Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.2.1. In Situ Data
2.2.2. Satellite Data and Atmospheric Correction Algorithm
2.3. Time Matching
2.4. Algorithm Implementation
2.4.1. Empirical Algorithm
2.4.2. Machine-Learning Algorithms
2.4.3. Model Structure
2.5. Algorithm Assessment
3. Results
3.1. Empirical Algorithm
3.2. Machine-Learning Algorithms
4. Discussion
4.1. Uncertainty of SD Remote Sensing
4.2. Algorithm Comparison
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SD | Secchi depth |
ACOLITE | Atmospheric correction for OLI ‘lite’ |
SVM | Support vector machine |
MLP | Multi-layer perception |
SW | Stepwise regression |
GEE | Google Earth Engine |
Rrs | Remote-sensing reflectance for water pixels |
TOA | Top-of-atmosphere reflectance |
References
- Rose, K.C.; Greb, S.R.; Diebel, M.; Turner, M.G. Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecol. Appl. 2017, 27, 632–643. [Google Scholar] [CrossRef]
- Fee, E.J.; Hecky, R.E.; Kasian, S.E.M.; Cruikshank, D.R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 1996, 41, 912–920. [Google Scholar] [CrossRef]
- Miao, Q.; Liu, C.; Tan, X.H.; Liu, Z.Q.; Gao, Y. Eutrophication Assessment of Nansi Lake, China through Remote Sensing Technology. In Proceedings of the 1st International Conference on Future Computer and Communication (FCC 2009), Wuhan, China, 6–7 June 2009; pp. 28–31. [Google Scholar]
- Cao, Q.; Yu, G.L.; Qiao, Z.Y. Application and recent progress of inland water monitoring using remote sensing techniques. Environ. Monit. Assess. 2023, 195, 125. [Google Scholar] [CrossRef] [PubMed]
- Dube, T.; Shekede, M.D.; Massari, C. Remote Sensing for Water Resources and Environmental Management. Remote Sens. 2023, 15, 18. [Google Scholar] [CrossRef]
- Cai, X.L.; Li, Y.M.; Lei, S.H.; Zeng, S.; Zhao, Z.L.; Lyu, H.; Dong, X.Z.; Li, J.D.; Wang, H.J.; Xu, J.; et al. A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China. Sci. Total Environ. 2023, 856, 158869. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Paul, A.; Vignesh, K.S.; Sood, A.; Bhaumik, S.; Singh, K.A.; Sethupathi, S.; Chanda, A. Suspended Particulate Matter Analysis of Pre and during Covid Lockdown Using Google Earth Engine Cloud Computing: A Case Study of Ukai Reservoir. Bull. Environ. Contam. Toxicol. 2023, 110, 7. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Page, B.P.; Olmanson, L.G.; Mishra, D.R. A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems. Remote Sens. Environ. 2019, 231, 111284. [Google Scholar] [CrossRef]
- Lee, Z.P.; Shang, S.L.; Hu, C.M.; Du, K.P.; Weidemann, A.; Hou, W.L.; Lin, J.F.; Lin, G. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Wen, Y.; Jiang, J.; Sun, Q. An improved algorithm for estimating the Secchi disk depth of inland waters across China based on Sentinel-2 MSI data. Environ. Sci. Pollut. Res. Int. 2023. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.Y.; Cao, Z.G.; Shen, M.; Chen, J.; Song, Q.J.; Duan, H.T. Remote Estimation of Water Clarity and Suspended Particulate Matter in Qinghai Lake from 2001 to 2020 Using MODIS Images. Remote Sens. 2022, 14, 3094. [Google Scholar] [CrossRef]
- Roy, S.; Ojha, S.R.; Reddy, N.N.; Samal, R.N.; Das, B.S. Suspended particulate matter and secchi disk depth in the Chilika Lagoon from in situ and remote sensing data: A modified semi-analytical approach. Int. J. Remote Sens. 2022, 43, 3628–3654. [Google Scholar] [CrossRef]
- Binding, C.E.; Greenberg, T.A.; Watson, S.B.; Rastin, S.; Gould, J. Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations. Limnol. Oceanogr. 2015, 60, 1976–1995. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Cardille, J.A.; Koll-Egyed, T.; Fortin, M.J. Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada. Remote Sens. 2021, 13, 1257. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Fortin, M.J.; Cardille, J.A. Assessing the current water clarity status of similar to 100,000 lakes across southern Canada: A remote sensing approach. Sci. Total Environ. 2022, 826, 153971. [Google Scholar] [CrossRef]
