500 |
Fuxian | 675 | 211.00 | 1722.50 | 95.20 | 158.90 | 11,584 |
Lugu | 248 | 48.50 | 2690.80 | 38.40 | 105.30 | 11,727 |
Yangzonghai | 292 | 31.70 | 1770.00 | 21.50 | 28.59 | 4602 |
Yilong | 360 | 38.00 | 1414.20 | 3.90 | 5.70 | 1295 |
Xingyun | 378 | 34.70 | 1722.50 | 6.01 | 10.81 | 1642 |
Qilu | 354 | 36.90 | 1797.65 | 4.20 | 6.84 | 316 |
Climate Factor | Lake | Slope s | Standard Deviation | Correlation | Slope Standard | Significant Level (p < 0.5) | Significant Level (p < 0.1) |
---|---|---|---|---|---|---|---|
Chenghai | 0.02182 ** | 0.370 | 0.934 | 0.00107 | ±0.00209 | ±0.00275 | |
Dianchi | 0.01582 ** | 0.338 | 0.904 | 0.00117 | ±0.00230 | ±0.00302 | |
Erhai | 0.02200 ** | 0.368 | 0.935 | 0.00105 | ±0.00206 | ±0.00271 | |
Temperature | Fuxian | 0.01560 ** | 0.339 | 0.920 | 0.00107 | ±0.00210 | ±0.00277 |
Lugu | 0.02596 ** | 0.394 | 0.925 | 0.00121 | ±0.00237 | ±0.00312 | |
Yangzonghai | 0.01422 ** | 0.338 | 0.892 | 0.00124 | ±0.00243 | ±0.00320 | |
Yilong | 0.01486 ** | 0.344 | 0.944 | 0.00091 | ±0.00179 | ±0.00236 | |
Chenghai | 0.15551 ** | 5.125 | 0.966 | 0.01055 | ±0.02068 | ±0.02722 | |
Dianchi | −0.04296 ** | 4.218 | 0.977 | 0.00710 | ±0.01392 | ±0.01832 | |
Erhai | 0.04423 ** | 4.619 | 0.970 | 0.00892 | ±0.01749 | ±0.02302 | |
Short-wave | Fuxian | −0.03613 ** | 4.603 | 0.983 | 0.00666 | ±0.01306 | ±0.01719 |
Lugu | 0.09707 ** | 4.238 | 0.927 | 0.01281 | ±0.02510 | ±0.03305 | |
Yangzonghai | −0.01427 ** | 4.542 | 0.963 | 0.00973 | ±0.01907 | ±0.02510 | |
Yilong | −0.00252 ** | 4.915 | 0.966 | 0.01006 | ±0.01972 | ±0.02596 | |
Chenghai | −0.02745 ** | 2.766 | 0.970 | 0.00540 | ±0.01058 | ±0.01393 | |
Dianchi | −0.12040 ** | 2.786 | 0.944 | 0.00734 | ±0.01439 | ±0.01895 | |
Erhai | −0.06833 ** | 2.820 | 0.975 | 0.00502 | ±0.00984 | ±0.01295 | |
Long-wave | Fuxian | −0.12115 ** | 2.527 | 0.931 | 0.00745 | ±0.01460 | ±0.01922 |
Lugu | 0.05118 ** | 2.804 | 0.953 | 0.00677 | ±0.01327 | ±0.01746 | |
Yangzonghai | −0.14777 ** | 2.484 | 0.902 | 0.00869 | ±0.01703 | ±0.02242 | |
Yilong | −0.15701 ** | 2.647 | 0.917 | 0.00852 | ±0.01670 | ±0.02198 | |
Chenghai | −0.08670 ** | 7.341 | 0.938 | 0.02052 | ±0.04021 | ±0.05293 | |
Dianchi | −0.13394 ** | 8.924 | 0.945 | 0.02337 | ±0.04581 | ±0.06030 | |
Erhai | −0.02906 | 6.840 | 0.741 | 0.03894 | ±0.07632 | ±0.10047 | |
Snowfall | Fuxian | −0.13394 ** | 9.292 | 0.945 | 0.02433 | ±0.04769 | ±0.06278 |
Lugu | −0.39074 ** | 14.145 | 0.918 | 0.04530 | ±0.08880 | ±0.11689 | |
Yangzonghai | 0.08840 * | 11.593 | 0.912 | 0.03839 | ±0.07523 | ±0.09903 | |
Yilong | 0.03378 | 7.052 | 0.870 | 0.02845 | ±0.05576 | ±0.07340 | |
Chenghai | −0.00062 ** | 0.064 | 0.938 | 0.00018 | ±0.00035 | ±0.00046 | |
Dianchi | −0.00164 ** | 0.092 | 0.937 | 0.00026 | ±0.00051 | ±0.00067 | |
Erhai | −0.00040 * | 0.078 | 0.949 | 0.00020 | ±0.00039 | ±0.00051 | |
Wind speed | Fuxian | −0.00208 ** | 0.102 | 0.879 | 0.00040 | ±0.00078 | ±0.00102 |
Lugu | −0.00017 * | 0.049 | 0.978 | 0.00008 | ±0.00016 | ±0.00021 | |
Yangzonghai | −0.00173 ** | 0.113 | 0.944 | 0.00030 | ±0.00059 | ±0.00077 | |
Yilong | −0.00007 | 0.081 | 0.941 | 0.00022 | ±0.00043 | ±0.00057 | |