- Li, Y.; Shi, K.; Zhang, Y.; Zhu, G.; Zhang, Y.; Wu, Z.; Liu, M.; Guo, Y.; Li, N. Analysis of water clarity decrease in Xin’anjiang Reservoir, China, from 30-Year Landsat TM, ETM+, and OLI observations. J. Hydrol. 2020, 590, 125476. [Google Scholar] [CrossRef]
- Rubin, H.J.; Lutz, D.A.; Steele, B.G.; Cottingham, K.L.; Weathers, K.C.; Ducey, M.J.; Palace, M.; Johnson, K.M.; Chipman, J.W. Remote Sensing of Lake Water Clarity: Performance and Transferability of Both Historical Algorithms and Machine Learning. Remote Sens. 2021, 13, 1434. [Google Scholar] [CrossRef]
- Lee, C.C.; Barnes, B.B.; Sheridan, S.C.; Smith, E.T.; Hu, C.M.; Pirhalla, D.E.; Ransibrahmanakul, V.; Adams, R. Using machine learning to model and predict water clarity in the Great Lakes. J. Great Lakes Res. 2020, 46, 1501–1510. [Google Scholar] [CrossRef]
- Maciel, D.A.; Barbosa, C.C.F.; Novo, E.M.L.d.M.; Flores Júnior, R.; Begliomini, F.N. Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods. ISPRS J. Photogramm. Remote Sens. 2021, 182, 134–152. [Google Scholar] [CrossRef]
- He, Y.; Lu, Z.; Wang, W.J.; Zhang, D.; Zhang, Y.L.; Qin, B.Q.; Shi, K.; Yang, X.F. Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images. Water Res. 2022, 215, 118241. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Duan, H.; Feng, L.; Ma, R.; Xue, K. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
- Alikas, K.; Kratzer, S. Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecol. Indic. 2017, 77, 218–227. [Google Scholar] [CrossRef]
- Kim, J.; Seo, D.; Jang, M.; Kim, J. Augmentation of limited input data using an artificial neural network method to improve the accuracy of water quality modeling in a large lake. J. Hydrol. 2021, 602, 126817. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271. [Google Scholar] [CrossRef] [PubMed]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Xu, M.; Liu, H.; Beck, R.; Lekki, J.; Yang, B.; Shu, S.; Kang, E.L.; Anderson, R.; Johansen, R.; Emery, E.; et al. A spectral space partition guided ensemble method for retrieving chlorophyll-a concentration in inland waters from Sentinel-2A satellite imagery. J. Great Lakes Res. 2019, 45, 454–465. [Google Scholar] [CrossRef]
- Ma, R.; Yang, G.; Duan, H.; Jiang, J.; Wang, S.; Feng, X.; Li, A.; Kong, F.; Xue, B.; Wu, J.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2010, 54, 283–289. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Song, K.; Liu, G.; Wang, Q.; Wen, Z.; Lyu, L.; Du, Y.; Sha, L.; Fang, C. Quantification of lake clarity in China using Landsat OLI imagery data. Remote Sens. Environ. 2020, 243, 111800. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Renosh, P.R.; Doxaran, D.; Keukelaere, L.D.; Gossn, J.I. Evaluation of Atmospheric Correction Algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in Highly Turbid Estuarine Waters. Remote Sens. 2020, 12, 1285. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Jiang, L.L.; Chen, Y.L.; Wang, L.; Wang, L.X. Evaluation of seven atmospheric correction algorithms for OLCI images over the coastal waters of Qinhuangdao in Bohai Sea. Reg. Stud. Mar. Sci. 2022, 56, 102711. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shi, K.; Zhou, Y.; Li, N. Remote sensing estimation of water clarity for various lakes in China. Water Res. 2021, 192, 116844. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Alameddine, I.; El-Fadel, M. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: How transferable are the water quality algorithms? Environ. Monit. Assess. 2018, 190, 141. [Google Scholar] [CrossRef] [PubMed]