Chenghai | −0.00062 ** | 0.064 | 0.938 | 0.00018 | ±0.00035 | ±0.00046 | |
Dianchi | −0.00164 ** | 0.092 | 0.937 | 0.00026 | ±0.00051 | ±0.00067 | |
Erhai | −0.00040 * | 0.078 | 0.949 | 0.00020 | ±0.00039 | ±0.00051 | |
Relative humidity | Fuxian | −0.00208 ** | 0.102 | 0.879 | 0.00040 | ±0.00078 | ±0.00102 |
Lugu | −0.00017 * | 0.049 | 0.978 | 0.00008 | ±0.00016 | ±0.00021 | |
Yangzonghai | −0.00173 ** | 0.113 | 0.944 | 0.00030 | ±0.00059 | ±0.00077 | |
Yilong | −0.00007 | 0.081 | 0.941 | 0.00022 | ±0.00043 | ±0.00057 | |
Chenghai | −0.30418 | 109.764 | 0.963 | 0.23723 | ±0.46497 | ±0.61206 | |
Dianchi | −2.30199 ** | 140.530 | 0.977 | 0.24031 | ±0.47101 | ±0.62000 | |
Erhai | −1.26125 ** | 118.279 | 0.979 | 0.19376 | ±0.37976 | ±0.49989 | |
Precipitation | Fuxian | −2.80528 ** | 143.718 | 0.963 | 0.30982 | ±0.60724 | ±0.79933 |
Lugu | 0.61480 ** | 101.235 | 0.969 | 0.19953 | ±0.39109 | ±0.51480 | |
Yangzonghai | −2.53510 ** | 155.331 | 0.976 | 0.27021 | ±0.52960 | ±0.69713 | |
Yilong | −2.59767 ** | 137.741 | 0.978 | 0.22977 | ±0.45035 | ±0.59280 |
Climate Factor | Lake | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
Chenghai Lake | 0.02049 ** | 0.01493 ** | 0.02014 | 0.03005 ** | |
Dianchi Lake | 0.01980 ** | 0.00974 ** | 0.01441 ** | 0.01849 ** | |
Erhai Lake | 0.01981 ** | 0.01543 ** | 0.02211 ** | 0.03054 ** | |
Temperature | Fuxian Lake | 0.01922 ** | 0.00970 ** | 0.00033 ** | 0.00058 ** |
Lugu Lake | 0.02581 ** | 0.02127 ** | 0.02528 ** | 0.03182 ** | |
Yangzonghai Lake | 0.01992 ** | 0.00827 ** | 0.01160 ** | 0.01568 ** | |
Yilong Lake | 0.01584 ** | 0.00735 ** | 0.01381 ** | 0.02140 ** | |
Chenghai Lake | −0.03904 * | 0.23385 ** | 0.08314 * | 0.23946 ** | |
Dianchi Lake | −0.19659 ** | −0.04175 * | −0.01318 | 0.07005 ** | |
Erhai Lake | −0.12159 ** | 0.08579 * | 0.06798 * | 0.13233 ** | |
Short-wave | Fuxian Lake | −0.14171 ** | −0.09139 ** | 0.00616 * | 0.01657 |
Lugu Lake | −0.01859 | 0.23997 ** | 0.12516 ** | 0.03119 * | |
Yangzonghai Lake | −0.07571 * | −0.09379 ** | −0.00705 | 0.13242 ** | |
Yilong Lake | 0.05724 | −0.11834 ** | 0.07549 * | −0.02627 | |
Chenghai Lake | 0.05053 ** | −0.04366 ** | −0.05290 * | −0.02040 * | |
Dianchi Lake | −0.00480 | −0.10790 ** | −0.21446 ** | −0.14980 ** | |
Erhai Lake | 0.03311 * | −0.08575 ** | −0.14096 ** | −0.07648 ** | |
Long-wave | Fuxian Lake | −0.00996 | −0.11464 ** | 0.00606 ** | 0.00841 ** |
Lugu Lake | 0.11121 ** | 0.05353 ** | −0.00604 | 0.06507 ** | |
Yangzonghai Lake | −0.05279 ** | −0.09544 ** | −0.27318 ** | −0.17481 ** | |
Yilong Lake | −0.09311 ** | −0.18873 ** | −0.25344 ** | −0.10360 ** | |
Chenghai Lake | 0.07843 | 0 | −0.21231 ** | −0.21291 * | |
Dianchi Lake | −0.08717 * | 0 | −0.11769 ** | −0.32043 ** | |
Erhai Lake | −0.03345 | 0 | −0.01676 ** | −0.03992 ** | |
Snowfall | Fuxian Lake | −0.01380 | 0 | −0.00255 ** | 0 |
Lugu Lake | −0.06475 | 0 | −0.86887 ** | −0.75309 ** | |
Yangzonghai Lake | 0.01290 | 0 | −0.28136 ** | 0.64893 ** | |
Yilong Lake | 0.06746 ** | 0 | −0.10746 ** | 0.17069 | |
Chenghai Lake | −0.00273 ** | −0.00111 ** | 0.00006 | 0.00051 * | |