- Hicks, B.J.; Stichbury, G.A.; Brabyn, L.K.; Allan, M.G.; Ashraf, S. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ. Monit. Assess. 2013, 185, 7245–7261. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resour. Res. 2011, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.F.; Zhou, B.; Zhang, X.Q.; Xie, W.H.; Liu, E.X. Retrieval of Secchi disk depth in offshore marine areas based on simulated HICO from in situ hyperspectral data. In Proceedings of the International Conference on Intelligent Earth Observing and Applications (IEOAs), Guilin, China, 23–24 October 2015; Volume 9808. [Google Scholar]
- Lathrop, R.C.; Carpenter, S.R.; Rudstam, L.G. Water clarity in Lake Mendota since 1900: Responses to differing levels of nutrients and herbivory. Can. J. Fish. Aquat. Sci. 1996, 53, 2250–2261. [Google Scholar] [CrossRef]
- Wu, G.; De Leeuw, J.; Skidmore, A.K.; Prins, H.H.T.; Liu, Y. Comparison of MODIS and Landsat TM5 images for mapping tempo–spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China. Int. J. Remote Sens. 2008, 29, 2183–2198. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Zhao, Q.; Shang, Z. Deep learning and Its Development. J. Phys. Conf. Ser. 2021, 1948, 012023. [Google Scholar] [CrossRef]
- Cui, Y.H.; Yan, Z.N.; Wang, J.; Hao, S.; Liu, Y.C. Deep learning-based remote sensing estimation of water transparency in shallow lakes by combining Landsat 8 and Sentinel 2 images. Environ. Sci. Pollut. Res. 2021, 29, 4401–4413. [Google Scholar] [CrossRef]
- Caldeira, J. Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms [Slides]; Fermi National Accelerator Lab. (FNAL): Batavia, IL, USA, 2020. [Google Scholar]
- Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Mach. Learn. 2021, 110, 457–506. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Baek, S.H.; Lim, Y.K.; Pyo, J.; Ligaray, M.; Park, Y.; Cho, K.H. Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models. Water 2018, 10, 1020. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, M.; Bilal, M.; Alsahli, M.M.M.; Shahzad, M.I.; Waqas, A. Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters. ISPRS Int. J. Geo-Inf. 2017, 6, 360. [Google Scholar] [CrossRef] [Green Version]
- Kabiri, K.; Moradi, M. Landsat-8 imagery to estimate clarity in near-shore coastal waters: Feasibility study—Chabahar Bay, Iran. Cont. Shelf Res. 2016, 125, 44–53. [Google Scholar] [CrossRef]
Dianchi Lake (n = 696) | Erhai Lake (n = 1186) | Fuxian Lake (n = 504) | Yilong Lake (n = 358) | |
---|---|---|---|---|
Min (m) | 0.14 | 0.53 | 3.00 | 0.08 |
Max (m) | 1.70 | 4.90 | 9.00 | 2.00 |
Mean (m) | 0.47 | 1.92 | 5.59 | 0.38 |
Median (m) | 0.45 | 1.80 | 5.50 | 0.30 |
Stdev (m) | 0.15 | 0.55 | 0.79 | 0.24 |
CV | 0.33 | 0.29 | 0.14 | 0.65 |
1 Day (n = 112) | 3 Days (n = 254) | 7 Days (n = 432) | |
---|---|---|---|
Min (m) | 0.18 | 0.18 | 0.15 |
Max (m) | 7.50 | 7.50 | 8.00 |
Mean (m) | 2.01 | 1.88 | 2.02 |
Stdev (m) | 2.09 | 1.86 | 1.97 |
CV | 1.04 | 0.99 | 0.97 |
Experiment Number | Model | Training Dataset (Time Window) | Spectral Group |
---|---|---|---|
NO.1 | Stepwise regression | 1-day | Group 1 |
NO.2 | Stepwise regression | 3-day | Group 1 |
NO.3 | Stepwise regression | 7-day | Group 1 |
NO.4 | Stepwise regression | 1-day | Group 2 |
NO.5 | Stepwise regression | 3-day | Group 2 |
NO.6 | Stepwise regression | 7-day | Group 2 |
NO.7 | Multi-layer perception | 1-day | Group 1 |
NO.8 | Multi-layer perception | 3-day | Group 1 |
NO.9 | Multi-layer perception | 7-day | Group 1 |
NO.10 | Multi-layer perception | 1-day | Group 2 |
NO.11 | Multi-layer perception | 3-day | Group 2 |
NO.12 | Multi-layer perception | 7-day | Group 2 |
NO.13 | Support vector machines | 1-day | Group 1 |
NO.14 | Support vector machines | 3-day | Group 1 |
NO.15 | Support vector machines | 7-day | Group 1 |
NO.16 | Support vector machines | 1-day | Group 2 |
NO.17 | Support vector machines | 3-day | Group 2 |
NO.18 | Support vector machines | 7-day | Group 2 |