Dianchi Lake | −0.00497 ** | −0.00312 ** | 0.00140 * | −0.00032 | |
Erhai Lake | −0.00352 ** | −0.00128 ** | 0.00246 ** | 0.00055 | |
Wind speed | Fuxian Lake | −0.00480 ** | −0.00513 ** | 0.00018 ** | 0.00021 |
Lugu Lake | −0.00117 ** | −0.00103 ** | −0.00017* | 0.00161 ** | |
Yangzonghai Lake | −0.00454 ** | −0.00575 ** | 0.00204 ** | 0.00057 | |
Yilong Lake | −0.00201 ** | −0.00212 ** | 0.00354 ** | −0.00002 | |
Chenghai Lake | −0.00090 ** | −0.00106 ** | −0.00100 ** | −0.00120 ** | |
Dianchi Lake | −0.00119 ** | −0.00102 ** | −0.00138 ** | −0.00157 ** | |
Erhai Lake | −0.00104 ** | −0.00151 ** | −0.00174 ** | −0.00174 ** | |
Relative humidity | Fuxian Lake | −0.00107 ** | −0.00106 ** | 0.00002 ** | 0.00002 ** |
Lugu Lake | −0.00067 ** | −0.00069 ** | −0.00062 ** | −0.00051 * | |
Yangzonghai Lake | −0.00101 ** | −0.00080 ** | −0.00121 ** | −0.00126 ** | |
Yilong Lake | −0.00097 ** | −0.00144 ** | −0.00162 ** | −0.00098 ** | |
Chenghai Lake | 3.96296 ** | −0.82457 | −2.47601 | −1.06519 ** | |
Dianchi Lake | 1.75127 | −4.83401 ** | −5.67196 ** | −0.51708 ** | |
Erhai Lake | 4.57181 ** | −2.43614 | −5.70940 ** | −2.12645 ** | |
Precipitation | Fuxian Lake | 0.76844 ** | −3.72356 | 0.16865 ** | 0.24276 |
Lugu Lake | 4.14140 ** | 1.13157 | −2.73790 ** | −0.17256 ** | |
Yangzonghai Lake | 0.40433 | −2.08926 | −7.39131 ** | −1.13807 ** | |
Yilong Lake | 1.73657 | −5.55325 ** | −7.35147 ** | 0.62853 |
Lake | 1980–1989 | 1990–1999 | 2000–2009 | 2010–2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
Chenghai | 30.11 | −15.99 | 11.51 | 29.17 | −6.67 | 11.31 | 28.38 | −7.09 | 11.26 | 30.75 | −12.32 | 12.30 |
Dianchi | 29.85 | −14.15 | 14 | 31.85 | −6.15 | 13.91 | 29.85 | −10.15 | 13.66 | 31.85 | −10.15 | 14.55 |
Erhai | 33.34 | −5.56 | 16.45 | 33.72 | −2.87 | 16.23 | 33.31 | −0.47 | 16.19 | 33.34 | −2.16 | 17.19 |
Fuxian | 32.20 | −6.92 | 15.16 | 32.23 | −3.47 | 15.07 | 29.97 | −3.98 | 14.82 | 31.15 | −6.61 | 15.72 |
Lugu | 25.95 | −27.49 | 7.14 | 25.08 | −18.72 | 6.98 | 25.04 | −20.29 | 7.02 | 26.98 | −20.10 | 8.02 |
Yangzonghai | 32.84 | −6.91 | 14.98 | 34.52 | −4.39 | 14.95 | 31.40 | −4.98 | 14.6 | 32.99 | −9.71 | 15.47 |
Yilong | 34.23 | −3.41 | 17.43 | 33.47 | −1.34 | 17.22 | 32.65 | −1.64 | 17 | 33.18 | −8.35 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Yang, K.; Yang, R.; Zhao, L. Changes in Meteorological Elements and Its Impacts on Yunnan Plateau Lakes. Appl. Sci. 2023, 13, 2881. https://doi.org/10.3390/app13052881
Fan X, Yang K, Yang R, Zhao L. Changes in Meteorological Elements and Its Impacts on Yunnan Plateau Lakes. Applied Sciences. 2023; 13(5):2881. https://doi.org/10.3390/app13052881
Chicago/Turabian StyleFan, Xian, Kun Yang, Ruibo Yang, and Lei Zhao. 2023. "Changes in Meteorological Elements and Its Impacts on Yunnan Plateau Lakes" Applied Sciences 13, no. 5: 2881. https://doi.org/10.3390/app13052881
APA StyleFan, X., Yang, K., Yang, R., & Zhao, L. (2023). Changes in Meteorological Elements and Its Impacts on Yunnan Plateau Lakes. Applied Sciences, 13(5), 2881. https://doi.org/10.3390/app13052881