Experiment Number | Model | Training Dataset (Time Window) | Spectral Group | Formula | R-Squared | |
---|---|---|---|---|---|---|
Parameters | Coefficient | |||||
NO.1 | Stepwise regression | 1-day | Group 1 | Intercept | 4.73 × 102 | 0.6291 |
Rrs655 | −3.55 × 104 | |||||
Rrs443 | 2.08 × 104 | |||||
NO.4 | Group 2 | Intercept | 4.05 × 102 | 0.8641 | ||
Rrs655 | −6.87 × 104 | |||||
Rrs655/ Rrs483 | −1.72 × 107 | |||||
Rrs443 | −1.28 × 105 | |||||
Rrs443/ Rrs561 | −4.30 × 106 | |||||
Rrs561 | −8.54 × 104 | |||||
Rrs561/ Rrs655 | 7.94 × 106 | |||||
Rrs483 | 2.57 × 105 | |||||
Rrs483/ Rrs443 | 2.97 × 106 | |||||
Rrs655/ Rrs443 | 1.17 × 107 |
Experiment Number | Model | Training Dataset (Time Window) | Spectral Group | Testing Dataset (Time Window) | R-Squared |
---|---|---|---|---|---|
NO.4 | Stepwise regression | 1-day | Group 2 | 1-day | 0.8641 |
NO.4 | 1-day | Group 2 | 7-day | 0.7537 | |
NO.6 | 7-day | Group 2 | 1-day | 0.8258 | |
NO.6 | 7-day | Group 2 | 7-day | 0.7826 |
Experiment Number | Model | Training Dataset (Time Window) | Spectral Group | Testing Dataset (Time Window) | R-Squared |
---|---|---|---|---|---|
NO.10 | Multi-layer perceptron | 1-day | Group 2 | 1-day | 0.988 |
NO.10 | 1-day | Group 2 | 7-day | 0.5731 | |
NO.12 | 7-day | Group 2 | 1-day | 0.9812 | |
NO.12 | 7-day | Group 2 | 7-day | 0.9721 | |
NO.16 | Support vector machines | 1-day | Group 2 | 1-day | 0.865 |
NO.16 | 1-day | Group 2 | 7-day | 0.7671 | |
NO.18 | 7-day | Group 2 | 1-day | 0.8686 | |
NO.18 | 7-day | Group 2 | 7-day | 0.869 |
Model | Testing Dataset (Time Window) | Spectral Group | Training Dataset (Time Window) | Statistic | p-Value | |
---|---|---|---|---|---|---|
Sample1 | Sample2 | |||||
Stepwise regression | 1-day | Group 1 | 1-day | 3-day | 0.9482 | 0.3441 |
Group 1 | 7-day | 0.3431 | 0.7318 | |||
Group 1 | 1- to 3-day | 0.6366 | 0.525 | |||
Group 1 | 1- to 7-day | 0.3412 | 0.7332 | |||
Group 1 | 3- to 7-day | 0.6184 | 0.5369 | |||
Group 2 | 3-day | 0.3879 | 0.6984 | |||
Group 2 | 7-day | 0.2418 | 0.8092 | |||
Group 2 | 1- to 3-day | 0.2995 | 0.7648 | |||
Group 2 | 1- to 7-day | −0.0424 | 0.9662 | |||
Group 2 | 3- to 7-day | 0.2993 | 0.765 | |||
Multi-layer perceptron | Group 1 | 3-day | −0.1351 | 0.8926 | ||
Group 1 | 7-day | 0.1541 | 0.8776 | |||
Group 1 | 1- to 3-day | 0.022 | 0.9825 | |||
Group 1 | 1- to 7-day | −0.5074 | 0.6124 | |||
Group 1 | 3- to 7-day | −0.3291 | 0.7424 | |||
Group 2 | 3-day | 0.0783 | 0.9377 | |||
Group 2 | 7-day | −0.0545 | 0.9566 | |||
Group 2 | 1- to 3-day | −0.693 | 0.489 | |||
Group 2 | 1- to 7-day | −0.3651 | 0.7154 | |||
Group 2 | 3- to 7-day | 0.2928 | 0.77 | |||
Support vector machines | Group 1 | 3-day | 0.3482 | 0.728 | ||
Group 1 | 7-day | 0.5229 | 0.6016 | |||
Group 1 | 1- to 3-day | 1.5386 | 0.1253 | |||
Group 1 | 1- to 7-day | 0.358 | 0.7207 | |||
Group 1 | 3- to 7-day | 0.7433 | 0.4581 | |||
Group 2 | 3-day | 0.1303 | 0.8964 | |||
Group 2 | 7-day | −0.773 | 0.4403 | |||
Group 2 | 1- to 3-day | −1.3009 | 0.1946 | |||
Group 2 | 1- to 7-day | −1.2284 | 0.2206 | |||
Group 2 | 3- to 7-day | 0.1303 | 0.8964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; Xu, K.; Cheng, S.; Zhao, L.; Yang, K. Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning. Appl. Sci. 2023, 13, 4007. https://doi.org/10.3390/app13064007
Zeng W, Xu K, Cheng S, Zhao L, Yang K. Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning. Applied Sciences. 2023; 13(6):4007. https://doi.org/10.3390/app13064007
Chicago/Turabian StyleZeng, Weizhong, Ke Xu, Sihang Cheng, Lei Zhao, and Kun Yang. 2023. "Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning" Applied Sciences 13, no. 6: 4007. https://doi.org/10.3390/app13064007
APA StyleZeng, W., Xu, K., Cheng, S., Zhao, L., & Yang, K. (2023). Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning. Applied Sciences, 13(6), 4007. https://doi.org/10.3390/app13064007